{-# LANGUAGE BangPatterns #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE ImplicitParams #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} module Interpreter ( interpret, interpretOpen, Value(..), ) where import Control.Monad (foldM, join, when, forM_) import Data.Bitraversable (bitraverse) import Data.Char (isSpace) import Data.Functor.Identity import qualified Data.Functor.Product as Product import Data.Int (Int64) import Data.IORef import System.IO (hPutStrLn, stderr) import System.IO.Unsafe (unsafePerformIO) import Debug.Trace import Array import AST import AST.Pretty import Data import Interpreter.Rep newtype AcM s a = AcM { unAcM :: IO a } deriving newtype (Functor, Applicative, Monad) runAcM :: (forall s. AcM s a) -> a runAcM (AcM m) = unsafePerformIO m acmDebugLog :: String -> AcM s () acmDebugLog s = AcM (hPutStrLn stderr s) data V t = V (STy t) (Rep t) interpret :: Ex '[] t -> Rep t interpret = interpretOpen False SNil SNil -- | Bool: whether to trace execution with debug prints (very verbose) interpretOpen :: Bool -> SList STy env -> SList Value env -> Ex env t -> Rep t interpretOpen prints env venv e = runAcM $ let ?depth = 0 ?prints = prints in interpret' (slistMap (\(Product.Pair t (Value v)) -> V t v) (slistZip env venv)) e interpret' :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList V env -> Ex env t -> AcM s (Rep t) interpret' env e = do let tenv = slistMap (\(V t _) -> t) env let dep = ?depth let lenlimit = max 20 (100 - dep) let replace a b = map (\c -> if c == a then b else c) let trunc s | length s > lenlimit = take (lenlimit - 3) (replace '\n' ' ' s) ++ "..." | otherwise = replace '\n' ' ' s when ?prints $ acmDebugLog $ replicate dep ' ' ++ "ev: " ++ trunc (ppExpr tenv e) res <- let ?depth = dep + 1 in interpret'Rec env e when ?prints $ acmDebugLog $ replicate dep ' ' ++ "<- " ++ showValue 0 (typeOf e) res "" return res interpret'Rec :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList V env -> Ex env t -> AcM s (Rep t) interpret'Rec env = \case EVar _ _ i -> case slistIdx env i of V _ x -> return x ELet _ a b -> do x <- interpret' env a let ?depth = ?depth - 1 in interpret' (V (typeOf a) x `SCons` env) b expr | False && trace (" " ++ takeWhile (not . isSpace) (show expr)) False -> undefined EPair _ a b -> (,) <$> interpret' env a <*> interpret' env b EFst _ e -> fst <$> interpret' env e ESnd _ e -> snd <$> interpret' env e ENil _ -> return () EInl _ _ e -> Left <$> interpret' env e EInr _ _ e -> Right <$> interpret' env e ECase _ e a b -> let STEither t1 t2 = typeOf e in interpret' env e >>= \case Left x -> interpret' (V t1 x `SCons` env) a Right y -> interpret' (V t2 y `SCons` env) b ENothing _ _ -> return Nothing EJust _ e -> Just <$> interpret' env e EMaybe _ a b e -> let STMaybe t1 = typeOf e in maybe (interpret' env a) (\x -> interpret' (V t1 x `SCons` env) b) =<< interpret' env e ELNil _ _ _ -> return Nothing ELInl _ _ e -> Just . Left <$> interpret' env e ELInr _ _ e -> Just . Right <$> interpret' env e ELCase _ e a b c -> let STLEither t1 t2 = typeOf e in interpret' env e >>= \case Nothing -> interpret' env a Just (Left x) -> interpret' (V t1 x `SCons` env) b Just (Right y) -> interpret' (V t2 y `SCons` env) c EConstArr _ _ _ v -> return v EBuild _ dim a b -> do sh <- unTupRepIdx ShNil ShCons dim <$> interpret' env a arrayGenerateM sh (\idx -> interpret' (V (tTup (sreplicate dim tIx)) (tupRepIdx ixUncons dim idx) `SCons` env) b) EFold1Inner _ _ a b c -> do let t = typeOf b let f = \x y -> interpret' (V t y `SCons` V t x `SCons` env) a x0 <- interpret' env b arr <- interpret' env c let sh `ShCons` n = arrayShape arr arrayGenerateM sh $ \idx -> foldM f x0 [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]] ESum1Inner _ e -> do arr <- interpret' env e let STArr _ (STScal t) = typeOf e sh `ShCons` n = arrayShape arr numericIsNum t $ return $ arrayGenerate sh $ \idx -> sum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]] EUnit _ e -> arrayGenerateLinM ShNil (\_ -> interpret' env e) EReplicate1Inner _ a b -> do n <- fromIntegral @Int64 @Int <$> interpret' env a arr <- interpret' env b let sh = arrayShape arr return $ arrayGenerate (sh `ShCons` n) (\(idx `IxCons` _) -> arrayIndex arr idx) EMaximum1Inner _ e -> do arr <- interpret' env e let STArr _ (STScal t) = typeOf e sh `ShCons` n = arrayShape arr numericIsNum t $ return $ arrayGenerate sh (\idx -> maximum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]]) EMinimum1Inner _ e -> do arr <- interpret' env e let STArr _ (STScal t) = typeOf e sh `ShCons` n = arrayShape arr numericIsNum t $ return $ arrayGenerate sh (\idx -> minimum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]]) EConst _ _ v -> return v EIdx0 _ e -> (`arrayIndexLinear` 0) <$> interpret' env e EIdx1 _ a b -> arrayIndex1 <$> interpret' env a <*> (fromIntegral @Int64 @Int <$> interpret' env b) EIdx _ a b -> let STArr n _ = typeOf a in arrayIndex <$> interpret' env a <*> (unTupRepIdx IxNil IxCons n <$> interpret' env b) EShape _ e | STArr n _ <- typeOf e -> tupRepIdx shUncons n . arrayShape <$> interpret' env e EOp _ op e -> interpretOp op <$> interpret' env e ECustom _ t1 t2 _ pr _ _ e1 e2 -> do e1' <- interpret' env e1 e2' <- interpret' env e2 interpret' (V t2 e2' `SCons` V t1 e1' `SCons` SNil) pr EWith _ t e1 e2 -> do initval <- interpret' env e1 withAccum t (typeOf e2) initval $ \accum -> interpret' (V (STAccum t) accum `SCons` env) e2 EAccum _ t p e1 e2 e3 -> do idx <- interpret' env e1 val <- interpret' env e2 accum <- interpret' env e3 accumAddSparse t p accum idx val EZero _ t ezi -> do zi <- interpret' env ezi return $ zeroM t zi EPlus _ t a b -> do a' <- interpret' env a b' <- interpret' env b return $ addM t a' b' EOneHot _ t p a b -> do a' <- interpret' env a b' <- interpret' env b return $ onehotM p t a' b' EError _ _ s -> error $ "Interpreter: Program threw error: " ++ s interpretOp :: SOp a t -> Rep a -> Rep t interpretOp op arg = case op of OAdd st -> numericIsNum st $ uncurry (+) arg OMul st -> numericIsNum st $ uncurry (*) arg ONeg st -> numericIsNum st $ negate arg OLt st -> numericIsNum st $ uncurry (<) arg OLe st -> numericIsNum st $ uncurry (<=) arg OEq st -> styIsEq st $ uncurry (==) arg ONot -> not arg OAnd -> uncurry (&&) arg OOr -> uncurry (||) arg OIf -> if arg then Left () else Right () ORound64 -> round arg OToFl64 -> fromIntegral arg ORecip st -> floatingIsFractional st $ recip arg OExp st -> floatingIsFractional st $ exp arg OLog st -> floatingIsFractional st $ log arg OIDiv st -> integralIsIntegral st $ uncurry quot arg OMod st -> integralIsIntegral st $ uncurry rem arg where styIsEq :: SScalTy t -> (Eq (Rep (TScal t)) => r) -> r styIsEq STI32 = id styIsEq STI64 = id styIsEq STF32 = id styIsEq STF64 = id styIsEq STBool = id zeroM :: SMTy t -> Rep (ZeroInfo t) -> Rep t zeroM typ zi = case typ of SMTNil -> () SMTPair t1 t2 -> (zeroM t1 (fst zi), zeroM t2 (snd zi)) SMTLEither _ _ -> Nothing SMTMaybe _ -> Nothing SMTArr _ t -> arrayMap (zeroM t) zi SMTScal sty -> case sty of STI32 -> 0 STI64 -> 0 STF32 -> 0.0 STF64 -> 0.0 addM :: SMTy t -> Rep t -> Rep t -> Rep t addM typ a b = case typ of SMTNil -> () SMTPair t1 t2 -> (addM t1 (fst a) (fst b), addM t2 (snd a) (snd b)) SMTLEither t1 t2 -> case (a, b) of (Nothing, _) -> b (_, Nothing) -> a (Just (Left x), Just (Left y)) -> Just (Left (addM t1 x y)) (Just (Right x), Just (Right y)) -> Just (Right (addM t2 x y)) _ -> error "Plus of inconsistent LEithers" SMTMaybe t -> case (a, b) of (Nothing, _) -> b (_, Nothing) -> a (Just x, Just y) -> Just (addM t x y) SMTArr _ t -> let sh1 = arrayShape a sh2 = arrayShape b in if | shapeSize sh1 == 0 -> b | shapeSize sh2 == 0 -> a | sh1 == sh2 -> arrayGenerateLin sh1 (\i -> addM t (arrayIndexLinear a i) (arrayIndexLinear b i)) | otherwise -> error "Plus of inconsistently shaped arrays" SMTScal sty -> numericIsNum sty $ a + b onehotM :: SAcPrj p a b -> SMTy a -> Rep (AcIdx p a) -> Rep b -> Rep a onehotM SAPHere _ _ val = val onehotM (SAPFst prj) (SMTPair a b) idx val = (onehotM prj a (fst idx) val, zeroM b (snd idx)) onehotM (SAPSnd prj) (SMTPair a b) idx val = (zeroM a (fst idx), onehotM prj b (snd idx) val) onehotM (SAPLeft prj) (SMTLEither a _) idx val = Just (Left (onehotM prj a idx val)) onehotM (SAPRight prj) (SMTLEither _ b) idx val = Just (Right (onehotM prj b idx val)) onehotM (SAPJust prj) (SMTMaybe a) idx val = Just (onehotM prj a idx val) onehotM (SAPArrIdx prj) (SMTArr n a) idx val = runIdentity $ onehotArray (\idx' -> Identity (onehotM prj a idx' val)) (\zi -> Identity (zeroM a zi)) n prj idx withAccum :: SMTy t -> STy a -> Rep t -> (RepAc t -> AcM s (Rep a)) -> AcM s (Rep a, Rep t) withAccum t _ initval f = AcM $ do accum <- newAcDense t initval out <- unAcM $ f accum val <- readAc t accum return (out, val) newAcZero :: SMTy t -> Rep (ZeroInfo t) -> IO (RepAc t) newAcZero typ zi = case typ of SMTNil -> return () SMTPair t1 t2 -> bitraverse (newAcZero t1) (newAcZero