{-# LANGUAGE DataKinds #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE StandaloneKindSignatures #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE QuantifiedConstraints #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveFoldable #-} module AST where import Data.Kind (Type) import Data.Int data Nat = Z | S Nat deriving (Show, Eq, Ord) data SNat n where SZ :: SNat Z SS :: SNat n -> SNat (S n) deriving instance (Show (SNat n)) data Vec n t where VNil :: Vec n t (:<) :: t -> Vec n t -> Vec (S n) t deriving instance Show t => Show (Vec n t) deriving instance Functor (Vec n) deriving instance Foldable (Vec n) data SList f l where SNil :: SList f '[] SCons :: f a -> SList f l -> SList f (a : l) deriving instance (forall a. Show (f a)) => Show (SList f l) data Ty = TNil | TPair Ty Ty | TArr Nat Ty -- ^ rank, element type | TScal ScalTy | TEVM [Ty] Ty deriving (Show, Eq, Ord) data ScalTy = TI32 | TI64 | TF32 | TF64 | TBool deriving (Show, Eq, Ord) type STy :: Ty -> Type data STy t where STNil :: STy TNil STPair :: STy a -> STy b -> STy (TPair a b) STArr :: SNat n -> STy t -> STy (TArr n t) STScal :: SScalTy t -> STy (TScal t) STEVM :: SList STy env -> STy t -> STy (TEVM env t) deriving instance Show (STy t) data SScalTy t where STI32 :: SScalTy TI32 STI64 :: SScalTy TI64 STF32 :: SScalTy TF32 STF64 :: SScalTy TF64 STBool :: SScalTy TBool deriving instance Show (SScalTy t) type TIx = TScal TI64 type Idx :: [Ty] -> Ty -> Type data Idx env t where IZ :: Idx (t : env) t IS :: Idx env t -> Idx (a : env) t deriving instance Show (Idx env t) type family ScalRep t where ScalRep TI32 = Int32 ScalRep TI64 = Int64 ScalRep TF32 = Float ScalRep TF64 = Double ScalRep TBool = Bool type ConsN :: Nat -> a -> [a] -> [a] type family ConsN n x l where ConsN Z x l = l ConsN (S n) x l = x : ConsN n x l type Expr :: (Ty -> Type) -> [Ty] -> Ty -> Type data Expr x env t where -- lambda calculus EVar :: x t -> STy t -> Idx env t -> Expr x env t ELet :: x t -> Expr x env a -> Expr x (a : env) t -> Expr x env t -- array operations EBuild1 :: x (TArr (S Z) t) -> Expr x env TIx -> Expr x (TIx : env) t -> Expr x env (TArr (S Z) t) EBuild :: x (TArr n t) -> SNat n -> Vec n (Expr x env TIx) -> Expr x (ConsN n TIx env) t -> Expr x env (TArr n t) EFold1 :: x (TArr n t) -> Expr x (t : t : env) t -> Expr x env (TArr (S n) t) -> Expr x env (TArr n t) -- expression operations EConst :: Show (ScalRep t) => x (TScal t) -> SScalTy t -> ScalRep t -> Expr x env (TScal t) EIdx1 :: x (TArr n t) -> Expr x env (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t) EIdx :: x t -> Expr x env (TArr n t) -> Vec n (Expr x env TIx) -> Expr x env t EOp :: x t -> SOp a t -> Expr x env a -> Expr x env t -- EVM operations EMOne :: Idx venv t -> Expr x env t -> Expr x env (TEVM venv TNil) deriving instance (forall ty. Show (x ty)) => Show (Expr x env t) type SOp :: Ty -> Ty -> Type data SOp a t where OAdd :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a) OMul :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a) ONeg :: SScalTy a -> SOp (TScal a) (TScal a) OLt :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool) OLe :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool) OEq :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool) ONot :: SOp (TScal TBool) (TScal TBool) deriving instance Show (SOp a t) opt2 :: SOp a t -> STy t opt2 = \case OAdd t -> STScal t OMul t -> STScal t ONeg t -> STScal t OLt _ -> STScal STBool OLe _ -> STScal STBool OEq _ -> STScal STBool ONot -> STScal STBool typeOf :: Expr x env t -> STy t typeOf = \case EVar _ t _ -> t ELet _ _ e -> typeOf e EBuild1 _ _ e -> STArr (SS SZ) (typeOf e) EBuild _ n _ e -> STArr n (typeOf e) EFold1 _ _ e | STArr (SS n) t <- typeOf e -> STArr n t -- expression operations EConst _ t _ -> STScal t EIdx1 _ e _ | STArr (SS n) t <- typeOf e -> STArr n t EIdx _ e _ | STArr _ t <- typeOf e -> t EOp _ op _ -> opt2 op EMOne _ _ -> STEVM _ STNil unSNat :: SNat n -> Nat unSNat SZ = Z unSNat (SS n) = S (unSNat n) unSTy :: STy t -> Ty unSTy = \case STNil -> TNil STPair a b -> TPair (unSTy a) (unSTy b) STArr n t -> TArr (unSNat n) (unSTy t) STScal t -> TScal (unSScalTy t) STEVM l t -> TEVM (unSList l) (unSTy t) unSList :: SList STy env -> [Ty] unSList SNil = [] unSList (SCons t l) = unSTy t : unSList l unSScalTy :: SScalTy t -> ScalTy unSScalTy = \case STI32 -> TI32 STI64 -> TI64 STF32 -> TF32 STF64 -> TF64 STBool -> TBool fromNat :: Nat -> Int fromNat Z = 0 fromNat (S n) = succ (fromNat n) data env :> env' where WId :: env :> env WSink :: env :> (t : env) WCopy :: env :> env' -> (t : env) :> (t : env') WThen :: env1 :> env2 -> env2 :> env3 -> env1 :> env3 deriving instance Show (env :> env') (.>) :: env2 :> env3 -> env1 :> env2 -> env1 :> env3 (.>) = flip WThen infixr @> (@>) :: env :> env' -> Idx env t -> Idx env' t WId @> i = i WSink @> i = IS i WCopy _ @> IZ = IZ WCopy w @> (IS i) = IS (w @> i) WThen w1 w2 @> i = w2 @> w1 @> i weakenExpr :: env :> env' -> Expr x env t -> Expr x env' t weakenExpr w = \case EVar x t i -> EVar x t (w @> i) ELet x rhs body -> ELet x (weakenExpr w rhs) (weakenExpr (WCopy w) body) EBuild1 x e1 e2 -> EBuild1 x (weakenExpr w e1) (weakenExpr (WCopy w) e2) EBuild x n es e -> EBuild x n (weakenVec w es) (weakenExpr (wcopyN n w) e) EFold1 x e1 e2 -> EFold1 x (weakenExpr (WCopy (WCopy w)) e1) (weakenExpr w e2) EConst x t v -> EConst x t v EIdx1 x e1 e2 -> EIdx1 x (weakenExpr w e1) (weakenExpr w e2) EIdx x e1 es -> EIdx x (weakenExpr w e1) (weakenVec w es) EOp x op e -> EOp x op (weakenExpr w e) EMOne i e -> EMOne i (weakenExpr w e) wcopyN :: SNat n -> env :> env' -> ConsN n TIx env :> ConsN n TIx env' wcopyN SZ w = w wcopyN (SS n) w = WCopy (wcopyN n w) weakenVec :: (env :> env') -> Vec n (Expr x env TIx) -> Vec n (Expr x env' TIx) weakenVec _ VNil = VNil weakenVec w (e :< v) = weakenExpr w e :< weakenVec w v