{-# LANGUAGE BangPatterns #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE QuantifiedConstraints #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneKindSignatures #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} module Data.Dependent.EnumMap.Strict.Internal where import Control.Exception import Data.Bifunctor (bimap, second) import Data.Coerce import Data.Dependent.Sum import qualified Data.Foldable as Foldable import qualified Data.IntMap.Strict as IM import Data.Kind (Type) import Data.Proxy import Data.Some import Data.Type.Equality import Text.Show (showListWith) import Unsafe.Coerce (unsafeCoerce) import Prelude hiding (lookup, map) type KV :: forall kind. (kind -> Type) -> (kind -> Type) -> Type data KV k v = forall a. KV !(Enum1Info k) !(v a) -- Invariant: the key-value pairs in a DEnumMap are type-consistent. That is to -- say: they have the same type-index. Any other type equalities, like between -- the key argument to 'lookup' and the key-value pairs in the map argument to -- 'lookup', may /not/ hold, and should be type-checked as much as we're able. newtype DEnumMap k v = DEnumMap (IM.IntMap (KV k v)) instance (Enum1 k, forall a. Show (k a), forall a. Show (v a)) => Show (DEnumMap k v) where showsPrec d mp = showParen (d > 10) $ showString "fromList " . showListWith (\(k :=> v) -> showsPrec 2 k . showString " :=> " . showsPrec 1 v) (toList mp) -- | This class attempts to generalise 'Enum' to indexed data types: data types -- with a GADT-like type parameter. Conversion to an 'Int' naturally loses type -- information, and furthermore it is common to actually need some additional -- data alongside the 'Int' to be able to reconstruct the original (in -- 'toEnum1'). This additional data lives in 'Enum1Info'. The laws are: -- -- [Unique IDs] -- If @'fst' ('fromEnum1' x) == 'fst' ('fromEnum1' y)@ then @'testEquality' x y == 'Just' 'Refl' && x '==' y@ -- [Persistent IDs] -- @'fst' ('fromEnum1' ('uncurry' 'toEnum1' ('fromEnum1' x))) == 'fst' ('fromEnum1' x)@ -- -- The "Unique IDs" law states that if the IDs of two values are equal, then -- the values themselves must have the same type index, and furthermore be -- equal. If @f@ does not implement 'TestEquality' or 'Eq', the law should -- morally hold (but most of the API will be unusable). -- -- The "Persistent IDs" law states that reconstructing a value using 'toEnum1' -- does not change its ID. -- -- __Note__: The methods on 'DEnumMap' attempt to check these laws using -- 'assert' assertions (which are by default __disabled__ when optimisations -- are on!), but full consistency cannot always be checked; if you break these -- laws in a sufficiently clever way, the internals of 'DEnumMap' may -- 'unsafeCoerce' unequal things and engage nasal demons, including crashes and -- worse. class Enum1 f where type Enum1Info f fromEnum1 :: f a -> (Int, Enum1Info f) toEnum1 :: Int -> Enum1Info f -> Some f dSumToKV :: Enum1 k => DSum k v -> (Int, KV k v) dSumToKV (k :=> v) = let (i, inf) = fromEnum1 k in (i, KV inf v) -- | Assumes that the input was obtained via 'fromEnum1'. kVToDSum :: Enum1 k => (Int, KV k v) -> DSum k v kVToDSum (i, KV inf v) = case toEnum1 i inf of Some k -> k :=> coe1 v -- * Construction empty :: DEnumMap k v empty = DEnumMap IM.empty singleton :: Enum1 k => k a -> v a -> DEnumMap k v singleton k v = let (i, inf) = fromEnum1 k in DEnumMap (IM.singleton i (KV inf v)) -- TODO: Wait for