t2) zi SMTLEither{} -> newIORef Nothing SMTMaybe _ -> newIORef Nothing SMTArr _ t -> arrayMapM (newAcZero t) zi SMTScal sty -> numericIsNum sty $ newIORef 0 newAcDense :: SMTy a -> Rep a -> IO (RepAc a) newAcDense typ val = case typ of SMTNil -> return () SMTPair t1 t2 -> bitraverse (newAcDense t1) (newAcDense t2) val SMTLEither t1 t2 -> newIORef =<< traverse (bitraverse (newAcDense t1) (newAcDense t2)) val SMTMaybe t1 -> newIORef =<< traverse (newAcDense t1) val SMTArr _ t1 -> arrayMapM (newAcDense t1) val SMTScal _ -> newIORef val newAcSparse :: SMTy a -> SAcPrj p a b -> Rep (AcIdx p a) -> Rep b -> IO (RepAc a) newAcSparse typ prj idx val = case (typ, prj) of (_, SAPHere) -> newAcDense typ val (SMTPair t1 t2, SAPFst prj') -> (,) <$> newAcSparse t1 prj' (fst idx) val <*> newAcZero t2 (snd idx) (SMTPair t1 t2, SAPSnd prj') -> (,) <$> newAcZero t1 (fst idx) <*> newAcSparse t2 prj' (snd idx) val (SMTLEither t1 _, SAPLeft prj') -> newIORef . Just . Left =<< newAcSparse t1 prj' idx val (SMTLEither _ t2, SAPRight prj') -> newIORef . Just . Right =<< newAcSparse t2 prj' idx val (SMTMaybe t1, SAPJust prj') -> newIORef . Just =<< newAcSparse t1 prj' idx val (SMTArr n t, SAPArrIdx prj') -> onehotArray (\idx' -> newAcSparse t prj' idx' val) (newAcZero t) n prj' idx onehotArray :: Monad m => (Rep (AcIdx p a) -> m v) -- ^ the "one" -> (Rep (ZeroInfo a) -> m v) -- ^ the "zero" -> SNat n -> SAcPrj p a b -> Rep (AcIdx (APArrIdx p) (TArr n a)) -> m (Array n v) onehotArray mkone mkzero n _ ((arrindex', ziarr), idx) = let arrindex = unTupRepIdx IxNil IxCons n arrindex' arrsh = arrayShape ziarr !linindex = toLinearIndex arrsh arrindex in arrayGenerateLinM arrsh (\i -> if i == linindex then mkone idx else mkzero (ziarr `arrayIndexLinear` i)) readAc :: SMTy t -> RepAc t -> IO (Rep t) readAc typ val = case typ of SMTNil -> return () SMTPair t1 t2 -> bitraverse (readAc t1) (readAc t2) val SMTLEither t1 t2 -> traverse (bitraverse (readAc t1) (readAc t2)) =<< readIORef val SMTMaybe t -> traverse (readAc t) =<< readIORef val SMTArr _ t -> traverse (readAc t) val SMTScal _ -> readIORef val accumAddDense :: SMTy a -> RepAc a -> Rep a -> AcM s () accumAddDense typ ref val = case typ of SMTNil -> return () SMTPair t1 t2 -> do accumAddDense t1 (fst ref) (fst val) accumAddDense t2 (snd ref) (snd val) SMTLEither{} -> case val of Nothing -> return () Just (Left val1) -> accumAddSparse typ (SAPLeft SAPHere) ref () val1 Just (Right val2) -> accumAddSparse typ (SAPRight SAPHere) ref () val2 SMTMaybe{} -> case val of Nothing -> return () Just val' -> accumAddSparse typ (SAPJust SAPHere) ref () val' SMTArr _ t1 -> forM_ [0 .. arraySize ref - 1] $ \i -> accumAddDense t1 (arrayIndexLinear ref i) (arrayIndexLinear val i) SMTScal sty -> numericIsNum sty $ AcM $ atomicModifyIORef' ref (\x -> (x + val, ())) accumAddSparse :: SMTy a -> SAcPrj p a b -> RepAc a -> Rep (AcIdx p a) -> Rep b -> AcM s () accumAddSparse typ prj ref idx val = case (typ, prj) of (_, SAPHere) -> accumAddDense