{-# LANGUAGE BangPatterns #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE ImplicitParams #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} module Interpreter ( interpret, interpretOpen, Value(..), ) where import Control.Monad (foldM, join, when, forM_) import Data.Bitraversable (bitraverse) import Data.Char (isSpace) import Data.Functor.Identity import Data.Int (Int64) import Data.IORef import System.IO (hPutStrLn, stderr) import System.IO.Unsafe (unsafePerformIO) import Debug.Trace import Array import AST import AST.Pretty import CHAD.Types import Data import Interpreter.Rep newtype AcM s a = AcM { unAcM :: IO a } deriving newtype (Functor, Applicative, Monad) runAcM :: (forall s. AcM s a) -> a runAcM (AcM m) = unsafePerformIO m acmDebugLog :: String -> AcM s () acmDebugLog s = AcM (hPutStrLn stderr s) interpret :: Ex '[] t -> Rep t interpret = interpretOpen False SNil -- | Bool: whether to trace execution with debug prints (very verbose) interpretOpen :: Bool -> SList Value env -> Ex env t -> Rep t interpretOpen prints env e = runAcM $ let ?depth = 0 ?prints = prints in interpret' env e interpret' :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList Value env -> Ex env t -> AcM s (Rep t) interpret' env e = do let dep = ?depth let lenlimit = max 20 (100 - dep) let replace a b = map (\c -> if c == a then b else c) let trunc s | length s > lenlimit = take (lenlimit - 3) (replace '\n' ' ' s) ++ "..." | otherwise = replace '\n' ' ' s when ?prints $ acmDebugLog $ replicate dep ' ' ++ "ev: " ++ trunc (ppExpr env e) res <- let ?depth = dep + 1 in interpret'Rec env e when ?prints $ acmDebugLog $ replicate dep ' ' ++ "<- " ++ showValue 0 (typeOf e) res "" return res interpret'Rec :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList Value env -> Ex env t -> AcM s (Rep t) interpret'Rec env = \case EVar _ _ i -> case slistIdx env i of Value x -> return x ELet _ a b -> do x <- interpret' env a let ?depth = ?depth - 1 in interpret' (Value x `SCons` env) b expr | False && trace ("<i> " ++ takeWhile (not . isSpace) (show expr)) False -> undefined EPair _ a b -> (,) <$> interpret' env a <*> interpret' env b EFst _ e -> fst <$> interpret' env e ESnd _ e -> snd <$> interpret' env e ENil _ -> return () EInl _ _ e -> Left <$> interpret' env e EInr _ _ e -> Right <$> interpret' env e ECase _ e a b -> interpret' env e >>= \case Left x -> interpret' (Value x `SCons` env) a Right y -> interpret' (Value y `SCons` env) b ENothing _ _ -> return Nothing EJust _ e -> Just <$> interpret' env e EMaybe _ a b e -> maybe (interpret' env a) (\x -> interpret' (Value x `SCons` env) b) =<< interpret' env e EConstArr _ _ _ v -> return v EBuild _ dim a b -> do sh <- unTupRepIdx ShNil ShCons dim <$> interpret' env a arrayGenerateM sh (\idx -> interpret' (Value (tupRepIdx ixUncons dim idx) `SCons` env) b) EFold1Inner _ _ a b c -> do let f = \x y -> interpret' (Value y `SCons` Value x `SCons` env) a x0 <- interpret' env b arr <- interpret' env c let sh `ShCons` n = arrayShape arr arrayGenerateM sh $ \idx -> foldM f x0 [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]] ESum1Inner _ e -> do arr <- interpret' env e let STArr _ (STScal t) = typeOf e sh `ShCons` n = arrayShape arr numericIsNum t $ return $ arrayGenerate sh $ \idx -> sum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]] EUnit _ e -> arrayGenerateLinM ShNil (\_ -> interpret' env e) EReplicate1Inner _ a b -> do n <- fromIntegral @Int64 @Int <$> interpret' env a arr <- interpret' env b let sh = arrayShape arr return $ arrayGenerate (sh `ShCons` n) (\(idx `IxCons` _) -> arrayIndex arr idx) EMaximum1Inner _ e -> do arr <- interpret' env e let STArr _ (STScal t) = typeOf e sh `ShCons` n = arrayShape arr numericIsNum t $ return $ arrayGenerate sh (\idx -> maximum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]]) EMinimum1Inner _ e -> do arr <- interpret' env e let STArr _ (STScal t) = typeOf e sh `ShCons` n = arrayShape arr numericIsNum t $ return $ arrayGenerate sh (\idx -> minimum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]]) EConst _ _ v -> return v EIdx0 _ e -> (`arrayIndexLinear` 0) <$> interpret' env e EIdx1 _ a b -> arrayIndex1 <$> interpret' env a <*> (fromIntegral @Int64 @Int <$> interpret' env b) EIdx _ a b | STArr n _ <- typeOf a -> arrayIndex <$> interpret' env a <*> (unTupRepIdx IxNil IxCons n <$> interpret' env b) EShape _ e | STArr n _ <- typeOf e -> tupRepIdx shUncons n . arrayShape <$> interpret' env e EOp _ op e -> interpretOp op <$> interpret' env e ECustom _ _ _ _ pr _ _ e1 e2 -> do e1' <- interpret' env e1 e2' <- interpret' env e2 interpret' (Value e2' `SCons` Value e1' `SCons` SNil) pr EWith _ t e1 e2 -> do initval <- interpret' env e1 withAccum t (typeOf e2) initval $ \accum -> interpret' (Value accum `SCons` env) e2 EAccum _ t p e1 e2 e3 -> do idx <- interpret' env e1 val <- interpret' env e2 accum <- interpret' env e3 accumAddSparse t p accum idx val EZero _ t -> do return $ zeroD2 t EPlus _ t a b -> do a' <- interpret' env a b' <- interpret' env b return $ addD2s t a' b' EOneHot _ t p a b -> do a' <- interpret' env a b' <- interpret' env b return $ onehotD2 p t a' b' EError _ _ s -> error $ "Interpreter: Program threw error: " ++ s interpretOp :: SOp a t -> Rep a -> Rep t interpretOp op arg = case op of OAdd st -> numericIsNum st $ uncurry (+) arg OMul st -> numericIsNum st $ uncurry (*) arg ONeg st -> numericIsNum st $ negate arg OLt st -> numericIsNum st $ uncurry (<) arg OLe st -> numericIsNum st $ uncurry (<=) arg OEq st -> styIsEq st $ uncurry (==) arg ONot -> not arg OAnd -> uncurry (&&) arg OOr -> uncurry (||) arg OIf -> if arg then Left () else Right () ORound64 -> round arg OToFl64 -> fromIntegral arg ORecip st -> floatingIsFractional st $ recip arg OExp st -> floatingIsFractional st $ exp arg OLog st -> floatingIsFractional st $ log arg OIDiv st -> integralIsIntegral st $ uncurry quot arg where styIsEq :: SScalTy t -> (Eq (Rep (TScal t)) => r) -> r styIsEq STI32 = id styIsEq STI64 = id styIsEq STF32 = id styIsEq STF64 = id styIsEq STBool = id zeroD2 :: STy t -> Rep (D2 t) zeroD2 typ = case typ of STNil -> () STPair _ _ -> Nothing STEither _ _ -> Nothing STMaybe _ -> Nothing STArr _ _ -> Nothing STScal sty -> case sty of STI32 -> () STI64 -> () STF32 -> 0.0 STF64 -> 0.0 STBool -> () STAccum{} -> error "Zero of Accum" addD2s :: STy t -> Rep (D2 t) -> Rep (D2 t) -> Rep (D2 t) addD2s typ a b = case typ of STNil -> () STPair t1 t2 -> case (a, b) of (Nothing, _) -> b (_, Nothing) -> a (Just (x1, x2), Just (y1, y2)) -> Just (addD2s t1 x1 y1, addD2s t2 x2 y2) STEither t1 t2 -> case (a, b) of (Nothing, _) -> b (_, Nothing) -> a (Just (Left x), Just (Left y)) -> Just (Left (addD2s t1 x y)) (Just (Right x), Just (Right y)) -> Just (Right (addD2s t2 x y)) _ -> error "Plus of inconsistent Eithers" STMaybe t -> case (a, b) of (Nothing, _) -> b (_, Nothing) -> a (Just x, Just y) -> Just (addD2s t x y) STArr _ t -> case (a, b) of (Nothing, _) -> b (_, Nothing) -> a (Just x, Just y) -> let sh1 = arrayShape x sh2 = arrayShape y in if | shapeSize sh1 == 0 -> Just y | shapeSize sh2 == 0 -> Just x | sh1 == sh2 -> Just $ arrayGenerateLin sh1 (\i -> addD2s t (arrayIndexLinear x i) (arrayIndexLinear y i)) | otherwise -> error "Plus of inconsistently shaped arrays" STScal sty -> case sty of STI32 -> () STI64 -> () STF32 -> a + b STF64 -> a + b STBool -> () STAccum{} -> error "Plus of Accum" onehotD2 :: SAcPrj p a b -> STy a -> Rep (AcIdx p a) -> Rep (D2 b) -> Rep (D2 a) onehotD2 SAPHere _ _ val = val onehotD2 (SAPFst prj) (STPair a b) idx val = Just (onehotD2 prj a idx val, zeroD2 b) onehotD2 (SAPSnd prj) (STPair a b) idx val = Just (zeroD2 a, onehotD2 prj b idx val) onehotD2 (SAPLeft prj) (STEither a _) idx val = Just (Left (onehotD2 prj a idx val)) onehotD2 (SAPRight prj) (STEither _ b) idx val = Just (Right (onehotD2 prj b idx val)) onehotD2 (SAPJust prj) (STMaybe a) idx val = Just (onehotD2 prj a idx val) onehotD2 (SAPArrIdx prj _) (STArr n a) idx val = Just $ runIdentity $ onehotArray (\idx' -> Identity (onehotD2 prj a idx' val)) (Identity (zeroD2 a)) n prj idx withAccum :: STy t -> STy a -> Rep (D2 t) -> (RepAc t -> AcM s (Rep a)) -> AcM s (Rep a, Rep (D2 t)) withAccum t _ initval f = AcM $ do accum <- newAcSparse t SAPHere () initval out <- unAcM $ f accum val <- readAcSparse t accum return (out, val) newAcZero :: STy t -> IO (RepAc t) newAcZero = \case STNil -> return () STPair{} -> newIORef Nothing STEither{} -> newIORef Nothing STMaybe _ -> newIORef Nothing STArr _ _ -> newIORef Nothing STScal sty -> case sty of STI32 -> return () STI64 -> return () STF32 -> newIORef 0.0 STF64 -> newIORef 0.0 STBool -> return () STAccum{} -> error "Nested accumulators" newAcSparse :: STy a -> SAcPrj p a b -> Rep (AcIdx p a) -> Rep (D2 b) -> IO (RepAc a) newAcSparse typ prj idx val = case (typ, prj) of (STNil, SAPHere) -> return () (STPair t1 t2, SAPHere) -> newIORef =<< traverse (bitraverse (newAcSparse t1 SAPHere ()) (newAcSparse t2 SAPHere ())) val (STEither t1 t2, SAPHere) -> newIORef =<< traverse (bitraverse (newAcSparse t1 SAPHere ()) (newAcSparse t2 SAPHere ())) val (STMaybe t1, SAPHere) -> newIORef =<< traverse (newAcSparse t1 SAPHere ()) val (STArr _ t1, SAPHere) -> newIORef =<< traverse (traverse (newAcSparse t1 SAPHere ())) val (STScal sty, SAPHere) -> case sty of STI32 -> return () STI64 -> return () STF32 -> newIORef val STF64 -> newIORef val STBool -> return () (STPair t1 t2, SAPFst prj') -> newIORef . Just =<< (,) <$> newAcSparse t1 prj' idx val <*> newAcZero