DEnumSet. -- fromSet -- ** From Unordered Lists fromList :: Enum1 k => [DSum k v] -> DEnumMap k v fromList l = DEnumMap (IM.fromList (dSumToKV <$> l)) fromListWith :: (Enum1 k, TestEquality k) => (forall a. v a -> v a -> v a) -> [DSum k v] -> DEnumMap k v fromListWith f (l :: [DSum k v]) = DEnumMap (IM.fromListWithKey (\i (KV inf1 v1) (KV inf2 v2) -> typeCheck2 (Proxy @k) i inf1 inf2 $ KV inf1 (f v1 (coe1 v2))) (dSumToKV <$> l)) fromListWithKey :: (Enum1 k, TestEquality k) => (forall a. k a -> v a -> v a -> v a) -> [DSum k v] -> DEnumMap k v fromListWithKey f l = DEnumMap (IM.fromListWithKey (\i (KV inf1 v1) (KV inf2 v2) -> case toEnum1 i inf1 of Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 (f k1 (coe1 v1) (coe1 v2))) (dSumToKV <$> l)) -- ** From Ascending Lists fromAscList :: Enum1 k => [DSum k v] -> DEnumMap k v fromAscList l = DEnumMap (IM.fromAscList (dSumToKV <$> l)) fromAscListWith :: (Enum1 k, TestEquality k) => (forall a. v a -> v a -> v a) -> [DSum k v] -> DEnumMap k v fromAscListWith f (l :: [DSum k v]) = DEnumMap (IM.fromAscListWithKey (\i (KV inf1 v1) (KV inf2 v2) -> typeCheck2 (Proxy @k) i inf1 inf2 $ KV inf1 (f v1 (coe1 v2))) (dSumToKV <$> l)) fromAscListWithKey :: (Enum1 k, TestEquality k) => (forall a. k a -> v a -> v a -> v a) -> [DSum k v] -> DEnumMap k v fromAscListWithKey f l = DEnumMap (IM.fromAscListWithKey (\i (KV inf1 v1) (KV inf2 v2) -> case toEnum1 i inf1 of Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 (f k1 (coe1 v1) (coe1 v2))) (dSumToKV <$> l)) fromDistinctAscList :: Enum1 k => [DSum k v] -> DEnumMap k v fromDistinctAscList l = DEnumMap (IM.fromDistinctAscList (dSumToKV <$> l)) -- * Insertion insert :: Enum1 k => k a -> v a -> DEnumMap k v -> DEnumMap k v insert k v (DEnumMap m) = let (i, inf) = fromEnum1 k in DEnumMap (IM.insert i (KV inf v) m) insertWith :: (Enum1 k, TestEquality k) => (v a -> v a -> v a) -> k a -> v a -> DEnumMap k v -> DEnumMap k v insertWith = insertWithKey . const insertWithKey :: (Enum1 k, TestEquality k) => (k a -> v a -> v a -> v a) -> k a -> v a -> DEnumMap k v -> DEnumMap k v insertWithKey f k v (DEnumMap m) = let (i, inf) = fromEnum1 k in DEnumMap (IM.insertWith (\_ (KV inf' v2) -> typeCheck1 k i inf' $ KV inf (f k v (coe1 v2))) i (KV inf v) m) insertLookupWithKey :: (Enum1 k, TestEquality k) => (k a -> v a -> v a -> v a) -> k a -> v a -> DEnumMap k v -> (Maybe (v a), DEnumMap k v) insertLookupWithKey f k v (DEnumMap m) = let (i, inf) = fromEnum1 k (!mx, !m') = IM.insertLookupWithKey (\_ _ (KV inf' v2) -> typeCheck1 k i inf' $ KV inf (f k v (coe1 v2))) i (KV inf v) m -- Note: type checking unnecessary here, because by the BangPatterns, -- evaluating mx evaluates dmap, and the IntMap is strict, so the lambda -- will have run and typechecked the old value already. -- Second note: the BangPatterns don't do anything operationally because -- with the current implementation of IM.insertLookupWithKey, the pair -- components are already strict. in ((\(KV _ v2) -> coe1 v2) <$> mx, DEnumMap m') -- * Deletion\/Update delete :: Enum1 k => k a -> DEnumMap k v -> DEnumMap k v delete k (DEnumMap m) = DEnumMap (IM.delete (fst (fromEnum1 k)) m) adjust :: (Enum1 k, TestEquality k) => (v a -> v a) -> k a -> DEnumMap k v -> DEnumMap k v adjust = adjustWithKey . const adjustWithKey :: (Enum1 k, TestEquality k) => (k a -> v a -> v a) -> k a -> DEnumMap k v -> DEnumMap k v adjustWithKey f k (DEnumMap m) = let (i, _) = fromEnum1 