{-# LANGUAGE DataKinds #-} {-# LANGUAGE EmptyCase #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ImplicitParams #-} {-# LANGUAGE OverloadedLabels #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE QuantifiedConstraints #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE StandaloneKindSignatures #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} -- I want to bring various type variables in scope using type annotations in -- patterns, but I don't want to have to mention all the other type parameters -- of the types in question as well then. Partial type signatures (with '_') are -- useful here. {-# LANGUAGE PartialTypeSignatures #-} {-# OPTIONS -Wno-partial-type-signatures #-} module CHAD ( drev, freezeRet, CHADConfig(..), defaultConfig, Storage(..), Descr(..), Select, ) where import Data.Functor.Const import Data.Type.Bool (If) import Data.Type.Equality (type (==)) import GHC.Stack (HasCallStack) import Analysis.Identity (ValId(..)) import AST import AST.Bindings import AST.Count import AST.Env import AST.Weaken.Auto import CHAD.Accum import CHAD.EnvDescr import CHAD.Types import Data import qualified Data.VarMap as VarMap import Data.VarMap (VarMap) import Lemmas ------------------------------ TAPES AND BINDINGS ------------------------------ type family Tape binds where Tape '[] = TNil Tape (t : ts) = TPair t (Tape ts) tapeTy :: SList STy binds -> STy (Tape binds) tapeTy SNil = STNil tapeTy (SCons t ts) = STPair t (tapeTy ts) bindingsCollect :: Bindings f env binds -> Subenv binds tapebinds -> Append binds env :> env2 -> Ex env2 (Tape tapebinds) bindingsCollect BTop SETop _ = ENil ext bindingsCollect (BPush binds (t, _)) (SEYes sub) w = EPair ext (EVar ext t (w @> IZ)) (bindingsCollect binds sub (w .> WSink)) bindingsCollect (BPush binds _) (SENo sub) w = bindingsCollect binds sub (w .> WSink) -- In order from large to small: i.e. in reverse order from what we want, -- because in a Bindings, the head of the list is the bottom-most entry. type family TapeUnfoldings binds where TapeUnfoldings '[] = '[] TapeUnfoldings (t : ts) = Tape ts : TapeUnfoldings ts type family Reverse l where Reverse '[] = '[] Reverse (t : ts) = Append (Reverse ts) '[t] -- An expression that is always 'snd' data UnfExpr env t where UnfExSnd :: STy s -> STy t -> UnfExpr (TPair s t : env) t fromUnfExpr :: UnfExpr env t -> Ex env t fromUnfExpr (UnfExSnd s t) = ESnd ext (EVar ext (STPair s t) IZ) -- - A bunch of 'snd' expressions taking us from knowing that there's a -- 'Tape ts' in the environment (for simplicity assume it's at IZ, we'll fix -- this in reconstructBindings), to having 'Reverse (TapeUnfoldings ts)' in -- the environment. -- - In the extended environment, another bunch of let bindings (these are -- 'fst' expressions, but no need to know that statically) that project the -- fsts out of what we introduced above, one for each type in 'ts'. data Reconstructor env ts = Reconstructor (Bindings UnfExpr (Tape ts : env) (Reverse (TapeUnfoldings ts))) (Bindings Ex (Append (Reverse (TapeUnfoldings ts)) (Tape ts : env)) ts) ssnoc :: SList f ts -> f t -> SList f (Append ts '[t]) ssnoc SNil a = SCons a SNil ssnoc (SCons t ts) a = SCons t (ssnoc ts a) sreverse :: SList f ts -> SList f (Reverse ts) sreverse SNil = SNil sreverse (SCons t ts) = ssnoc (sreverse ts) t stapeUnfoldings :: SList STy ts -> SList STy (TapeUnfoldings ts) stapeUnfoldings SNil = SNil stapeUnfoldings (SCons _ ts) = SCons (tapeTy ts) (stapeUnfoldings ts) -- Puts a 'snd' at the top of an unfolder stack and grows the context variable by one. shiftUnfolder :: STy t -> SList STy ts -> Bindings UnfExpr (Tape ts : env) list -> Bindings UnfExpr (Tape (t : ts) : env) (Append list '[Tape ts]) shiftUnfolder newTy ts BTop = BPush BTop (tapeTy ts, UnfExSnd newTy (tapeTy ts)) shiftUnfolder newTy ts (BPush b (t, UnfExSnd itemTy _)) = -- Recurse on 'b', and retype the 'snd'. We need to unfold 'b' once in order -- to expand an 'Append' in the types so that things simplify just enough. -- We have an equality 'Append binds x1 ~ a : x2', where 'binds' is the list -- of bindings produced by 'b'. We want to conclude from this that -- 'binds ~ a : x3' for some 'x3', but GHC will only do that once we know -- that 'binds ~ y : ys' so that the 'Append' can expand one step, after -- which 'y ~ a' as desired. The 'case' unfolds 'b' one step. BPush (shiftUnfolder newTy ts b) (t, case b of BTop -> UnfExSnd itemTy t BPush{} -> UnfExSnd itemTy t) growRecon :: forall env t ts. STy t -> SList STy ts -> Reconstructor env ts -> Reconstructor env (t : ts) growRecon t ts (Reconstructor unfbs bs) | Refl <- lemAppendNil @(Append (Reverse (TapeUnfoldings ts)) '[Tape ts]) , Refl <- lemAppendAssoc @ts @(Append (Reverse (TapeUnfoldings ts)) '[Tape ts]) @(Tape (t : ts) : env) , Refl <- lemAppendAssoc @(Reverse (TapeUnfoldings ts)) @'[Tape ts] @env = Reconstructor (shiftUnfolder t ts unfbs) -- Add a 'fst' at the bottom of the builder stack. -- First we have to weaken most of 'bs' to skip one more binding in the -- unfolder stack above it. (BPush (fst (weakenBindings weakenExpr (wCopies (sappend (sreverse (stapeUnfoldings