{-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE StandaloneKindSignatures #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeData #-} module AST.Types where import Data.Int (Int32, Int64) import Data.GADT.Compare import Data.GADT.Show import Data.Kind (Type) import Data.Type.Equality import Data type data Ty = TNil | TPair Ty Ty | TEither Ty Ty | TMaybe Ty | TArr Nat Ty -- ^ rank, element type | TScal ScalTy | TAccum Ty -- ^ contained type must be a monoid type type data ScalTy = TI32 | TI64 | TF32 | TF64 | TBool type STy :: Ty -> Type data STy t where STNil :: STy TNil STPair :: STy a -> STy b -> STy (TPair a b) STEither :: STy a -> STy b -> STy (TEither a b) STMaybe :: STy a -> STy (TMaybe a) STArr :: SNat n -> STy t -> STy (TArr n t) STScal :: SScalTy t -> STy (TScal t) STAccum :: STy t -> STy (TAccum t) deriving instance Show (STy t) instance GCompare STy where gcompare = \cases STNil STNil -> GEQ STNil _ -> GLT ; _ STNil -> GGT (STPair a b) (STPair a' b') -> gorderingLift2 (gcompare a a') (gcompare b b') STPair{} _ -> GLT ; _ STPair{} -> GGT (STEither a b) (STEither a' b') -> gorderingLift2 (gcompare a a') (gcompare b b') STEither{} _ -> GLT ; _ STEither{} -> GGT (STMaybe a) (STMaybe a') -> gorderingLift1 (gcompare a a') STMaybe{} _ -> GLT ; _ STMaybe{} -> GGT (STArr n t) (STArr n' t') -> gorderingLift2 (gcompare n n') (gcompare t t') STArr{} _ -> GLT ; _ STArr{} -> GGT (STScal t) (STScal t') -> gorderingLift1 (gcompare t t') STScal{} _ -> GLT ; _ STScal{} -> GGT (STAccum t) (STAccum t') -> gorderingLift1 (gcompare t t') -- STAccum{} _ -> GLT ; _ STAccum{} -> GGT instance TestEquality STy where testEquality = geq instance GEq STy where geq = defaultGeq instance GShow STy where gshowsPrec = defaultGshowsPrec data SScalTy t where STI32 :: SScalTy TI32 STI64 :: SScalTy TI64 STF32 :: SScalTy TF32 STF64 :: SScalTy TF64 STBool :: SScalTy TBool deriving instance Show (SScalTy t) instance GCompare SScalTy where gcompare = \cases STI32 STI32 -> GEQ STI32 _ -> GLT ; _ STI32 -> GGT STI64 STI64 -> GEQ STI64 _ -> GLT ; _ STI64 -> GGT STF32 STF32 -> GEQ STF32 _ -> GLT ; _ STF32 -> GGT STF64 STF64 -> GEQ STF64 _ -> GLT ; _ STF64 -> GGT STBool STBool -> GEQ -- STBool _ -> GLT ; _ STBool -> GGT instance TestEquality SScalTy where testEquality = geq instance GEq SScalTy where geq = defaultGeq instance GShow SScalTy where gshowsPrec = defaultGshowsPrec scalRepIsShow :: SScalTy t -> Dict (Show (ScalRep t)) scalRepIsShow STI32 = Dict scalRepIsShow STI64 = Dict scalRepIsShow STF32 = Dict scalRepIsShow STF64 = Dict scalRepIsShow STBool = Dict type TIx = TScal TI64 tIx :: STy TIx tIx = STScal STI64 type family ScalRep t where ScalRep TI32 = Int32 ScalRep TI64 = Int64 ScalRep TF32 = Float ScalRep TF64 = Double ScalRep TBool = Bool type family ScalIsNumeric t where ScalIsNumeric TI32 = True ScalIsNumeric TI64 = True ScalIsNumeric TF32 = True ScalIsNumeric TF64 = True ScalIsNumeric TBool = False type family ScalIsFloating t where ScalIsFloating TI32 = False ScalIsFloating TI64 = False ScalIsFloating TF32 = True ScalIsFloating TF64 = True ScalIsFloating TBool = False type family ScalIsIntegral t where ScalIsIntegral TI32 = True ScalIsIntegral TI64 = True ScalIsIntegral TF32 = False ScalIsIntegral TF64 = False ScalIsIntegral TBool = False -- | Returns true for arrays /and/ accumulators. hasArrays :: STy t' -> Bool hasArrays STNil = False hasArrays (STPair a b) = hasArrays a || hasArrays b hasArrays (STEither a b) = hasArrays a || hasArrays b hasArrays (STMaybe t) = hasArrays t hasArrays STArr{} = True hasArrays STScal{} = False hasArrays STAccum{} = True type family Tup env where Tup '[] = TNil Tup (t : ts) = TPair (Tup ts) t mkTup :: f TNil -> (forall a b. f a -> f b -> f (TPair a b)) -> SList f list -> f (Tup list) mkTup nil _ SNil = nil mkTup nil pair (e `SCons` es) = pair (mkTup nil pair es) e tTup :: SList STy env -> STy (Tup env) tTup = mkTup STNil STPair unTup :: (forall a b. c (TPair a b) -> (c a, c b)) -> SList f list -> c (Tup list) -> SList c list unTup _ SNil _ = SNil unTup unpack (_ `SCons` list) tup = let (xs, x) = unpack tup in x `SCons` unTup unpack list xs type family InvTup core env where InvTup core '[] = core InvTup core (t : ts) = InvTup (TPair core t) ts