typ ref val (SMTPair t1 _, SAPFst prj') -> accumAddSparse t1 prj' (fst ref) (fst idx) val (SMTPair _ t2, SAPSnd prj') -> accumAddSparse t2 prj' (snd ref) (snd idx) val (SMTLEither t1 _, SAPLeft prj') -> realiseMaybeSparse ref (Left <$> newAcSparse t1 prj' idx val) (\case Left ac1 -> accumAddSparse t1 prj' ac1 idx val Right{} -> error "Mismatched Either in accumAddSparse (r +l)") (SMTLEither _ t2, SAPRight prj') -> realiseMaybeSparse ref (Right <$> newAcSparse t2 prj' idx val) (\case Right ac2 -> accumAddSparse t2 prj' ac2 idx val Left{} -> error "Mismatched Either in accumAddSparse (l +r)") (SMTMaybe t1, SAPJust prj') -> realiseMaybeSparse ref (newAcSparse t1 prj' idx val) (\ac -> accumAddSparse t1 prj' ac idx val) (SMTArr n t1, SAPArrIdx prj') -> let ((arrindex', ziarr), idx') = idx arrindex = unTupRepIdx IxNil IxCons n arrindex' arrsh = arrayShape ziarr linindex = toLinearIndex arrsh arrindex in accumAddSparse t1 prj' (arrayIndexLinear ref linindex) idx' val realiseMaybeSparse :: IORef (Maybe a) -> IO a -> (a -> AcM s ()) -> AcM s () realiseMaybeSparse ref makeval modifyval = -- Try modifying what's already in ref. The 'join' makes the snd -- of the function's return value a _continuation_ that is run after -- the critical section ends. AcM $ join $ atomicModifyIORef' ref $ \ac -> case ac of -- Oops, ref's contents was still sparse. Have to initialise -- it first, then try again. Nothing -> (ac, do val <- makeval join $ atomicModifyIORef' ref $ \ac' -> case ac' of Nothing -> (Just val, return ()) Just val' -> (ac', unAcM $ modifyval val')) -- Yep, ref already had a value in there, so we can just add -- val' to it recursively. Just val -> (ac, unAcM $ modifyval val) numericIsNum :: ScalIsNumeric st ~ True => SScalTy st -> ((Num (ScalRep st), Ord (ScalRep st)) => r) -> r numericIsNum STI32 = id numericIsNum STI64 = id numericIsNum STF32 = id numericIsNum STF64 = id floatingIsFractional :: ScalIsFloating st ~ True => SScalTy st -> ((Floating (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsFloating st ~ True) => r) -> r floatingIsFractional STF32 = id floatingIsFractional STF64 = id integralIsIntegral :: ScalIsIntegral st ~ True => SScalTy st -> ((Integral (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsIntegral st ~ True) => r) -> r integralIsIntegral STI32 = id integralIsIntegral STI64 = id unTupRepIdx :: f Z -> (forall m. f m -> Int -> f (S m)) -> SNat n -> Rep (Tup (Replicate n TIx)) -> f n unTupRepIdx nil _ SZ _ = nil unTupRepIdx nil cons (SS n) (idx, i) = unTupRepIdx nil cons n idx `cons` fromIntegral @Int64 @Int i tupRepIdx :: (forall m. f (S m) -> (f m, Int)) -> SNat n -> f n -> Rep (Tup (Replicate n TIx)) tupRepIdx _ SZ _ = () tupRepIdx uncons (SS n) tup = let (tup', i) = uncons tup in ((,) $! tupRepIdx uncons n tup') $! fromIntegral @Int @Int64 i ixUncons :: Index (S n) -> (Index n, Int) ixUncons (IxCons idx i) = (idx, i) shUncons :: Shape (S n) -> (Shape n, Int) shUncons (ShCons idx i) = (idx, i)