ts)) (SCons (tapeTy ts) SNil)) (WSink :: env :> (Tape (t : ts) : env))) bs)) (t ,EFst ext $ EVar ext (tapeTy (SCons t ts)) $ wSinks @(Tape (t : ts) : env) (sappend ts (sappend (sappend (sreverse (stapeUnfoldings ts)) (SCons (tapeTy ts) SNil)) SNil)) @> IZ)) buildReconstructor :: SList STy ts -> Reconstructor env ts buildReconstructor SNil = Reconstructor BTop BTop buildReconstructor (SCons t ts) = growRecon t ts (buildReconstructor ts) -- STRATEGY FOR reconstructBindings -- -- binds = [] -- e : () -- -- binds = [c] -- e : (c, ()) -- x0 = snd x1 : () -- y1 = fst e : c -- -- binds = [b, c] -- e : (b, (c, ())) -- x1 = snd e : (c, ()) -- x0 = snd x1 : () -- y1 = fst x1 : c -- y2 = fst x2 : b -- -- binds = [a, b, c] -- e : (a, (b, (c, ()))) -- x2 = snd e : (b, (c, ())) -- x1 = snd x2 : (c, ()) -- x0 = snd x1 : () -- y1 = fst x1 : c -- y2 = fst x2 : b -- y3 = fst x3 : a -- Given that in 'env' we can find a 'Tape binds', i.e. a tuple containing all -- the things in the list 'binds', we want to create a let stack that extracts -- all values from that tuple and in effect "restores" the environment -- described by 'binds'. The idea is that elsewhere, we took a slice of the -- environment and saved it all in a tuple to be restored later. We -- incidentally also add a bunch of additional bindings, namely 'Reverse -- (TapeUnfoldings binds)', so the calling code just has to skip those in -- whatever it wants to do. reconstructBindings :: SList STy binds -> Idx env (Tape binds) -> (Bindings Ex env (Append binds (Reverse (TapeUnfoldings binds))) ,SList STy (Reverse (TapeUnfoldings binds))) reconstructBindings binds tape = let Reconstructor unf build = buildReconstructor binds in (fst $ weakenBindings weakenExpr (WIdx tape) (bconcat (mapBindings fromUnfExpr unf) build) ,sreverse (stapeUnfoldings binds)) ---------------------------------- DERIVATIVES --------------------------------- d1op :: SOp a t -> Ex env (D1 a) -> Ex env (D1 t) d1op (OAdd t) e = EOp ext (OAdd t) e d1op (OMul t) e = EOp ext (OMul t) e d1op (ONeg t) e = EOp ext (ONeg t) e d1op (OLt t) e = EOp ext (OLt t) e d1op (OLe t) e = EOp ext (OLe t) e d1op (OEq t) e = EOp ext (OEq t) e d1op ONot e = EOp ext ONot e d1op OAnd e = EOp ext OAnd e d1op OOr e = EOp ext OOr e d1op OIf e = EOp ext OIf e d1op ORound64 e = EOp ext ORound64 e d1op OToFl64 e = EOp ext OToFl64 e d1op (ORecip t) e = EOp ext (ORecip t) e d1op (OExp t) e = EOp ext (OExp t) e d1op (OLog t) e = EOp ext (OLog t) e d1op (OIDiv t) e = EOp ext (OIDiv t) e -- | Both primal and dual must be duplicable expressions data D2Op a t = Linear (forall env. Ex env (D2 t) -> Ex env (D2 a)) | Nonlinear (forall env. Ex env (D1 a) -> Ex env (D2 t) -> Ex env (D2 a)) d2op :: SOp a t -> D2Op a t d2op op = case op of OAdd t -> d2opBinArrangeInt t $ Linear $ \d -> EJust ext (EPair ext d d) OMul t -> d2opBinArrangeInt t $ Nonlinear $ \e d -> EJust ext (EPair ext (EOp ext (OMul t) (EPair ext (ESnd ext e) d)) (EOp ext (OMul t) (EPair ext (EFst ext e) d))) ONeg t -> d2opUnArrangeInt t $ Linear $ \d -> EOp ext (ONeg t) d OLt t -> Linear $ \_ -> ENothing ext (STPair (d2 (STScal t)) (d2 (STScal t))) OLe t -> Linear $ \_ -> ENothing ext (STPair (d2 (STScal t)) (d2 (STScal t))) OEq t -> Linear $ \_ -> ENothing ext (STPair (d2 (STScal t)) (d2 (STScal t))) ONot -> Linear $ \_ -> ENil ext OAnd -> Linear $ \_ -> ENothing ext (STPair STNil STNil) OOr -> Linear $ \_ -> ENothing ext (STPair STNil STNil) OIf -> Linear $ \_ -> ENil ext ORound64 -> Linear $ \_ -> EConst ext STF64 0.0 OToFl64 -> Linear $ \_ -> ENil ext ORecip t -> floatingD2 t $ Nonlinear $ \e d -> EOp ext (OMul t) (EPair ext (EOp ext (ONeg t) (EOp ext (ORecip t) (EOp ext (OMul t) (EPair ext e e)))) d) OExp t -> floatingD2 t $ Nonlinear $ \e d -> EOp ext (OMul t) (EPair ext (EOp ext (OExp t) e) d) OLog t -> floatingD2 t $ Nonlinear $ \e d -> EOp ext (OMul t) (EPair ext (EOp ext (ORecip t) e) d) OIDiv t -> integralD2 t $ Linear $ \_ -> ENothing ext (STPair STNil STNil) where d2opUnArrangeInt :: SScalTy a -> (D2s a ~ TScal a => D2Op (TScal a) t) -> D2Op (TScal a) t d2opUnArrangeInt ty float = case ty of STI32 -> Linear $ \_ -> ENil ext STI64 -> Linear $ \_ -> ENil ext STF32 -> float STF64 -> float STBool -> Linear $ \_ -> ENil ext d2opBinArrangeInt :: SScalTy a -> (D2s a ~ TScal a => D2Op (TPair (TScal a) (TScal a)) t) -> D2Op (TPair (TScal a) (TScal a)) t d2opBinArrangeInt ty float = case ty of STI32 -> Linear $ \_ -> ENothing ext (STPair STNil STNil) STI64 -> Linear $ \_ -> ENothing ext (STPair STNil STNil) STF32 -> float STF64 -> float STBool -> Linear $ \_ -> ENothing ext (STPair STNil STNil) floatingD2 :: ScalIsFloating a ~ True => SScalTy a -> ((D2s a ~ TScal a, ScalIsNumeric a ~ True) => r) -> r floatingD2 STF32 k = k floatingD2 STF64 k = k integralD2 :: ScalIsIntegral a ~ True => SScalTy a -> ((D2s a ~ TNil, ScalIsNumeric a ~ True) => r) -> r integralD2 STI32 k = k integralD2 STI64 k = k desD1E :: Descr env sto -> SList STy (D1E env) desD1E = d1e . descrList -- d1W :: env :> env' -> D1E env :> D1E env' -- d1W WId = WId -- d1W WSink = WSink -- d1W (WCopy w) = WCopy (d1W w) -- d1W (WPop w) = WPop (d1W w) -- d1W (WThen u w) = WThen (d1W u) (d1W w) conv1Idx :: Idx env t -> Idx (D1E env) (D1 t) conv1Idx IZ = IZ conv1Idx (IS i) = IS (conv1Idx i) data Idx2 env sto t = Idx2Ac (Idx (D2AcE (Select env sto "accum")) (TAccum t)) | Idx2Me (Idx (Select env sto "merge") t) | Idx2Di (Idx (Select env sto "discr") t) conv2Idx :: Descr env sto -> Idx env t -> Idx2 env sto t conv2Idx (DPush _ (_, SAccum)) IZ = Idx2Ac IZ conv2Idx (DPush _ (_, SMerge)) IZ = Idx2Me IZ conv2Idx (DPush _ (_, SDiscr)) IZ = Idx2Di IZ conv2Idx (DPush des (_, SAccum)) (IS i) = case conv2Idx des i of Idx2Ac j -> Idx2Ac (IS j) Idx2Me j -> Idx2Me j Idx2Di j -> Idx2Di j conv2Idx (DPush des (_, SMerge)) (IS i) = case conv2Idx des i of Idx2Ac j -> Idx2Ac j Idx2Me j -> Idx2Me (IS j) Idx2Di j -> Idx2Di j conv2Idx (DPush des (_, SDiscr)) (IS i) = case conv2Idx des i of Idx2Ac j -> Idx2Ac j Idx2Me j -> Idx2Me j Idx2Di j -> Idx2Di (IS j) conv2Idx DTop i = case i of {} ------------------------------------ MONOIDS ----------------------------------- zeroTup :: SList STy env0 -> Ex env (Tup (D2E env0)) zeroTup SNil = ENil ext zeroTup (SCons t env) = EPair ext (zeroTup env) (EZero ext t) ------------------------------------ SUBENVS ----------------------------------- subenvPlus :: SList STy env -> Subenv env env1 -> Subenv env env2 -> (forall env3. Subenv env env3 -> Subenv env3 env1 -> Subenv env3 env2 -> (Ex exenv (Tup (D2E env1)) -> Ex exenv (Tup (D2E env2)) -> Ex exenv (Tup (D2E env3))) -> r) -> r subenvPlus SNil SETop SETop k = k SETop SETop SETop (\_ _ -> ENil ext) subenvPlus (SCons _ env) (SENo sub1) (SENo sub2) k = subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl -> k (SENo sub3) s31 s32 pl subenvPlus (SCons _ env) (SEYes sub1) (SENo sub2) k = subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl -> k (SEYes sub3) (SEYes s31) (SENo s32) $ \e1 e2 -> ELet ext e1 $ EPair ext (pl (EFst ext (EVar ext (typeOf e1) IZ)) (weakenExpr WSink e2)) (ESnd ext (EVar ext (typeOf e1) IZ)) subenvPlus (SCons _ env) (SENo sub1) (SEYes sub2) k = subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl -> k (SEYes sub3) (SENo s31) (SEYes s32) $ \e1 e2 -> ELet ext e2 $ EPair ext (pl (weakenExpr WSink e1) (EFst ext (EVar ext (typeOf e2) IZ))) (ESnd ext (EVar ext (typeOf e2) IZ)) subenvPlus (SCons t env) (SEYes sub1) (SEYes sub2) k = subenvPlus env sub1 sub2 $ \sub3 s31 s32 pl -> k (SEYes sub3) (SEYes s31) (SEYes s32) $ \e1 e2 -> ELet ext e1 $ ELet ext (weakenExpr WSink e2) $ EPair ext (pl (EFst ext (EVar ext (typeOf e1) (IS IZ))) (EFst ext (EVar ext (typeOf e2) IZ))) (EPlus ext t (ESnd ext (EVar ext (typeOf e1) (IS IZ))) (ESnd ext (EVar ext (typeOf e2) IZ))) expandSubenvZeros :: SList STy env0 -> Subenv env0 env0Merge -> Ex env (Tup (D2E env0Merge)) -> Ex env (Tup (D2E env0)) expandSubenvZeros _ SETop _ = ENil ext expandSubenvZeros (SCons t ts) (SEYes sub) e = ELet ext e $ let var = EVar ext (STPair (tTup (d2e (subList ts sub))) (d2 t)) IZ in EPair ext (expandSubenvZeros ts sub (EFst ext var)) (ESnd ext var) expandSubenvZeros (SCons t ts) (SENo sub) e = EPair ext (expandSubenvZeros ts sub e) (EZero ext t) assertSubenvEmpty :: HasCallStack => Subenv env env' -> env' :~: '[] assertSubenvEmpty (SENo sub) | Refl <- assertSubenvEmpty sub = Refl assertSubenvEmpty SETop = Refl assertSubenvEmpty SEYes{} = error "assertSubenvEmpty: not empty" --------------------------------- ACCUMULATORS --------------------------------- accumPromote :: forall dt env sto proxy r. proxy dt -> Descr env sto -> (forall stoRepl envPro. (Select env stoRepl "merge" ~ '[]) => Descr env stoRepl -- ^ A revised environment description that switches -- arrays (used in the OccEnv) that are currently on -- "merge" storage, to "accum" storage. Any other "merge" -- entries are deleted. -> SList STy envPro -- ^ New entries on top of the original dual environment, -- that house the accumulators for the promoted arrays in -- the original environment. -> Subenv (Select env sto "merge") envPro -- ^ The promoted entries were merge entries in the -- original environment. -> (forall shbinds. SList STy shbinds -> (D2 dt : Append shbinds (D2AcE (Select env stoRepl "accum"))) :> Append (D2AcE envPro) (D2 dt : Append shbinds (D2AcE (Select env sto "accum")))) -- ^ A weakening that converts a computation in the -- revised environment to one in the original environment -- extended with some accumulators. -> r) -> r accumPromote _ DTop k = k DTop SNil SETop (\_ -> WId) accumPromote pdty (descr `DPush` (t :: STy t, sto)) k = accumPromote pdty descr $ \(storepl :: Descr env1 stoRepl) (envpro :: SList _ envPro) prosub wf -> case sto of -- Accumulators are left as-is SAccum -> k (storepl `DPush` (t, SAccum)) envpro prosub (\shbinds -> autoWeak (#pro (d2ace envpro) &. #d (auto1 @(D2 dt)) &. #shb shbinds &. #acc (auto1 @(TAccum t)) &. #tl (d2ace (select SAccum descr))) (#acc :++: (#pro :++: #d :++: #shb :++: #tl)) (#pro :++: #d :++: #shb :++: #acc :++: #tl) .> WCopy (wf shbinds) .