k in DEnumMap (IM.adjust (\(KV inf v) -> typeCheck1 k i inf $ KV inf (f k (coe1 v))) i m) update :: (Enum1 k, TestEquality k) => (v a -> Maybe (v a)) -> k a -> DEnumMap k v -> DEnumMap k v update = updateWithKey . const updateWithKey :: (Enum1 k, TestEquality k) => (k a -> v a -> Maybe (v a)) -> k a -> DEnumMap k v -> DEnumMap k v updateWithKey f k (DEnumMap m) = let (i, _) = fromEnum1 k in DEnumMap (IM.update (\(KV inf v) -> typeCheck1 k i inf $ KV inf <$> f k (coe1 v)) i m) updateLookupWithKey :: (Enum1 k, TestEquality k) => (k a -> v a -> Maybe (v a)) -> k a -> DEnumMap k v -> (Maybe (v a), DEnumMap k v) updateLookupWithKey f k (DEnumMap m) = let (i, _) = fromEnum1 k (!mx, !m') = IM.updateLookupWithKey (\_ (KV inf v) -> typeCheck1 k i inf $ KV inf <$> f k (coe1 v)) i m -- Note: type checking unnecessary here for the same reason as insertLookupWithKey in ((\(KV _ v2) -> coe1 v2) <$> mx, DEnumMap m') alter :: forall k v a. (Enum1 k, TestEquality k) => (Maybe (v a) -> Maybe (v a)) -> k a -> DEnumMap k v -> DEnumMap k v alter f k (DEnumMap m) = DEnumMap (IM.alter f' i m) where (i, inf) = fromEnum1 k f' :: Maybe (KV k v) -> Maybe (KV k v) f' Nothing = KV inf <$> f Nothing f' (Just (KV inf' v)) = typeCheck1 k i inf' $ KV inf <$> f (Just (coe1 v)) alterF :: forall k v a f. (Functor f, Enum1 k, TestEquality k) => (Maybe (v a) -> f (Maybe (v a))) -> k a -> DEnumMap k v -> f (DEnumMap k v) alterF f k (DEnumMap m) = DEnumMap <$> IM.alterF f' i m where (i, inf) = fromEnum1 k f' :: Maybe (KV k v) -> f (Maybe (KV k v)) f' Nothing = fmap (KV inf) <$> f Nothing f' (Just (KV inf' v)) = typeCheck1 k i inf' $ fmap (KV inf) <$> f (Just (coe1 v)) -- * Query -- ** Lookup lookup :: (Enum1 k, TestEquality k) => k a -> DEnumMap k v -> Maybe (v a) lookup k (DEnumMap m) = let (i, _) = fromEnum1 k in (\(KV inf v) -> typeCheck1 k i inf $ coe1 v) <$> IM.lookup i m (!?) :: (Enum1 k, TestEquality k) => DEnumMap k v -> k a -> Maybe (v a) (!?) m k = lookup k m findWithDefault :: (Enum1 k, TestEquality k) => v a -> k a -> DEnumMap k v -> v a findWithDefault def k (DEnumMap m) = let (i, _) = fromEnum1 k in case IM.findWithDefault (KV undefined def) i m of KV inf' v -> typeCheck1 k i inf' $ coe1 v find :: (Enum1 k, TestEquality k) => k a -> DEnumMap k v -> v a find k = findWithDefault (error ("Data.Dependent.EnumMap.!: key " ++ show (fst (fromEnum1 k)) ++ " is not an element of the map")) k (!) :: (Enum1 k, TestEquality k) => DEnumMap k v -> k a -> v a (!) m k = find k m member :: Enum1 k => k a -> DEnumMap k v -> Bool member k (DEnumMap m) = IM.member (fst (fromEnum1 k)) m notMember :: Enum1 k => k a -> DEnumMap k v -> Bool notMember k m = not $ member k m lookupLT, lookupGT, lookupLE, lookupGE :: (Enum1 k, TestEquality k) => k a -> DEnumMap k v -> Maybe (DSum k v) lookupLT k (DEnumMap m) = let (i, _) = fromEnum1 k in kVToDSum <$> IM.lookupLT i m lookupGT k (DEnumMap m) = let (i, _) = fromEnum1 k in kVToDSum <$> IM.lookupGT i m lookupLE k (DEnumMap m) = let (i, _) = fromEnum1 k in kVToDSum <$> IM.lookupLE i m lookupGE k (DEnumMap m) = let (i, _) = fromEnum1 k in kVToDSum <$> IM.lookupGE i m -- ** Size null :: DEnumMap k v -> Bool null (DEnumMap m) = IM.null m size :: DEnumMap k v -> Int size (DEnumMap m) = IM.size m -- * Combine -- ** Union union :: (Enum1 k, TestEquality k) => DEnumMap k v -> DEnumMap k v -> DEnumMap k v union = unionWith const -- if we're type checking, we need unionWith anyway, so