{-# LANGUAGE DataKinds #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE ImplicitParams #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} module Simplify where import Data.Function (fix) import Data.Monoid (Any(..)) import AST import AST.Count import Data simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t simplifyN 0 = id simplifyN n = simplifyN (n - 1) . simplify simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t simplify = let ?accumInScope = checkAccumInScope @env knownEnv in snd . simplify' simplifyFix :: forall env t. KnownEnv env => Ex env t -> Ex env t simplifyFix = let ?accumInScope = checkAccumInScope @env knownEnv in fix $ \loop e -> let (Any act, e') = simplify' e in if act then loop e' else e' simplify' :: (?accumInScope :: Bool) => Ex env t -> (Any, Ex env t) simplify' = \case -- inlining ELet _ rhs body | cheapExpr rhs -> acted $ simplify' (subst1 rhs body) | Occ lexOcc runOcc <- occCount IZ body , ((not ?accumInScope || not (hasAdds rhs)) && lexOcc <= One && runOcc <= One) -- without effects, normal rules apply || (lexOcc == One && runOcc == One) -- with effects, linear inlining is still allowed, but weakening is not -> acted $ simplify' (subst1 rhs body) -- let splitting ELet _ (EPair _ a b) body -> acted $ simplify' $ ELet ext a $ ELet ext (weakenExpr WSink b) $ subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ) IS i -> EVar ext t (IS (IS i))) body -- let rotation ELet _ (ELet _ rhs a) b -> acted $ simplify' $ ELet ext rhs $ ELet ext a $ weakenExpr (WCopy WSink) (snd (simplify' b)) -- beta rules for products EFst _ (EPair _ e _) -> simplify' e ESnd _ (EPair _ _ e) -> simplify' e -- beta rules for coproducts ECase _ (EInl _ _ e) rhs _ -> simplify' (ELet ext e rhs) ECase _ (EInr _ _ e) _ rhs -> simplify' (ELet ext e rhs) -- let floating to facilitate beta reduction EFst _ (ELet _ rhs body) -> simplify' (ELet ext rhs (EFst ext body)) ESnd _ (ELet _ rhs body) -> simplify' (ELet ext rhs (ESnd ext body)) ECase _ (ELet _ rhs body) e1 e2 -> simplify' (ELet ext rhs (ECase ext body (weakenExpr (WCopy WSink) e1) (weakenExpr (WCopy WSink) e2))) EIdx0 _ (ELet _ rhs body) -> simplify' (ELet ext rhs (EIdx0 ext body)) EIdx1 _ (ELet _ rhs body) e -> simplify' (ELet ext rhs (EIdx1 ext body (weakenExpr WSink e))) -- TODO: array indexing (index of build, index of fold) -- TODO: beta rules for maybe -- TODO: constant folding for operations -- TODO: accum of zero, plus of zero EVar _ t i -> pure $ EVar ext t i ELet _ a b -> ELet ext <$> simplify' a <*> simplify' b EPair _ a b -> EPair ext <$> simplify' a <*> simplify' b EFst _ e -> EFst ext <$> simplify' e ESnd _ e -> ESnd ext <$> simplify' e ENil _ -> pure $ ENil ext EInl _ t e -> EInl ext t <$> simplify' e EInr _ t e -> EInr ext t <$> simplify' e ECase _ e a b -> ECase ext <$> simplify' e <*> simplify' a <*> simplify' b ENothing _ t -> pure $ ENothing ext t EJust _ e -> EJust ext <$> simplify' e EMaybe _ a b e -> EMaybe ext <$> simplify' a <*> simplify' b <*> simplify' e EConstArr _ n t v -> pure $ EConstArr ext n t v EBuild1 _ a b -> EBuild1 ext <$> simplify' a <*> simplify' b EBuild _ n a b -> EBuild ext n <$> simplify' a <*> simplify' b EFold1Inner _ a b c -> EFold1Inner ext <$> simplify' a <*> simplify' b <*> simplify' c ESum1Inner _ e -> ESum1Inner ext <$> simplify' e EUnit _ e -> EUnit ext <$> simplify' e EReplicate1Inner _ a b -> EReplicate1Inner ext <$> simplify' a <*> simplify' b EConst _ t v -> pure $ EConst ext t v EIdx0 _ e -> EIdx0 ext <$> simplify' e EIdx1 _ a b -> EIdx1 ext <$> simplify' a <*> simplify' b EIdx _ a b -> EIdx ext <$> simplify' a <*> simplify' b EShape _ e -> EShape ext <$> simplify' e EOp _ op e -> EOp ext op <$> simplify' e EWith e1 e2 -> EWith <$> simplify' e1 <*> (let ?accumInScope = True in simplify' e2) EAccum i e1 e2 e3 -> EAccum i <$> simplify' e1 <*> simplify' e2 <*> simplify' e3 EZero t -> pure $ EZero t EPlus t a b -> EPlus t <$> simplify' a <*> simplify' b EOneHot t i a b -> EOneHot t i <$> simplify' a <*> simplify' b EError t s -> pure $ EError t s acted :: (Any, a) -> (Any, a) acted (_, x) = (Any True, x) cheapExpr :: Expr x env t -> Bool cheapExpr = \case EVar{} -> True ENil{} -> True EConst{} -> True _ -> False -- | This can be made more precise by tracking (and not counting) adds on -- locally eliminated accumulators. hasAdds :: Expr x env t -> Bool hasAdds = \case EVar _ _ _ -> False ELet _ rhs body -> hasAdds rhs || hasAdds body EPair _ a b -> hasAdds a || hasAdds b EFst _ e -> hasAdds e ESnd _ e -> hasAdds e ENil _ -> False EInl _ _ e -> hasAdds e EInr _ _ e -> hasAdds e ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b ENothing _ _ -> False EJust _ e -> hasAdds e EMaybe _ a b e -> hasAdds a || hasAdds b || hasAdds e EConstArr _ _ _ _ -> False EBuild1 _ a b -> hasAdds a || hasAdds b EBuild _ _ a b -> hasAdds a || hasAdds b EFold1Inner _ a b c -> hasAdds a || hasAdds b || hasAdds c ESum1Inner _ e -> hasAdds e EUnit _ e -> hasAdds e EReplicate1Inner _ a b -> hasAdds a || hasAdds b EConst _ _ _ -> False EIdx0 _ e -> hasAdds e EIdx1 _ a b -> hasAdds a || hasAdds b EIdx _ a b -> hasAdds a || hasAdds b EShape _ e -> hasAdds e EOp _ _ e -> hasAdds e EWith a b -> hasAdds a || hasAdds b EAccum _ _ _ _ -> True EZero _ -> False EPlus _ a b -> hasAdds a || hasAdds b EOneHot _ _ a b -> hasAdds a || hasAdds b EError _ _ -> False checkAccumInScope :: SList STy env -> Bool checkAccumInScope = \case SNil -> False SCons t env -> check t || checkAccumInScope env where check :: STy t -> Bool check STNil = False check (STPair s t) = check s || check t check (STEither s t) = check s || check t check (STMaybe t) = check t check (STArr _ t) = check t check (STScal _) = False check STAccum{} = True