> autoWeak (#d (auto1 @(D2 dt)) &. #shb shbinds &. #acc (auto1 @(TAccum t)) &. #tl (d2ace (select SAccum storepl))) (#d :++: #shb :++: #acc :++: #tl) (#acc :++: (#d :++: #shb :++: #tl))) SMerge -> case t of -- Discrete values are left as-is _ | isDiscrete t -> k (storepl `DPush` (t, SDiscr)) envpro (SENo prosub) wf -- Values with "merge" storage are promoted to an accumulator in envPro _ -> k (storepl `DPush` (t, SAccum)) (t `SCons` envpro) (SEYes prosub) (\(shbinds :: SList _ shbinds) -> let shbindsC = slistMap (\_ -> Const ()) shbinds in -- wf: -- D2 t : Append shbinds (D2AcE (Select envPro stoRepl "accum")) :> Append envPro (D2 t : Append shbinds (D2AcE (Select envPro sto1 "accum"))) -- WCopy wf: -- TAccum n t3 : D2 t : Append shbinds (D2AcE (Select envPro stoRepl "accum")) :> TAccum n t3 : Append envPro (D2 t : Append shbinds (D2AcE (Select envPro sto1 "accum"))) -- WPICK: ^ THESE TWO || -- goal: | ARE EQUAL || -- D2 t : Append shbinds (TAccum n t3 : D2AcE (Select envPro stoRepl "accum")) :> TAccum n t3 : Append envPro (D2 t : Append shbinds (D2AcE (Select envPro sto1 "accum"))) WCopy (wf shbinds) .> WPick @(TAccum t) @(D2 dt : shbinds) (Const () `SCons` shbindsC) (WId @(D2AcE (Select env1 stoRepl "accum")))) -- Discrete values are left as-is, nothing to do SDiscr -> k (storepl `DPush` (t, SDiscr)) envpro prosub wf where isDiscrete :: STy t' -> Bool isDiscrete = \case STNil -> True STPair a b -> isDiscrete a && isDiscrete b STEither a b -> isDiscrete a && isDiscrete b STMaybe a -> isDiscrete a STArr _ a -> isDiscrete a STScal st -> case st of STI32 -> True STI64 -> True STF32 -> False STF64 -> False STBool -> True STAccum{} -> False ---------------------------- RETURN TRIPLE FROM CHAD --------------------------- data Ret env0 sto t = forall shbinds tapebinds env0Merge. Ret (Bindings Ex (D1E env0) shbinds) -- shared binds (Subenv shbinds tapebinds) (Ex (Append shbinds (D1E env0)) (D1 t)) (Subenv (Select env0 sto "merge") env0Merge) (Ex (D2 t : Append tapebinds (D2AcE (Select env0 sto "accum"))) (Tup (D2E env0Merge))) deriving instance Show (Ret env0 sto t) data RetPair env0 sto env shbinds tapebinds t = forall env0Merge. RetPair (Ex (Append shbinds env) (D1 t)) (Subenv (Select env0 sto "merge") env0Merge) (Ex (D2 t : Append tapebinds (D2AcE (Select env0 sto "accum"))) (Tup (D2E env0Merge))) deriving instance Show (RetPair env0 sto env shbinds tapebinds t) data Rets env0 sto env list = forall shbinds tapebinds. Rets (Bindings Ex env shbinds) (Subenv shbinds tapebinds) (SList (RetPair env0 sto env shbinds tapebinds) list) deriving instance Show (Rets env0 sto env list) weakenRetPair :: SList STy shbinds -> env :> env' -> RetPair env0 sto env shbinds tapebinds t -> RetPair env0 sto env' shbinds tapebinds t weakenRetPair bindslist w (RetPair e1 sub e2) = RetPair (weakenExpr (weakenOver bindslist w) e1) sub e2 weakenRets :: env :> env' -> Rets env0 sto env list -> Rets env0 sto env' list weakenRets w (Rets binds tapesub list) = let (binds', _) = weakenBindings weakenExpr w binds in Rets binds' tapesub (slistMap (weakenRetPair (bindingsBinds binds) w) list) rebaseRetPair :: forall env b1 b2 tapebinds1 tapebinds2 env0 sto t f. Descr env0 sto -> SList f b1 -> SList f b2 -> Subenv b1 tapebinds1 -> Subenv b2 tapebinds2 -> RetPair env0 sto (Append b1 env) b2 tapebinds2 t -> RetPair env0 sto env (Append b2 b1) (Append tapebinds2 tapebinds1) t rebaseRetPair descr b1 b2 subtape1 subtape2 (RetPair p sub d) | Refl <- lemAppendAssoc @b2 @b1 @env = RetPair p sub (weakenExpr (autoWeak (#d (auto1 @(D2 t)) &. #t2 (subList b2 subtape2) &. #t1 (subList b1 subtape1) &. #tl (d2ace (select SAccum descr))) (#d :++: (#t2 :++: #tl)) (#d :++: ((#t2 :++: #t1) :++: #tl))) d) retConcat :: forall env0 sto list. Descr env0 sto -> SList (Ret env0 sto) list -> Rets env0 sto (D1E env0) list retConcat _ SNil = Rets BTop SETop SNil retConcat descr (SCons (Ret (b :: Bindings _ _ shbinds1) (subtape :: Subenv _ tapebinds1) p sub d) list) | Rets (binds :: Bindings _ _ shbinds2) (subtape2 :: Subenv _ tapebinds2) pairs <- weakenRets (sinkWithBindings b) (retConcat descr list) , Refl <- lemAppendAssoc @shbinds2 @shbinds1 @(D1E env0) , Refl <- lemAppendAssoc @tapebinds2 @tapebinds1 @(D2AcE (Select env0 sto "accum")) = Rets (bconcat b binds) (subenvConcat subtape subtape2) (SCons (RetPair (weakenExpr (sinkWithBindings binds) p) sub (weakenExpr (WCopy (sinkWithSubenv subtape2)) d)) (slistMap (rebaseRetPair descr (bindingsBinds b) (bindingsBinds binds) subtape subtape2) pairs)) freezeRet :: Descr env sto -> Ret env sto t -> Ex (D2 t : Append (D2AcE (Select env sto "accum")) (D1E env)) (TPair (D1 t) (Tup (D2E (Select env sto "merge")))) freezeRet descr (Ret e0 subtape e1 sub e2 :: Ret _ _ t) = let (e0', wInsertD2Ac) = weakenBindings weakenExpr (WSink .