t2 (STPair t1 t2, SAPSnd prj') -> newIORef . Just =<< (,) <$> newAcZero t1 <*> newAcSparse t2 prj' idx val (STEither t1 _, SAPLeft prj') -> newIORef . Just . Left =<< newAcSparse t1 prj' idx val (STEither _ t2, SAPRight prj') -> newIORef . Just . Right =<< newAcSparse t2 prj' idx val (STMaybe t1, SAPJust prj') -> newIORef . Just =<< newAcSparse t1 prj' idx val (STArr n t, SAPArrIdx prj' _) -> newIORef . Just =<< newAcArray n t prj' idx val (STAccum{}, _) -> error "Accumulators not allowed in source program" newAcArray :: SNat n -> STy a -> SAcPrj p a b -> Rep (AcIdx (APArrIdx p) (TArr n a)) -> Rep (D2 b) -> IO (Array n (RepAc a)) newAcArray n t prj idx val = onehotArray (\idx' -> newAcSparse t prj idx' val) (newAcZero t) n prj idx onehotArray :: Monad m => (Rep (AcIdx p a) -> m v) -- ^ the "one" -> m v -- ^ the "zero" -> SNat n -> SAcPrj p a b -> Rep (AcIdx (APArrIdx p) (TArr n a)) -> m (Array n v) onehotArray mkone mkzero n _ ((arrindex', arrsh'), idx) = let arrindex = unTupRepIdx IxNil IxCons n arrindex' arrsh = unTupRepIdx ShNil ShCons n arrsh' !linindex = toLinearIndex arrsh arrindex in arrayGenerateLinM arrsh (\i -> if i == linindex then mkone idx else mkzero) readAcSparse :: STy t -> RepAc t -> IO (Rep (D2 t)) readAcSparse typ val = case typ of STNil -> return () STPair t1 t2 -> traverse (bitraverse (readAcSparse t1) (readAcSparse t2)) =<< readIORef val STEither t1 t2 -> traverse (bitraverse (readAcSparse t1) (readAcSparse t2)) =<< readIORef val STMaybe t -> traverse (readAcSparse t) =<< readIORef val STArr _ t -> traverse (traverse (readAcSparse t)) =<< readIORef val STScal sty -> case sty of STI32 -> return () STI64 -> return () STF32 -> readIORef val STF64 -> readIORef val STBool -> return () STAccum{} -> error "Nested accumulators" accumAddSparse :: STy a -> SAcPrj p a b -> RepAc a -> Rep (AcIdx p a) -> Rep (D2 b) -> AcM s () accumAddSparse typ prj ref idx val = case (typ, prj) of (STNil, SAPHere) -> return () (STPair t1 t2, SAPHere) -> case val of Nothing -> return () Just (val1, val2) -> realiseMaybeSparse ref ((,) <$> newAcSparse t1 SAPHere () val1 <*> newAcSparse t2 SAPHere () val2) (\(ac1, ac2) -> do accumAddSparse t1 SAPHere ac1 () val1 accumAddSparse t2 SAPHere ac2 () val2) (STPair t1 t2, SAPFst prj') -> realiseMaybeSparse ref ((,) <$> newAcSparse t1 prj' idx val <*> newAcZero t2) (\(ac1, _) -> do accumAddSparse t1 prj' ac1 idx val) (STPair t1 t2, SAPSnd prj') -> realiseMaybeSparse ref ((,) <$> newAcZero t1 <*> newAcSparse t2 prj' idx val) (\(_, ac2) -> do accumAddSparse t2 prj' ac2 idx val) (STEither{}, SAPHere) -> case val of Nothing -> return () Just (Left val1) -> accumAddSparse typ (SAPLeft SAPHere) ref () val1 Just (Right val2) -> accumAddSparse typ (SAPRight SAPHere) ref () val2 (STEither t1 _, SAPLeft prj') -> realiseMaybeSparse ref (Left <$> newAcSparse t1 prj' idx val) (\case Left ac1 -> accumAddSparse t1 prj' ac1 idx val Right{} -> error "Mismatched Either in accumAddSparse (r +l)") (STEither _ t2, SAPRight prj') -> realiseMaybeSparse ref (Right <$> newAcSparse t2 prj' idx val) (\case Right ac2 -> accumAddSparse t2 prj' ac2 idx val Left{} -> error "Mismatched Either in accumAddSparse (l +r)") (STMaybe{}, SAPHere) -> case val of Nothing -> return () Just val' -> accumAddSparse typ (SAPJust SAPHere) ref () val' (STMaybe t1, SAPJust prj') -> realiseMaybeSparse ref (newAcSparse t1 prj' idx val) (\ac -> accumAddSparse t1 prj' ac idx val) (STArr _ t1, SAPHere) -> case val of Nothing -> return () Just val' -> realiseMaybeSparse ref (arrayMapM (newAcSparse t1 SAPHere ()) val') (\ac -> forM_ [0 .. arraySize ac - 1] $ \i -> accumAddSparse t1 SAPHere (arrayIndexLinear ac i) () (arrayIndexLinear val' i)) (STArr n t1, SAPArrIdx prj' _) -> let ((arrindex', arrsh'), idx') = idx arrindex = unTupRepIdx IxNil IxCons n arrindex' arrsh = unTupRepIdx ShNil ShCons n arrsh' linindex = toLinearIndex arrsh arrindex in realiseMaybeSparse ref (onehotArray (\_ -> newAcSparse t1 prj' idx' val) (newAcZero t1) n prj' idx) (\ac -> accumAddSparse t1 prj' (arrayIndexLinear ac linindex) idx' val) (STScal sty, SAPHere) -> AcM $ case sty of STI32 -> return () STI64 -> return () STF32 -> atomicModifyIORef' ref (\x -> (x + val, ())) STF64 -> atomicModifyIORef' ref (\x -> (x + val, ())) STBool -> return () (STAccum{}, _) -> error "Accumulators not allowed in source program" realiseMaybeSparse :: IORef (Maybe a) -> IO a -> (a -> AcM s ()) -> AcM s () realiseMaybeSparse ref makeval modifyval = -- Try modifying what's already in ref. The 'join' makes the snd -- of the function's return value a _continuation_ that is run after -- the critical section ends. AcM $ join $ atomicModifyIORef' ref $ \ac -> case ac of -- Oops, ref's contents was still sparse. Have to initialise -- it first, then try again. Nothing -> (ac, do val <- makeval join $ atomicModifyIORef' ref $ \ac' -> case ac' of Nothing -> (Just val, return ()) Just val' -> (ac', unAcM $ modifyval val')) -- Yep, ref already had a value in there, so we can just add -- val' to it recursively. Just val -> (ac, unAcM $ modifyval val) numericIsNum :: ScalIsNumeric st ~ True => SScalTy st -> ((Num (ScalRep st), Ord (ScalRep st)) => r) -> r numericIsNum STI32 = id numericIsNum STI64 = id numericIsNum STF32 = id numericIsNum STF64 = id floatingIsFractional :: ScalIsFloating st ~ True => SScalTy st -> ((Floating (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsFloating st ~ True) => r) -> r floatingIsFractional STF32 = id floatingIsFractional STF64 = id integralIsIntegral :: ScalIsIntegral st ~ True => SScalTy st -> ((Integral (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsIntegral st ~ True) => r) -> r integralIsIntegral STI32 = id integralIsIntegral STI64 = id unTupRepIdx :: f Z -> (forall m. f m -> Int -> f (S m)) -> SNat n -> Rep (Tup (Replicate n TIx)) -> f n unTupRepIdx nil _ SZ _ = nil unTupRepIdx nil cons (SS n) (idx, i) = unTupRepIdx nil cons n idx `cons` fromIntegral @Int64 @Int i tupRepIdx :: (forall m. f (S m) -> (f m, Int)) -> SNat n -> f n -> Rep (Tup (Replicate n TIx)) tupRepIdx _ SZ _ = () tupRepIdx uncons (SS n) tup = let (tup', i) = uncons tup in ((,) $! tupRepIdx uncons n tup') $! fromIntegral @Int @Int64 i ixUncons :: Index (S n) -> (Index n, Int) ixUncons (IxCons idx i) = (idx, i) shUncons :: Shape (S n) -> (Shape n, Int) shUncons (ShCons idx i) = (idx, i)