{-# LANGUAGE DataKinds #-} {-# LANGUAGE EmptyCase #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE StandaloneKindSignatures #-} {-# LANGUAGE TypeAbstractions #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE PartialTypeSignatures #-} {-# OPTIONS -Wno-partial-type-signatures #-} -- The reason why this is a separate module with "little" in it: {-# LANGUAGE AllowAmbiguousTypes #-} module AST.Weaken (module AST.Weaken, Append) where import Data.Bifunctor (first) import Data.Functor.Const import Data.Kind (Type) import Data import Lemmas type Idx :: [k] -> k -> Type data Idx env t where IZ :: Idx (t : env) t IS :: Idx env t -> Idx (a : env) t deriving instance Show (Idx env t) splitIdx :: forall env2 env1 t f. SList f env1 -> Idx (Append env1 env2) t -> Either (Idx env1 t) (Idx env2 t) splitIdx SNil i = Right i splitIdx (SCons _ _) IZ = Left IZ splitIdx (SCons _ l) (IS i) = first IS (splitIdx l i) data env :> env' where WId :: env :> env WSink :: forall t env. env :> (t : env) WCopy :: env :> env' -> (t : env) :> (t : env') WPop :: (t : env) :> env' -> env :> env' WThen :: env1 :> env2 -> env2 :> env3 -> env1 :> env3 WClosed :: SList (Const ()) env -> '[] :> env WIdx :: Idx env t -> (t : env) :> env WPick :: forall t pre env env'. SList (Const ()) pre -> env :> env' -> Append pre (t : env) :> t : Append pre env' WSwap :: forall env as bs. SList (Const ()) as -> SList (Const ()) bs -> Append as (Append bs env) :> Append bs (Append as env) deriving instance Show (env :> env') infix 4 :> infixr 2 @> (@>) :: env :> env' -> Idx env t -> Idx env' t WId @> i = i WSink @> i = IS i WCopy _ @> IZ = IZ WCopy w @> IS i = IS (w @> i) WPop w @> i = w @> IS i WThen w1 w2 @> i = w2 @> w1 @> i WClosed _ @> i = case i of {} WIdx j @> IZ = j WIdx _ @> IS i = i WPick SNil w @> i = WCopy w @> i WPick (_ `SCons` _) _ @> IZ = IS IZ WPick @t (_ `SCons` pre) w @> IS i = WCopy WSink .> WPick @t pre w @> i WSwap @env (as :: SList _ as) (bs :: SList _ bs) @> i = case splitIdx @(Append bs env) as i of Left i' -> skipOver bs (stack @env i' as) Right i' -> case splitIdx @env bs i' of Left j -> stack @(Append as env) j bs Right j -> skipOver bs (skipOver as j) where skipOver :: SList (Const ()) as' -> Idx bs' t -> Idx (Append as' bs') t skipOver SNil j = j skipOver (_ `SCons` bs') j = IS (skipOver bs' j) stack :: forall env' as' t. Idx as' t -> SList (Const ()) as' -> Idx (Append as' env') t stack IZ (_ `SCons` _) = IZ stack (IS j) (_ `SCons` as') = IS (stack @env' j as') infixr 3 .> (.>) :: env2 :> env3 -> env1 :> env2 -> env1 :> env3 (.>) = flip WThen class KnownListSpine list where knownListSpine :: SList (Const ()) list instance KnownListSpine '[] where knownListSpine = SNil instance KnownListSpine list => KnownListSpine (t : list) where knownListSpine = SCons (Const ()) knownListSpine wSinks' :: forall list env. KnownListSpine list => env :> Append list env wSinks' = wSinks (knownListSpine :: SList (Const ()) list) wSinks :: forall env bs f. SList f bs -> env :> Append bs env wSinks SNil = WId wSinks (SCons _ spine) = WSink .> wSinks spine wCopies :: SList f bs -> env1 :> env2 -> Append bs env1 :> Append bs env2 wCopies SNil w = w wCopies (SCons _ spine) w = WCopy (wCopies spine w) wRaiseAbove :: SList f env1 -> SList g env -> env1 :> Append env1 env wRaiseAbove SNil env = WClosed (slistMap (\_ -> Const ()) env) wRaiseAbove (SCons _ s) env = WCopy (wRaiseAbove s env)