> wSinks (d2ace (select SAccum descr))) e0 e2' = weakenExpr (WCopy (wCopies (subList (bindingsBinds e0) subtape) (wRaiseAbove (d2ace (select SAccum descr)) (desD1E descr)))) e2 in letBinds e0' $ EPair ext (weakenExpr wInsertD2Ac e1) (ELet ext (weakenExpr (autoWeak (#d (auto1 @(D2 t)) &. #tape (subList (bindingsBinds e0) subtape) &. #shbinds (bindingsBinds e0) &. #d2ace (d2ace (select SAccum descr)) &. #tl (desD1E descr)) (#d :++: LPreW #tape #shbinds (wUndoSubenv subtape) :++: #d2ace :++: #tl) (#shbinds :++: #d :++: #d2ace :++: #tl)) e2') $ expandSubenvZeros (select SMerge descr) sub (EVar ext (tTup (d2e (subList (select SMerge descr) sub))) IZ)) ---------------------------- THE CHAD TRANSFORMATION --------------------------- drev :: forall env sto t. (?config :: CHADConfig) => Descr env sto -> VarMap Int env -> Expr ValId env t -> Ret env sto t drev des accumMap = \case EVar _ t i -> case conv2Idx des i of Idx2Ac accI -> Ret BTop SETop (EVar ext (d1 t) (conv1Idx i)) (subenvNone (select SMerge des)) (EAccum ext t SAPHere (ENil ext) (EVar ext (d2 t) IZ) (EVar ext (STAccum t) (IS accI))) Idx2Me tupI -> Ret BTop SETop (EVar ext (d1 t) (conv1Idx i)) (subenvOnehot (select SMerge des) tupI) (EPair ext (ENil ext) (EVar ext (d2 t) IZ)) Idx2Di _ -> Ret BTop SETop (EVar ext (d1 t) (conv1Idx i)) (subenvNone (select SMerge des)) (ENil ext) ELet _ (rhs :: Expr _ _ a) body | Ret (rhs0 :: Bindings _ _ rhs_shbinds) (subtapeRHS :: Subenv _ rhs_tapebinds) (rhs1 :: Ex _ d1_a) subRHS rhs2 <- drev des accumMap rhs , ChosenStorage storage <- if chcLetArrayAccum ?config && hasArrays (typeOf rhs) then ChosenStorage SAccum else ChosenStorage SMerge , RetScoped (body0 :: Bindings _ _ body_shbinds) (subtapeBody :: Subenv _ body_tapebinds) body1 subBody body2 <- drevScoped des accumMap (typeOf rhs) storage body , let (body0', wbody0') = weakenBindings weakenExpr (WCopy (sinkWithBindings rhs0)) body0 , Refl <- lemAppendAssoc @body_shbinds @(d1_a : rhs_shbinds) @(D1E env) , Refl <- lemAppendAssoc @body_tapebinds @rhs_tapebinds @(D2AcE (Select env sto "accum")) -> subenvPlus (select SMerge des) subRHS subBody $ \subBoth _ _ plus_RHS_Body -> let bodyResType = STPair (tTup (d2e (subList (select SMerge des) subBody))) (d2 (typeOf rhs)) in Ret (bconcat (rhs0 `BPush` (d1 (typeOf rhs), rhs1)) body0') (subenvConcat (SENo @d1_a subtapeRHS) subtapeBody) (weakenExpr wbody0' body1) subBoth (ELet ext (weakenExpr (autoWeak (#d (auto1 @(D2 t)) &. #body (subList (bindingsBinds body0) subtapeBody) &. #rhs (subList (bindingsBinds rhs0) subtapeRHS) &. #tl (d2ace (select SAccum des))) (#d :++: #body :++: #tl) (#d :++: (#body :++: #rhs) :++: #tl)) body2) $ ELet ext (ELet ext (ESnd ext (EVar ext bodyResType IZ)) $ weakenExpr (WCopy (wSinks' @[_,_] .> sinkWithSubenv subtapeBody)) rhs2) $ plus_RHS_Body (EVar ext (tTup (d2e (subList (select SMerge des) subRHS))) IZ) (EFst ext (EVar ext bodyResType (IS IZ)))) EPair _ a b | Rets binds subtape (RetPair a1 subA a2 `SCons` RetPair b1 subB b2 `SCons` SNil) <- retConcat des $ drev des accumMap a `SCons` drev des accumMap b `SCons` SNil , let dt = STPair (d2 (typeOf a)) (d2 (typeOf b)) -> subenvPlus (select SMerge des) subA subB $ \subBoth _ _ plus_A_B -> Ret binds subtape (EPair ext a1 b1) subBoth (EMaybe ext (zeroTup (subList (select SMerge des) subBoth)) (ELet ext (ELet ext (EFst ext (EVar ext dt IZ)) (weakenExpr (WCopy (wSinks' @[_,_])) a2)) $ ELet ext (ELet ext (ESnd ext (EVar ext dt (IS IZ))) (weakenExpr (WCopy (wSinks' @[_,_,_])) b2)) $ plus_A_B (EVar ext (tTup (d2e (subList (select SMerge des) subA))) (IS IZ)) (EVar ext (tTup (d2e (subList (select SMerge des) subB))) IZ)) (EVar ext (STMaybe (STPair (d2 (typeOf a)) (d2 (typeOf b)))) IZ)) EFst _ e | Ret e0 subtape e1 sub e2 <- drev des accumMap e , STPair t1 t2 <- typeOf e -> Ret e0 subtape (EFst ext e1) sub (ELet ext (EJust ext (EPair ext (EVar ext (d2 t1) IZ) (EZero ext t2))) $ weakenExpr (WCopy WSink) e2) ESnd _ e | Ret e0 subtape e1 sub e2 <- drev des accumMap e , STPair t1 t2 <- typeOf e -> Ret e0 subtape (ESnd ext e1) sub (ELet ext (EJust ext (EPair ext (EZero ext t1) (EVar ext (d2 t2) IZ))) $ weakenExpr (WCopy WSink) e2) ENil _ -> Ret BTop SETop (ENil ext) (subenvNone (select SMerge des)) (ENil ext) EInl _ t2 e | Ret e0 subtape e1 sub e2 <- drev des accumMap e -> Ret e0 subtape (EInl ext (d1 t2) e1) sub (EMaybe ext (zeroTup (subList (select SMerge des) sub)) (ECase ext (EVar ext (STEither (d2 (typeOf e)) (d2 t2)) IZ) (weakenExpr (WCopy (wSinks' @[_,_])) e2) (EError ext (tTup (d2e (subList (select SMerge des) sub))) "inl<-dinr")) (EVar ext (STMaybe (STEither (d2 (typeOf e)) (d2 t2))) IZ)) EInr _ t1 e | Ret e0 subtape e1 sub e2 <- drev des accumMap e -> Ret e0 subtape (EInr ext (d1 t1) e1) sub (EMaybe ext (zeroTup (subList (select SMerge des) sub)) (ECase ext (EVar ext (STEither (d2 t1) (d2 (typeOf e))) IZ) (EError ext (tTup (d2e (subList (select SMerge des) sub))) "inr<-dinl") (weakenExpr (WCopy (wSinks' @[_,_])) e2)) (EVar ext (STMaybe (STEither (d2 t1) (d2 (typeOf e)))) IZ)) ECase _ e (a :: Expr _ _ t) b | STEither t1 t2 <- typeOf e , Ret (e0 :: Bindings _ _ e_binds) (subtapeE :: Subenv _ e_tape) e1 subE e2 <- drev des accumMap e , ChosenStorage storage1 <- if chcCaseArrayAccum ?config && hasArrays t1 then ChosenStorage SAccum else ChosenStorage SMerge , ChosenStorage storage2 <- if chcCaseArrayAccum ?config && hasArrays t2 then ChosenStorage SAccum else ChosenStorage SMerge , RetScoped (a0 :: Bindings _ _ rhs_a_binds) (subtapeA :: Subenv _ rhs_a_tape) a1 subA a2 <- drevScoped des accumMap t1 storage1 a , RetScoped (b0 :: Bindings _ _ rhs_b_binds) (subtapeB :: Subenv _ rhs_b_tape) b1 subB b2 <- drevScoped des accumMap t2 storage2 b , Refl <- lemAppendAssoc @(Append rhs_a_binds (Reverse (TapeUnfoldings rhs_a_binds))) @(Tape rhs_a_binds : D2 t : TPair (D1 t) (TEither (Tape rhs_a_binds) (Tape rhs_b_binds)) : e_binds) @(D2AcE (Select env sto "accum")) , Refl <- lemAppendAssoc @(Append rhs_b_binds (Reverse (TapeUnfoldings rhs_b_binds))) @(Tape rhs_b_binds : D2 t : TPair (D1 t) (TEither (Tape rhs_a_binds) (Tape rhs_b_binds)) : e_binds) @(D2AcE (Select env sto "accum")) , let tapeA = tapeTy (subList (bindingsBinds a0) subtapeA) , let tapeB = tapeTy (subList (bindingsBinds b0) subtapeB) , let collectA = bindingsCollect a0 subtapeA , let collectB = bindingsCollect b0 subtapeB , (tPrimal :: STy t_primal_ty) <- STPair (d1 (typeOf a)) (STEither tapeA tapeB) , let (a0', wa0') = weakenBindings weakenExpr (WCopy (sinkWithBindings e0)) a0 , let (b0', wb0') = weakenBindings weakenExpr (WCopy (sinkWithBindings e0)) b0 -> subenvPlus (select SMerge des) subA subB $ \subAB sAB_A sAB_B _ -> subenvPlus (select SMerge des) subAB subE $ \subOut _ _ plus_AB_E -> let tCaseRet = STPair (tTup (d2e (subList (select SMerge des) subAB))) (STEither (d2 t1) (d2 t2)) in Ret (e0 `BPush` (tPrimal, ECase ext e1 (letBinds a0' (EPair ext (weakenExpr wa0' a1) (EInl ext tapeB (collectA wa0')))) (letBinds b0' (EPair ext (weakenExpr wb0' b1) (EInr ext tapeA (collectB wb0')))))) (SEYes subtapeE) (EFst ext (EVar ext tPrimal IZ)) subOut (ELet ext (ECase ext (ESnd ext (EVar ext tPrimal (IS IZ))) (let (rebinds, prerebinds) = reconstructBindings (subList (bindingsBinds a0) subtapeA) IZ in letBinds rebinds $ ELet ext (EVar ext (d2 (typeOf a)) (wSinks @(Tape rhs_a_tape : D2 t : t_primal_ty : Append e_tape (D2AcE (Select env sto "accum"))) (sappend (subList (bindingsBinds a0) subtapeA) prerebinds) @> IS IZ)) $ ELet ext (weakenExpr (autoWeak (#d (auto1 @(D2 t)) &. #ta0 (subList (bindingsBinds a0) subtapeA) &. #prea0 prerebinds &. #recon (tapeA `SCons` d2 (typeOf a) `SCons` SNil) &. #binds (tPrimal `SCons` subList (bindingsBinds e0) subtapeE) &. #tl (d2ace (select SAccum des))) (#d :++: #ta0 :++: #tl) (#d :++: (#ta0 :++: #prea0) :++: #recon :++: #binds :++: #tl)) a2) $ EPair ext (expandSubenvZeros (subList (select SMerge des) subAB) sAB_A $ EFst ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subA))) (d2 t1)) IZ)) (EInl ext (d2 t2) (ESnd ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subA))) (d2 t1)) IZ)))) (let (rebinds, prerebinds) = reconstructBindings (subList (bindingsBinds b0) subtapeB) IZ in letBinds rebinds $ ELet ext (EVar ext (d2 (typeOf a)) (wSinks @(Tape rhs_b_tape : D2 t : t_primal_ty : Append e_tape (D2AcE (Select env sto "accum"))) (sappend (subList (bindingsBinds b0) subtapeB) prerebinds) @> IS IZ)) $ ELet ext (weakenExpr (autoWeak (#d (auto1 @(D2 t)) &. #tb0 (subList (bindingsBinds b0) subtapeB) &. #preb0 prerebinds &. #recon (tapeB `SCons` d2 (typeOf a) `SCons` SNil) &. #binds (tPrimal `SCons` subList (bindingsBinds e0) subtapeE) &. #tl (d2ace (select SAccum des))) (#d :++: #tb0 :++: #tl) (#d :++: (#tb0 :++: #preb0) :++: #recon :++: #binds :++: #tl)) b2) $ EPair ext (expandSubenvZeros (subList (select SMerge des) subAB) sAB_B $ EFst ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subB))) (d2 t2)) IZ)) (EInr ext (d2 t1) (ESnd ext (EVar ext (STPair (tTup (d2e (subList (select SMerge des) subB))) (d2 t2)) IZ))))) $ ELet ext (ELet ext (EJust ext (ESnd ext (EVar ext tCaseRet IZ))) $ weakenExpr (WCopy (wSinks' @[_,_,_])) e2) $ plus_AB_E (EFst ext (EVar ext tCaseRet (IS IZ))) (EVar ext (tTup (d2e (subList (select SMerge des) subE))) IZ)) EConst _ t val -> Ret BTop SETop (EConst ext t val) (subenvNone (select SMerge des)) (ENil ext) EOp _ op e | Ret e0 subtape e1 sub e2 <- drev des accumMap e -> case d2op op of Linear d2opfun -> Ret e0 subtape (d1op op e1) sub (ELet ext (d2opfun (EVar ext (d2 (opt2 op)) IZ)) (weakenExpr (WCopy WSink) e2)) Nonlinear d2opfun -> Ret (e0 `BPush` (d1 (typeOf e), e1)) (SEYes subtape) (d1op op $ EVar ext (d1 (typeOf e)) IZ) sub (ELet ext (d2opfun (EVar ext (d1 (typeOf e)) (IS IZ)) (EVar ext (d2 (opt2 op)) IZ)) (weakenExpr (WCopy (wSinks' @[_,_])) e2)) ECustom _ _ _ storety _ pr du a b -- allowed to ignore a2 because 'a' is the part of the input that is inactive | Rets binds subtape (RetPair a1 _ _ `SCons` RetPair b1 bsub b2 `SCons` SNil) <- retConcat des $ drev des accumMap a `SCons` drev des accumMap b `SCons` SNil -> Ret (binds `BPush` (typeOf a1, a1) `BPush` (typeOf b1, weakenExpr WSink b1) `BPush` (typeOf pr, weakenExpr (WCopy (WCopy WClosed)) (mapExt (const ext) pr)) `BPush` (storety, ESnd ext (EVar ext (typeOf pr) IZ))) (SEYes (SENo (SENo (SENo subtape)))) (EFst ext (EVar ext (typeOf pr) (IS IZ))) bsub (ELet ext (weakenExpr (WCopy (WCopy WClosed)) (mapExt (const ext) du)) $ weakenExpr (WCopy (WSink .