might as well just delegate here already unionWith :: (Enum1 k, TestEquality k) => (forall a. v a -> v a -> v a) -> DEnumMap k v -> DEnumMap k v -> DEnumMap k v unionWith f (DEnumMap m1 :: DEnumMap k v) (DEnumMap m2) = DEnumMap (IM.unionWithKey f' m1 m2) where f' :: Int -> KV k v -> KV k v -> KV k v f' i (KV inf1 v1) (KV inf2 v2) = typeCheck2 (Proxy @k) i inf1 inf2 $ KV inf1 (f v1 (coe1 v2)) unionWithKey :: (Enum1 k, TestEquality k) => (forall a. k a -> v a -> v a -> v a) -> DEnumMap k v -> DEnumMap k v -> DEnumMap k v unionWithKey f (DEnumMap m1 :: DEnumMap k v) (DEnumMap m2) = DEnumMap (IM.unionWithKey f' m1 m2) where f' :: Int -> KV k v -> KV k v -> KV k v f' i (KV inf1 v1) (KV inf2 v2) = case toEnum1 i inf1 of Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 (f k1 (coe1 v1) (coe1 v2)) unions :: (Foldable f, Enum1 k, TestEquality k) => f (DEnumMap k v) -> DEnumMap k v unions = Foldable.foldl' union empty unionsWith :: (Foldable f, Enum1 k, TestEquality k) => (forall a. v a -> v a -> v a) -> f (DEnumMap k v) -> DEnumMap k v unionsWith f = Foldable.foldl' (unionWith f) empty -- ** Difference difference :: DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v1 difference (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.difference m1 m2) (\\) :: DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v1 m1 \\ m2 = difference m1 m2 differenceWith :: forall k v1 v2. (Enum1 k, TestEquality k) => (forall a. v1 a -> v2 a -> Maybe (v1 a)) -> DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v1 differenceWith f (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.differenceWithKey f' m1 m2) where f' :: Int -> KV k v1 -> KV k v2 -> Maybe (KV k v1) f' i (KV inf1 v1) (KV inf2 v2) = typeCheck2 (Proxy @k) i inf1 inf2 $ KV inf1 <$> f (coe1 v1) (coe1 v2) differenceWithKey :: forall k v1 v2. (Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> v2 a -> Maybe (v1 a)) -> DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v1 differenceWithKey f (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.differenceWithKey f' m1 m2) where f' :: Int -> KV k v1 -> KV k v2 -> Maybe (KV k v1) f' i (KV inf1 v1) (KV inf2 v2) = case toEnum1 i inf1 of Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 <$> f k1 (coe1 v1) (coe1 v2) -- | Because the underlying maps are keyed on integers, it is possible to -- subtract a map from another even if the key types differ. This function -- assumes that the @Int@ identifiers of @k1@ and @k2@ are compatible, i.e. -- that "2" in @k1@ somehow means the same thing as "2" in @k2@. -- -- Because the key types are different, there is no guarantee whatsoever (even -- not by 'Enum1' laws) that equal key IDs in @k1@ and @k2@ actually have the -- same type index (@a@). Hence, the combining function gets key-value pairs -- with potentially distinct type indices. differenceWithKey' :: forall k1 k2 v1 v2. (Enum1 k1, Enum1 k2) => (forall a b. k1 a -> v1 a -> k2 b -> v2 b -> Maybe (v1 a)) -> DEnumMap k1 v1 -> DEnumMap k2 v2 -> DEnumMap k1 v1 differenceWithKey' f (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.differenceWithKey f' m1 m2) where f' :: Int -> KV k1 v1 -> KV k2 v2 -> Maybe (KV k1 v1) f' i (KV inf1 v1) (KV inf2 v2) = case (toEnum1 i inf1, toEnum1 i inf2) of (Some k1, Some k2) -> KV inf1 <$> f k1 (coe1 v1) k2 (coe1 v2) -- ** Intersection intersection :: DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v1 intersection (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.intersection m1 m2) intersectionWith :: forall k v1 v2 v3. (Enum1 k, TestEquality k) => (forall a. v1 a -> v2 a -> v3 a) -> DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v3 intersectionWith f (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.intersectionWithKey f' m1 m2) where f' :: Int -> KV k v1 -> KV k v2 -> KV k v3 f' i (KV inf1 v1) (KV inf2 v2) = typeCheck2 (Proxy @k) i inf1 inf2 $ KV inf1 $ f (coe1 v1) (coe1 v2) intersectionWithKey :: forall k v1 v2 v3. (Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> v2 a -> v3 a) -> DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v3 intersectionWithKey f (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.intersectionWithKey f' m1 m2) where f' :: Int -> KV k v1 -> KV k v2 -> KV k v3 f' i (KV inf1 v1) (KV inf2 v2) = case toEnum1 i inf1 of Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 $ f k1 (coe1 v1) (coe1 v2) -- | Generalises 'intersectionWithKey' in the same way as 'differenceWithKey'' -- generalises 'differenceWithKey'. intersectionWithKey' :: forall k1 k2 v1 v2 v3. (Enum1 k1, Enum1 k2) => (forall a b. k1 a -> v1 a -> k2 b -> v2 b -> v3 a) -> DEnumMap k1 v1 -> DEnumMap k2 v2 -> DEnumMap k1 v3 intersectionWithKey' f (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.intersectionWithKey f' m1 m2) where f' :: Int -> KV k1 v1 -> KV k2 v2 -> KV k1 v3 f' i (KV inf1 v1) (KV inf2 v2) = case (toEnum1 i inf1, toEnum1 i inf2) of (Some k1, Some k2) -> KV inf1 $ f k1 (coe1 v1) k2 (coe1 v2) -- ** Disjoint disjoint :: DEnumMap k v1 -> DEnumMap k v2 -> Bool disjoint (DEnumMap m1) (DEnumMap m2) = IM.disjoint m1 m2 -- ** Compose compose :: (Enum1 k1, Enum1 k2, TestEquality k2) => DEnumMap k2 v -> DEnumMap k1 k2 -> DEnumMap k1 v compose m2v (DEnumMap m12) = DEnumMap (IM.mapMaybe (\(KV inf1 k2) -> KV inf1 <$> m2v !? k2) m12) -- ** Universal combining function mergeWithKey :: forall k v1 v2 v3. (Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> v2 a -> Maybe (v3 a)) -> (DEnumMap k v1 -> DEnumMap k v3) -> (DEnumMap k v2 -> DEnumMap k v3) -> DEnumMap k v1 -> DEnumMap k v2 -> DEnumMap k v3 mergeWithKey f g1 g2 (DEnumMap m1) (DEnumMap m2) = DEnumMap (IM.mergeWithKey f' (coerce g1) (coerce g2) m1 m2) where f' :: Int -> KV k v1 -> KV k v2 -> Maybe (KV k v3) f' i (KV inf1 v1) (KV inf2 v2) = case toEnum1 i inf1 of Some k1 -> typeCheck1 k1 i inf2 $ KV inf1 <$> f k1 (coe1 v1) (coe1 v2) -- * Traversal -- ** Map map :: (Enum1 k, TestEquality k) => (forall a. v1 a -> v2 a) -> DEnumMap k v1 -> DEnumMap k v2 map f = mapWithKey (const f) mapWithKey :: (Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> v2 a) -> DEnumMap k v1 -> DEnumMap k v2 mapWithKey f (DEnumMap m) = DEnumMap (IM.mapWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> KV inf $ f k (coe1 v)) m) traverseWithKey :: (Applicative f, Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> f (v2 a)) -> DEnumMap k v1 -> f (DEnumMap k v2) traverseWithKey f (DEnumMap m) = DEnumMap <$> IM.traverseWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> KV inf <$> f k (coe1 v)) m traverseMaybeWithKey :: (Applicative f, Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> f (Maybe (v2 a))) -> DEnumMap k v1 -> f (DEnumMap k v2) traverseMaybeWithKey f (DEnumMap m) = DEnumMap <$> IM.traverseMaybeWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> fmap (KV inf) <$> f k (coe1 v)) m mapAccum :: (Enum1 k, TestEquality k) => (forall