{-# LANGUAGE DataKinds #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE ImplicitParams #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} module Simplify where import Data.Monoid import AST import AST.Count import Data simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t simplifyN 0 = id simplifyN n = simplifyN (n - 1) . simplify simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t simplify = let ?accumInScope = checkAccumInScope @env knownEnv in simplify' simplify' :: (?accumInScope :: Bool) => Ex env t -> Ex env t simplify' = \case -- inlining ELet _ rhs body | not ?accumInScope || not (hasAdds rhs) -- cannot discard effectful computations , Occ lexOcc runOcc <- occCount IZ body , lexOcc <= One -- prevent code size blowup , runOcc <= One -- prevent runtime increase -> simplify' (subst1 rhs body) | cheapExpr rhs -> simplify' (subst1 rhs body) -- let splitting ELet _ (EPair _ a b) body -> simplify' $ ELet ext a $ ELet ext (weakenExpr WSink b) $ subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ) IS i -> EVar ext t (IS (IS i))) body -- let rotation ELet _ (ELet _ rhs a) b -> ELet ext (simplify' rhs) $ ELet ext (simplify' a) $ weakenExpr (WCopy WSink) (simplify' b) -- beta rules for products EFst _ (EPair _ e _) -> simplify' e ESnd _ (EPair _ _ e) -> simplify' e -- beta rules for coproducts ECase _ (EInl _ _ e) rhs _ -> simplify' (ELet ext e rhs) ECase _ (EInr _ _ e) _ rhs -> simplify' (ELet ext e rhs) -- TODO: array indexing (index of build, index of fold) -- TODO: constant folding for operations EVar _ t i -> EVar ext t i ELet _ a b -> ELet ext (simplify' a) (simplify' b) EPair _ a b -> EPair ext (simplify' a) (simplify' b) EFst _ e -> EFst ext (simplify' e) ESnd _ e -> ESnd ext (simplify' e) ENil _ -> ENil ext EInl _ t e -> EInl ext t (simplify' e) EInr _ t e -> EInr ext t (simplify' e) ECase _ e a b -> ECase ext (simplify' e) (simplify' a) (simplify' b) EBuild1 _ a b -> EBuild1 ext (simplify' a) (simplify' b) EBuild _ es e -> EBuild ext (fmap simplify' es) (simplify' e) EFold1 _ a b -> EFold1 ext (simplify' a) (simplify' b) EConst _ t v -> EConst ext t v EIdx1 _ a b -> EIdx1 ext (simplify' a) (simplify' b) EIdx _ e es -> EIdx ext (simplify' e) (fmap simplify' es) EOp _ op e -> EOp ext op (simplify' e) EWith e1 e2 -> EWith (simplify' e1) (let ?accumInScope = True in simplify' e2) EAccum e1 e2 e3 -> EAccum (simplify' e1) (simplify' e2) (simplify' e3) EError t s -> EError t s cheapExpr :: Expr x env t -> Bool cheapExpr = \case EVar{} -> True ENil{} -> True EConst{} -> True _ -> False subst1 :: Expr x env a -> Expr x (a : env) t -> Expr x env t subst1 repl = subst $ \x t -> \case IZ -> repl IS i -> EVar x t i subst :: (forall a. x a -> STy a -> Idx env a -> Expr x env' a) -> Expr x env t -> Expr x env' t subst f = subst' (\x t w i -> weakenExpr w (f x t i)) WId subst' :: (forall a env2. x a -> STy a -> env' :> env2 -> Idx env a -> Expr x env2 a) -> env' :> envOut -> Expr x env t -> Expr x envOut t subst' f w = \case EVar x t i -> f x t w i ELet x rhs body -> ELet x (subst' f w rhs) (subst' (sinkF f) (WCopy w) body) EPair x a b -> EPair x (subst' f w a) (subst' f w b) EFst x e -> EFst x (subst' f w e) ESnd x e -> ESnd x (subst' f w e) ENil x -> ENil x EInl x t e -> EInl x t (subst' f w e) EInr x t e -> EInr x t (subst' f w e) ECase x e a b -> ECase x (subst' f w e) (subst' (sinkF f) (WCopy w) a) (subst' (sinkF f) (WCopy w) b) EBuild1 x a b -> EBuild1 x (subst' f w a) (subst' (sinkF f) (WCopy w) b) EBuild x es e -> EBuild x (fmap (subst' f w) es) (subst' (sinkFN (vecLength es) f) (wcopyN (vecLength es) w) e) EFold1 x a b -> EFold1 x (subst' (sinkF (sinkF f)) (WCopy (WCopy w)) a) (subst' f w b) EConst x t v -> EConst x t v EIdx1 x a b -> EIdx1 x (subst' f w a) (subst' f w b) EIdx x e es -> EIdx x (subst' f w e) (fmap (subst' f w) es) EOp x op e -> EOp x op (subst' f w e) EWith e1 e2 -> EWith (subst' f w e1) (subst' (sinkF f) (WCopy w) e2) EAccum e1 e2 e3 -> EAccum (subst' f w e1) (subst' f w e2) (subst' f w e3) EError t s -> EError t s where sinkF :: (forall a. x a -> STy a -> (env' :> env2) -> Idx env a -> Expr x env2 a) -> x t -> STy t -> ((b : env') :> env2) -> Idx (b : env) t -> Expr x env2 t sinkF f' x' t w' = \case IZ -> EVar x' t (w' @> IZ) IS i -> f' x' t (WPop w') i sinkFN :: SNat n -> (forall a. x a -> STy a -> (env' :> env2) -> Idx env a -> Expr x env2 a) -> x t -> STy t -> (ConsN n TIx env' :> env2) -> Idx (ConsN n TIx env) t -> Expr x env2 t sinkFN SZ f' x t w' i = f' x t w' i sinkFN (SS _) _ x t w' IZ = EVar x t (w' @> IZ) sinkFN (SS n) f' x t w' (IS i) = sinkFN n f' x t (WPop w') i -- | This can be made more precise by tracking (and not counting) adds on -- locally eliminated accumulators. hasAdds :: Expr x env t -> Bool hasAdds = \case EVar _ _ _ -> False ELet _ rhs body -> hasAdds rhs || hasAdds body EPair _ a b -> hasAdds a || hasAdds b EFst _ e -> hasAdds e ESnd _ e -> hasAdds e ENil _ -> False EInl _ _ e -> hasAdds e EInr _ _ e -> hasAdds e ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b EBuild1 _ a b -> hasAdds a || hasAdds b EBuild _ es e -> getAny (foldMap (Any . hasAdds) es) || hasAdds e EFold1 _ a b -> hasAdds a || hasAdds b EConst _ _ _ -> False EIdx1 _ a b -> hasAdds a || hasAdds b EIdx _ e es -> hasAdds e || getAny (foldMap (Any . hasAdds) es) EOp _ _ e -> hasAdds e EWith a b -> hasAdds a || hasAdds b EAccum _ _ _ -> True EError _ _ -> False checkAccumInScope :: SList STy env -> Bool checkAccumInScope = \case SNil -> False SCons t env -> check t || checkAccumInScope env where check :: STy t -> Bool check STNil = False check (STPair s t) = check s || check t check (STEither s t) = check s || check t check (STArr _ t) = check t check (STScal _) = False check STAccum{} = True