> WSink)) b2) EError _ t s -> Ret BTop SETop (EError ext (d1 t) s) (subenvNone (select SMerge des)) (ENil ext) EConstArr _ n t val -> Ret BTop SETop (EConstArr ext n t val) (subenvNone (select SMerge des)) (ENil ext) EBuild _ (ndim :: SNat ndim) she (orige :: Expr _ _ eltty) | Ret (she0 :: Bindings _ _ she_binds) _ she1 _ _ <- drev des accumMap she -- allowed to ignore she2 here because she has a discrete result , let eltty = typeOf orige , shty :: STy shty <- tTup (sreplicate ndim tIx) , Refl <- indexTupD1Id ndim -> deleteUnused (descrList des) (occEnvPop (occCountAll orige)) $ \(usedSub :: Subenv env env') -> let e = unsafeWeakenWithSubenv (SEYes usedSub) orige in subDescr des usedSub $ \usedDes subMergeUsed subAccumUsed subD1eUsed -> accumPromote eltty usedDes $ \prodes (envPro :: SList _ envPro) proSub wPro -> case drev (prodes `DPush` (shty, SDiscr)) (VarMap.sink1 (VarMap.subMap usedSub accumMap)) e of { Ret (e0 :: Bindings _ _ e_binds) (subtapeE :: Subenv _ e_tape) e1 sub e2 -> case assertSubenvEmpty sub of { Refl -> let tapety = tapeTy (subList (bindingsBinds e0) subtapeE) in let collectexpr = bindingsCollect e0 subtapeE in Ret (BTop `BPush` (shty, letBinds she0 she1) `BPush` (STArr ndim (STPair (d1 eltty) tapety) ,EBuild ext ndim (EVar ext shty IZ) (letBinds (fst (weakenBindings weakenExpr (autoWeak (#ix (shty `SCons` SNil) &. #sh (shty `SCons` SNil) &. #d1env (desD1E des) &. #d1env' (desD1E usedDes)) (#ix :++: LPreW #d1env' #d1env (wUndoSubenv subD1eUsed)) (#ix :++: #sh :++: #d1env)) e0)) $ let w = autoWeak (#ix (shty `SCons` SNil) &. #sh (shty `SCons` SNil) &. #e0 (bindingsBinds e0) &. #d1env (desD1E des) &. #d1env' (desD1E usedDes)) (#e0 :++: #ix :++: LPreW #d1env' #d1env (wUndoSubenv subD1eUsed)) (#e0 :++: #ix :++: #sh :++: #d1env) in EPair ext (weakenExpr w e1) (collectexpr w))) `BPush` (STArr ndim tapety, emap (ESnd ext (EVar ext (STPair (d1 eltty) tapety) IZ)) (EVar ext (STArr ndim (STPair (d1 eltty) tapety)) IZ))) (SEYes (SENo (SEYes SETop))) (emap (EFst ext (EVar ext (STPair (d1 eltty) tapety) IZ)) (EVar ext (STArr ndim (STPair (d1 eltty) tapety)) (IS IZ))) (subenvCompose subMergeUsed proSub) (let sinkOverEnvPro = wSinks @(TArr ndim (D2 eltty) : D2 t : TArr ndim (Tape e_tape) : Tup (Replicate ndim TIx) : D2AcE (Select env sto "accum")) (d2ace envPro) in EMaybe ext (zeroTup envPro) (ESnd ext $ uninvertTup (d2e envPro) (STArr ndim STNil) $ makeAccumulators @_ @_ @(TArr ndim TNil) envPro $ EBuild ext ndim (EVar ext shty (sinkOverEnvPro @> IS (IS (IS IZ)))) $ -- the cotangent for this element ELet ext (EIdx ext (EVar ext (STArr ndim (d2 eltty)) (WSink .> sinkOverEnvPro @> IZ)) (EVar ext shty IZ)) $ -- the tape for this element ELet ext (EIdx ext (EVar ext (STArr ndim tapety) (WSink .> WSink .> sinkOverEnvPro @> IS (IS IZ))) (EVar ext shty (IS IZ))) $ let (rebinds, prerebinds) = reconstructBindings (subList (bindingsBinds e0) subtapeE) IZ in letBinds rebinds $ weakenExpr (autoWeak (#d (auto1 @(D2 eltty)) &. #pro (d2ace envPro) &. #etape (subList (bindingsBinds e0) subtapeE) &. #prerebinds prerebinds &. #tape (auto1 @(Tape e_tape)) &. #ix (auto1 @shty) &. #darr (auto1 @(TArr ndim (D2 eltty))) &. #mdarr (auto1 @(TMaybe (TArr ndim (D2 eltty)))) &. #tapearr (auto1 @(TArr ndim (Tape e_tape))) &. #sh (auto1 @shty) &. #d2acUsed (d2ace (select SAccum usedDes)) &. #d2acEnv (d2ace (select SAccum des))) (#pro :++: #d :++: #etape :++: LPreW #d2acUsed #d2acEnv (wUndoSubenv subAccumUsed)) ((#etape :++: #prerebinds) :++: #tape :++: #d :++: #ix :++: #pro :++: #darr :++: #mdarr :++: #tapearr :++: #sh :++: #d2acEnv) .> wPro (subList (bindingsBinds e0) subtapeE)) e2) (EVar ext (d2 (STArr ndim eltty)) IZ)) }} EUnit _ e | Ret e0 subtape e1 sub e2 <- drev des accumMap e -> Ret e0 subtape (EUnit ext e1) sub (EMaybe ext (zeroTup (subList (select SMerge des) sub)) (ELet ext (EIdx0 ext (EVar ext (STArr SZ (d2 (typeOf e))) IZ)) $ weakenExpr (WCopy (WSink .> WSink)) e2) (EVar ext (STMaybe (STArr SZ (d2 (typeOf e)))) IZ)) EReplicate1Inner _ en e -- We're allowed to ignore en2 here because the output of 'ei' is discrete. | Rets binds subtape (RetPair en1 _ _ `SCons` RetPair e1 sub e2 `SCons` SNil) <- retConcat des $ drev des accumMap en `SCons` drev des accumMap e `SCons` SNil , let STArr ndim eltty = typeOf e -> Ret binds subtape (EReplicate1Inner ext en1 e1) sub (EMaybe ext (zeroTup (subList (select SMerge des) sub)) (ELet ext (EJust ext (EFold1Inner ext Commut (EPlus ext eltty (EVar ext (d2 eltty) (IS IZ)) (EVar ext (d2 eltty) IZ)) (EZero ext eltty) (EVar ext (STArr (SS ndim) (d2 eltty)) IZ))) $ weakenExpr (WCopy (WSink .> WSink)) e2) (EVar ext (d2 (STArr (SS ndim) eltty)) IZ)) EIdx0 _ e | Ret e0 subtape e1 sub e2 <- drev des accumMap e , STArr _ t <- typeOf e -> Ret e0 subtape (EIdx0 ext e1) sub (ELet ext (EJust ext (EUnit ext (EVar ext (d2 t) IZ))) $ weakenExpr (WCopy WSink) e2) EIdx1{} -> error "CHAD of EIdx1: Please use EIdx instead" {- EIdx1 _ e ei -- We're allowed to ignore ei2 here because the output of 'ei' is discrete. | Rets binds subtape (RetPair e1 sub e2 `SCons` RetPair ei1 _ _ `SCons` SNil) <- retConcat des $ drev des accumMap e `SCons` drev des accumMap ei `SCons` SNil , STArr (SS n) eltty <- typeOf e -> Ret (binds `BPush` (STArr (SS n) (d1 eltty), e1) `BPush` (tTup (sreplicate (SS n) tIx), EShape ext (EVar ext (STArr (SS n) (d1 eltty)) IZ))) (SEYes (SENo subtape)) (EIdx1 ext (EVar ext (STArr (SS n) (d1 eltty)) (IS IZ)) (weakenExpr (WSink .