a. acc -> v1 a -> (acc, v2 a)) -> acc -> DEnumMap k v1 -> (acc, DEnumMap k v2) mapAccum f = mapAccumWithKey (\x _ y -> f x y) mapAccumWithKey :: (Enum1 k, TestEquality k) => (forall a. acc -> k a -> v1 a -> (acc, v2 a)) -> acc -> DEnumMap k v1 -> (acc, DEnumMap k v2) mapAccumWithKey f acc0 (DEnumMap m) = second DEnumMap $ IM.mapAccumWithKey (\acc i (KV inf v) -> case toEnum1 i inf of Some k -> second (KV inf) $ f acc k (coe1 v)) acc0 m mapAccumRWithKey :: (Enum1 k, TestEquality k) => (forall a. acc -> k a -> v1 a -> (acc, v2 a)) -> acc -> DEnumMap k v1 -> (acc, DEnumMap k v2) mapAccumRWithKey f acc0 (DEnumMap m) = second DEnumMap $ IM.mapAccumRWithKey (\acc i (KV inf v) -> case toEnum1 i inf of Some k -> second (KV inf) $ f acc k (coe1 v)) acc0 m -- TODO: These are hard. Probably we can't avoid using a fold, analogously as in IntMap. -- mapKeys -- mapKeysWith -- mapKeysMonotonic -- * Folds foldr :: (forall a. v a -> acc -> acc) -> acc -> DEnumMap k v -> acc foldr f acc0 (DEnumMap m) = IM.foldr (\(KV _ v) acc -> f v acc) acc0 m foldl :: (forall a. acc -> v a -> acc) -> acc -> DEnumMap k v -> acc foldl f acc0 (DEnumMap m) = IM.foldl (\acc (KV _ v) -> f acc v) acc0 m foldrWithKey :: Enum1 k => (forall a. k a -> v a -> acc -> acc) -> acc -> DEnumMap k v -> acc foldrWithKey f acc0 (DEnumMap m) = IM.foldrWithKey (\i (KV inf v) acc -> case toEnum1 i inf of Some k -> f k (coe1 v) acc) acc0 m foldlWithKey :: Enum1 k => (forall a. acc -> k a -> v a -> acc) -> acc -> DEnumMap k v -> acc foldlWithKey f acc0 (DEnumMap m) = IM.foldlWithKey (\acc i (KV inf v) -> case toEnum1 i inf of Some k -> f acc k (coe1 v)) acc0 m foldMapWithKey :: (Monoid m, Enum1 k) => (forall a. k a -> v a -> m) -> DEnumMap k v -> m foldMapWithKey f (DEnumMap m) = IM.foldMapWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> f k (coe1 v)) m -- ** Strict folds foldr' :: (forall a. v a -> acc -> acc) -> acc -> DEnumMap k v -> acc foldr' f acc0 (DEnumMap m) = IM.foldr' (\(KV _ v) acc -> f v acc) acc0 m foldl' :: (forall a. acc -> v a -> acc) -> acc -> DEnumMap k v -> acc foldl' f acc0 (DEnumMap m) = IM.foldl' (\acc (KV _ v) -> f acc v) acc0 m foldrWithKey' :: Enum1 k => (forall a. k a -> v a -> acc -> acc) -> acc -> DEnumMap k v -> acc foldrWithKey' f acc0 (DEnumMap m) = IM.foldrWithKey' (\i (KV inf v) acc -> case toEnum1 i inf of Some k -> f k (coe1 v) acc) acc0 m foldlWithKey' :: Enum1 k => (forall a. acc -> k a -> v a -> acc) -> acc -> DEnumMap k v -> acc foldlWithKey' f acc0 (DEnumMap m) = IM.foldlWithKey' (\acc i (KV inf v) -> case toEnum1 i inf of Some k -> f acc k (coe1 v)) acc0 m -- * Conversion elems :: DEnumMap k v -> [Some v] elems (DEnumMap m) = (\(KV _ v) -> Some v) <$> IM.elems m keys :: Enum1 k => DEnumMap k v -> [Some k] keys (DEnumMap m) = (\(k, KV inf _) -> toEnum1 k inf) <$> IM.assocs m assocs :: Enum1 k => DEnumMap k v -> [DSum k v] assocs (DEnumMap m) = kVToDSum <$> IM.assocs m -- TODO: Wait for DEnumSet. -- keysSet -- ** Lists toList :: Enum1 k => DEnumMap k v -> [DSum k v] toList = toAscList -- ** Ordered lists toAscList :: Enum1 k => DEnumMap k v -> [DSum k v] toAscList (DEnumMap m) = kVToDSum <$> IM.toAscList m toDescList :: Enum1 k => DEnumMap k v -> [DSum k v] toDescList (DEnumMap m) = kVToDSum <$> IM.toDescList m -- * Filter filter :: (forall a. v a -> Bool) -> DEnumMap k v -> DEnumMap k v filter f (DEnumMap m) = DEnumMap (IM.filter (\(KV _ v) -> f v) m) filterWithKey :: Enum1 k => (forall a. k a -> v a -> Bool) -> DEnumMap k v -> DEnumMap k v filterWithKey f (DEnumMap m) = DEnumMap (IM.filterWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> f k (coe1 v)) m) -- TODO: Wait for DEnumSet. -- restrictKeys -- withoutKeys partition :: (forall a. v a -> Bool) -> DEnumMap k v -> (DEnumMap k v, DEnumMap k v) partition f (DEnumMap m) = bimap DEnumMap DEnumMap (IM.partition (\(KV _ v) -> f v) m) partitionWithKey :: Enum1 k => (forall a. k a -> v a -> Bool) -> DEnumMap k v -> (DEnumMap k v, DEnumMap k v) partitionWithKey f (DEnumMap m) = bimap DEnumMap DEnumMap (IM.partitionWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> f k (coe1 v)) m) -- | \(O(\min(n,W)^2)\). Because of the lack of a @takeWhileAntitoneWithValue@ -- operation on 'IntMap', this function performs additional lookups to -- reconstruct the full keys to pass to the predicate, resulting in a somewhat -- worse complexity than 'IM.takeWhileAntitone'. takeWhileAntitone :: Enum1 k => (forall a. k a -> Bool) -> DEnumMap k v -> DEnumMap k v takeWhileAntitone f (DEnumMap m) = DEnumMap (IM.takeWhileAntitone (\i -> case m IM.! i of KV inf _ -> case toEnum1 i inf of Some k -> f k) m) -- | \(O(\min(n,W)^2)\). See 'takeWhileAntitone'. dropWhileAntitone :: Enum1 k => (forall a. k a -> Bool) -> DEnumMap k v -> DEnumMap k v dropWhileAntitone f (DEnumMap m) = DEnumMap (IM.dropWhileAntitone (\i -> case m IM.! i of KV inf _ -> case toEnum1 i inf of Some k -> f k) m) -- | \(O(\min(n,W)^2)\). See 'takeWhileAntitone'. spanAntitone :: Enum1 k => (forall a. k a -> Bool) -> DEnumMap k v -> (DEnumMap k v, DEnumMap k v) spanAntitone f (DEnumMap m) = bimap DEnumMap DEnumMap (IM.spanAntitone (\i -> case m IM.! i of KV inf _ -> case toEnum1 i inf of Some k -> f k) m) mapMaybe :: (Enum1 k, TestEquality k) => (forall a. v1 a -> Maybe (v2 a)) -> DEnumMap k v1 -> DEnumMap k v2 mapMaybe f = mapMaybeWithKey (const f) mapMaybeWithKey :: (Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> Maybe (v2 a)) -> DEnumMap k v1 -> DEnumMap k v2 mapMaybeWithKey f (DEnumMap m) = DEnumMap (IM.mapMaybeWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> KV inf <$> f k (coe1 v)) m) mapEither :: (Enum1 k, TestEquality k) => (forall a. v1 a -> Either (v2 a) (v3 a)) -> DEnumMap k v1 -> (DEnumMap k v2, DEnumMap k v3) mapEither f = mapEitherWithKey (const f) mapEitherWithKey :: (Enum1 k, TestEquality k) => (forall a. k a -> v1 a -> Either (v2 a) (v3 a)) -> DEnumMap k v1 -> (DEnumMap k v2, DEnumMap k v3) mapEitherWithKey f (DEnumMap m) = bimap DEnumMap DEnumMap (IM.mapEitherWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> bimap (KV inf) (KV inf) $ f k (coe1 v)) m) split :: Enum1 k => k a -> DEnumMap k v -> (DEnumMap k v, DEnumMap k v) split k (DEnumMap m) = bimap DEnumMap DEnumMap (IM.split (fst $ fromEnum1 k) m) splitLookup :: Enum1 k => k a -> DEnumMap k v -> (DEnumMap k v, Maybe (v a), DEnumMap k v) splitLookup k (DEnumMap m) = let (m1, mkv, m2) = IM.splitLookup (fst $ fromEnum1 k) m -- Note: this coe1 is fine because of the invariant on DEnumMap. in (DEnumMap m1, (\(KV _ v) -> coe1 v) <$> mkv, DEnumMap m2) splitRoot :: DEnumMap k v -> [DEnumMap k v] splitRoot (DEnumMap m) = DEnumMap <$> IM.splitRoot m -- * Submap -- TODO: the submap operations can't check any laws because there is no IM.isSubmapOfByKey. isSubmapOf :: (forall a. Eq (v a)) => DEnumMap k v -> DEnumMap k v -> Bool isSubmapOf (DEnumMap m1) (DEnumMap