{-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE DeriveGeneric #-} module Main where import Control.DeepSeq import Criterion import Criterion.Main import qualified Data.Vector as V import GHC.Generics (Generic) import qualified Numeric.ADDual as ADD type Matrix s = V.Vector s data FNeural a = FNeural [(Matrix a, V.Vector a)] (V.Vector a) deriving (Show, Functor, Foldable, Traversable, Generic) instance NFData a => NFData (FNeural a) fneural :: (Floating a, Ord a) => FNeural a -> a fneural (FNeural layers input) = let dotp v1 v2 = V.sum (V.zipWith (*) v1 v2) mat @. vec = let n = V.length vec m = V.length mat `div` n in V.fromListN m $ map (\i -> dotp (V.slice (n*i) n mat) vec) [0 .. m-1] (+.) = V.zipWith (+) relu x = if x >= 0.0 then x else 0.0 safeSoftmax vec = let m = V.maximum vec factor = V.sum (V.map (\z -> exp (z - m)) vec) in V.map (\z -> exp (z - m) / factor) vec forward [] x = safeSoftmax x forward ((weights, bias) : lys) x = let x' = V.map relu ((weights @. x) +. bias) in forward lys x' in V.sum $ forward layers input makeNeuralInput :: FNeural Double makeNeuralInput = let genMatrix nin nout = V.fromListN (nin*nout) [sin (fromIntegral @Int (i+j)) | i <- [0..nout-1], j <- [0..nin-1]] genVector nout = V.fromListN nout [sin (0.41 * fromIntegral @Int i) | i <- [0..nout-1]] -- 50 inputs; 2 hidden layers (100; 50); final softmax, then sum the outputs. nIn = 50; n1 = 100; n2 = 50 in FNeural [(genMatrix nIn n1, genVector n1) ,(genMatrix n1 n2, genVector n2)] (genVector nIn) main :: IO () main = defaultMain [env (pure makeNeuralInput) $ \input -> bench "neural" $ nf (\inp -> ADD.gradient' @Double fneural inp 1.0) input]