> WSink) ei1)) sub (ELet ext (ebuildUp1 n (EFst ext (EVar ext (tTup (sreplicate (SS n) tIx)) (IS IZ))) (ESnd ext (EVar ext (tTup (sreplicate (SS n) tIx)) (IS IZ))) (EVar ext (STArr n (d2 eltty)) (IS IZ))) $ weakenExpr (WCopy (WSink .> WSink)) e2) -} EIdx _ e ei -- We're allowed to ignore ei2 here because the output of 'ei' is discrete. | Rets binds subtape (RetPair e1 sub e2 `SCons` RetPair ei1 _ _ `SCons` SNil) <- retConcat des $ drev des accumMap e `SCons` drev des accumMap ei `SCons` SNil , STArr n eltty <- typeOf e , Refl <- indexTupD1Id n , let tIxN = tTup (sreplicate n tIx) -> Ret (binds `BPush` (STArr n (d1 eltty), e1) `BPush` (tIxN, EShape ext (EVar ext (typeOf e1) IZ)) `BPush` (tIxN, weakenExpr (WSink .> WSink) ei1)) (SEYes (SEYes (SENo subtape))) (EIdx ext (EVar ext (STArr n (d1 eltty)) (IS (IS IZ))) (EVar ext (tTup (sreplicate n tIx)) IZ)) sub (ELet ext (EOneHot ext (STArr n eltty) (SAPArrIdx SAPHere n) (EPair ext (EPair ext (EVar ext tIxN (IS IZ)) (EVar ext tIxN (IS (IS IZ)))) (ENil ext)) (EVar ext (d2 eltty) IZ)) $ weakenExpr (WCopy (WSink .> WSink .> WSink)) e2) EShape _ e -- Allowed to ignore e2 here because the output of EShape is discrete, -- hence we'd be passing a zero cotangent to e2 anyway. | Ret e0 subtape e1 _ _ <- drev des accumMap e , STArr n _ <- typeOf e , Refl <- indexTupD1Id n -> Ret e0 subtape (EShape ext e1) (subenvNone (select SMerge des)) (ENil ext) ESum1Inner _ e | Ret e0 subtape e1 sub e2 <- drev des accumMap e , STArr (SS n) t <- typeOf e -> Ret (e0 `BPush` (STArr (SS n) t, e1) `BPush` (tTup (sreplicate (SS n) tIx), EShape ext (EVar ext (STArr (SS n) t) IZ))) (SEYes (SENo subtape)) (ESum1Inner ext (EVar ext (STArr (SS n) t) (IS IZ))) sub (EMaybe ext (zeroTup (subList (select SMerge des) sub)) (ELet ext (EJust ext (EReplicate1Inner ext (ESnd ext (EVar ext (tTup (sreplicate (SS n) tIx)) (IS (IS IZ)))) (EVar ext (STArr n (d2 t)) IZ))) $ weakenExpr (WCopy (WSink .> WSink .> WSink)) e2) (EVar ext (d2 (STArr n t)) IZ)) EMaximum1Inner _ e -> deriv_extremum (EMaximum1Inner ext) e EMinimum1Inner _ e -> deriv_extremum (EMinimum1Inner ext) e -- These should be the next to be implemented, I think EFold1Inner{} -> err_unsupported "EFold1Inner" ENothing{} -> err_unsupported "ENothing" EJust{} -> err_unsupported "EJust" EMaybe{} -> err_unsupported "EMaybe" EWith{} -> err_accum EAccum{} -> err_accum EZero{} -> err_monoid EPlus{} -> err_monoid EOneHot{} -> err_monoid where err_accum = error "Accumulator operations unsupported in the source program" err_monoid = error "Monoid operations unsupported in the source program" err_unsupported s = error $ "CHAD: unsupported " ++ s deriv_extremum :: ScalIsNumeric t' ~ True => (forall env'. Ex env' (TArr (S n) (TScal t')) -> Ex env' (TArr n (TScal t'))) -> Expr ValId env (TArr (S n) (TScal t')) -> Ret env sto (TArr n (TScal t')) deriv_extremum extremum e | Ret e0 subtape e1 sub e2 <- drev des accumMap e , at@(STArr (SS n) t@(STScal st)) <- typeOf e , let at' = STArr n t , let tIxN = tTup (sreplicate (SS n) tIx) = Ret (e0 `BPush` (at, e1) `BPush` (at', extremum (EVar ext at IZ))) (SEYes (SEYes subtape)) (EVar ext at' IZ) sub (EMaybe ext (zeroTup (subList (select SMerge des) sub)) (ELet ext (EJust ext (EBuild ext (SS n) (EShape ext (EVar ext at (IS (IS (IS IZ))))) $ eif (EOp ext (OEq st) (EPair ext (EIdx ext (EVar ext at (IS (IS (IS (IS IZ))))) (EVar ext tIxN IZ)) (EIdx ext (EVar ext at' (IS (IS (IS IZ)))) (EFst ext (EVar ext tIxN IZ))))) (EIdx ext (EVar ext (STArr n (d2 t)) (IS IZ)) (EFst ext (EVar ext tIxN IZ))) (EZero ext t))) $ weakenExpr (WCopy (WSink .> WSink .> WSink .> WSink)) e2) (EVar ext (d2 at') IZ)) data ChosenStorage = forall s. ((s == "discr") ~ False) => ChosenStorage (Storage s) data RetScoped env0 sto a s t = forall shbinds tapebinds env0Merge. RetScoped (Bindings Ex (D1E (a : env0)) shbinds) -- shared binds (Subenv shbinds tapebinds) (Ex (Append shbinds (D1E (a : env0))) (D1 t)) (Subenv (Select env0 sto "merge") env0Merge) -- ^ merge contributions to the _enclosing_ merge environment (Ex (D2 t : Append tapebinds (D2AcE (Select env0 sto "accum"))) (If (s == "discr") (Tup (D2E env0Merge)) (TPair (Tup (D2E env0Merge)) (D2 a)))) -- ^ the merge contributions, plus the cotangent to the argument -- (if there is any) deriving instance Show (RetScoped env0 sto a s t) drevScoped :: forall a s env sto t. (?config :: CHADConfig) => Descr env sto -> VarMap Int env -> STy a -> Storage s -> Expr ValId (a : env) t -> RetScoped env sto a s t drevScoped des accumMap argty argsto expr | Ret e0 subtape e1 sub e2 <- drev (des `DPush` (argty, argsto)) (VarMap.sink1 accumMap) expr = case argsto of SMerge -> case sub of SEYes sub' -> RetScoped e0 subtape e1 sub' e2 SENo sub' -> RetScoped e0 subtape e1 sub' (EPair ext e2 (EZero ext argty)) SAccum -> RetScoped e0 subtape e1 sub $ EWith ext argty (EZero ext argty) $ weakenExpr (autoWeak (#d (auto1 @(D2 t)) &. #body (subList (bindingsBinds e0) subtape) &. #ac (auto1 @(TAccum a)) &. #tl (d2ace (select SAccum des))) (#d :++: #body :++: #ac :++: #tl) (#ac :++: #d :++: #body :++: #tl)) e2 SDiscr -> RetScoped e0 subtape e1 sub e2