m2) = IM.isSubmapOfBy (\(KV _ v1) (KV _ v2) -> v1 == coe1 v2) m1 m2 isSubmapOfBy :: (forall a. v1 a -> v2 a -> Bool) -> DEnumMap k v1 -> DEnumMap k v2 -> Bool isSubmapOfBy f (DEnumMap m1) (DEnumMap m2) = IM.isSubmapOfBy (\(KV _ v1) (KV _ v2) -> f v1 (coe1 v2)) m1 m2 isProperSubmapOf :: (forall a. Eq (v a)) => DEnumMap k v -> DEnumMap k v -> Bool isProperSubmapOf (DEnumMap m1) (DEnumMap m2) = IM.isProperSubmapOfBy (\(KV _ v1) (KV _ v2) -> v1 == coe1 v2) m1 m2 isProperSubmapOfBy :: (forall a. v1 a -> v2 a -> Bool) -> DEnumMap k v1 -> DEnumMap k v2 -> Bool isProperSubmapOfBy f (DEnumMap m1) (DEnumMap m2) = IM.isProperSubmapOfBy (\(KV _ v1) (KV _ v2) -> f v1 (coe1 v2)) m1 m2 -- * Min\/Max lookupMin :: Enum1 k => DEnumMap k v -> Maybe (DSum k v) lookupMin (DEnumMap m) = kVToDSum <$> IM.lookupMin m lookupMax :: Enum1 k => DEnumMap k v -> Maybe (DSum k v) lookupMax (DEnumMap m) = kVToDSum <$> IM.lookupMax m findMin :: Enum1 k => DEnumMap k v -> DSum k v findMin (DEnumMap m) = kVToDSum $ IM.findMin m findMax :: Enum1 k => DEnumMap k v -> DSum k v findMax (DEnumMap m) = kVToDSum $ IM.findMax m deleteMin :: DEnumMap k v -> DEnumMap k v deleteMin (DEnumMap m) = DEnumMap $ IM.deleteMin m deleteMax :: DEnumMap k v -> DEnumMap k v deleteMax (DEnumMap m) = DEnumMap $ IM.deleteMax m deleteFindMin :: Enum1 k => DEnumMap k v -> (DSum k v, DEnumMap k v) deleteFindMin (DEnumMap m) = bimap kVToDSum DEnumMap $ IM.deleteFindMin m deleteFindMax :: Enum1 k => DEnumMap k v -> (DSum k v, DEnumMap k v) deleteFindMax (DEnumMap m) = bimap kVToDSum DEnumMap $ IM.deleteFindMax m updateMin :: Enum1 k => (forall a. v a -> Maybe (v a)) -> DEnumMap k v -> DEnumMap k v updateMin f = updateMinWithKey (const f) updateMinWithKey :: Enum1 k => (forall a. k a -> v a -> Maybe (v a)) -> DEnumMap k v -> DEnumMap k v updateMinWithKey f (DEnumMap m) = DEnumMap (IM.updateMinWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> KV inf <$> f k (coe1 v)) m) updateMax :: Enum1 k => (forall a. v a -> Maybe (v a)) -> DEnumMap k v -> DEnumMap k v updateMax f = updateMaxWithKey (const f) updateMaxWithKey :: Enum1 k => (forall a. k a -> v a -> Maybe (v a)) -> DEnumMap k v -> DEnumMap k v updateMaxWithKey f (DEnumMap m) = DEnumMap (IM.updateMaxWithKey (\i (KV inf v) -> case toEnum1 i inf of Some k -> KV inf <$> f k (coe1 v)) m) minView :: DEnumMap k v -> Maybe (v a, DEnumMap k v) minView (DEnumMap m) = bimap (\(KV _ v) -> coe1 v) DEnumMap <$> IM.minView m maxView :: DEnumMap k v -> Maybe (v a, DEnumMap k v) maxView (DEnumMap m) = bimap (\(KV _ v) -> coe1 v) DEnumMap <$> IM.maxView m minViewWithKey :: Enum1 k => DEnumMap k v -> Maybe (DSum k v, DEnumMap k v) minViewWithKey (DEnumMap m) = bimap kVToDSum DEnumMap <$> IM.minViewWithKey m maxViewWithKey :: Enum1 k => DEnumMap k v -> Maybe (DSum k v, DEnumMap k v) maxViewWithKey (DEnumMap m) = bimap kVToDSum DEnumMap <$> IM.maxViewWithKey m -- * Helpers coe1 :: v a -> v b coe1 = unsafeCoerce typeCheck1 :: (Enum1 k, TestEquality k) => k a -> Int -> Enum1Info k -> r -> r typeCheck1 k1 i inf2 x = assert (case toEnum1 i inf2 of { Some k2 -> case testEquality k1 k2 of Just Refl -> True Nothing -> False }) x typeCheck2 :: forall k proxy r. (Enum1 k, TestEquality k) => proxy k -> Int -> Enum1Info k -> Enum1Info k -> r -> r typeCheck2 _ i inf1 inf2 x = assert (case toEnum1 @k i inf1 of { Some k1 -> case toEnum1 i inf2 of { Some k2 -> case testEquality k1 k2 of Just Refl -> True Nothing -> False }}) x