module Intermediate where import Data.Bits import Data.List import AST import Defs import Pretty data BB = BB Id [IRIns] IRTerm deriving (Show, Eq) data Ref = Temp Size Int | Argument Size Name | Global Size Name | Constant Size Value deriving (Show, Eq, Ord) data IRProgram = IRProgram [DVar] [IRFunc] deriving (Show, Eq) data IRFunc = IRFunc (Maybe Type) Name [(Type, Name)] [BB] Id deriving (Show, Eq) data IRIns = IMov Ref Ref | IStore Ref Ref | ILoad Ref Ref | IAri ArithType Ref Ref Ref -- destination, operand 1, operand 2 | ICall Name [Ref] | ICallr Ref Name [Ref] | IResize Ref Ref | INop deriving (Show, Eq) data IRTerm = IJcc CmpType Ref Ref Id Id -- Id Id == if-yes if-no | IJmp Id | IRet | IRetr Ref | ITermNone deriving (Show, Eq) data ArithType = AAdd | ASub | AMul | ADiv | AMod | AAnd | AOr | AXor | AEq | ANeq | AGt | ALt | AGeq | ALeq deriving (Show, Eq) data CmpType = CEq | CNeq | CGt | CLt | CGeq | CLeq deriving (Show, Eq) instance Pretty BB where prettyI i (BB bid inss term) = "{{{(" ++ show bid ++ ")\n" ++ indent (i+1) ++ intercalate ("\n" ++ indent (i+1)) (map pretty inss) ++ (if null inss then "" else "\n" ++ indent (i+1)) ++ pretty term ++ "\n" ++ indent i ++ "}}}" where indent n = replicate (2*n) ' ' instance Pretty Ref where prettyI _ (Temp sz k) = "t" ++ show k ++ pretty_sizeSuffix sz prettyI _ (Argument sz n) = "a" ++ n ++ pretty_sizeSuffix sz prettyI _ (Global sz n) = "g" ++ n ++ pretty_sizeSuffix sz prettyI _ (Constant sz n) = show n ++ pretty_sizeSuffix sz pretty_sizeSuffix :: Size -> String pretty_sizeSuffix 1 = "B" pretty_sizeSuffix 2 = "W" pretty_sizeSuffix 4 = "D" pretty_sizeSuffix 8 = "Q" pretty_sizeSuffix sz = "<" ++ show sz ++ ">" instance Pretty IRProgram where prettyI i (IRProgram vars funcs) = intercalate ("\n" ++ indent i) (map (prettyI i) vars) ++ "\n" ++ indent i ++ intercalate ("\n" ++ indent i) (map (prettyI (i+1)) funcs) ++ "\n" where indent n = replicate (2*n) ' ' instance Pretty IRFunc where prettyI i (IRFunc mt n al bbs sid) = "irfunc" ++ maybe "" ((' ' :) . prettyI i) mt ++ " " ++ n ++ "(" ++ intercalate "," (map (\(at,an) -> prettyI i at ++ " " ++ an) al) ++ ")\n" ++ indent i ++ intercalate ("\n" ++ indent i) (map (prettyI i) sorted) where indent n' = replicate (2*n') ' ' sorted = uncurry (++) $ partition (\(BB bid _ _) -> bid == sid) bbs instance Pretty IRIns where prettyI _ (IMov d s) = "mov " ++ pretty d ++ " <- " ++ pretty s prettyI _ (IStore d s) = "store *" ++ pretty d ++ " <- " ++ pretty s prettyI _ (ILoad d s) = "load " ++ pretty d ++ " <- *" ++ pretty s prettyI _ (IAri at d s1 s2) = pretty at ++ " " ++ pretty d ++ " <- " ++ pretty s1 ++ ", " ++ pretty s2 prettyI _ (ICall n al) = "call " ++ n ++ " (" ++ intercalate ", " (map pretty al) ++ ")" prettyI _ (ICallr d n al) = "call " ++ pretty d ++ " <- " ++ n ++ " (" ++ intercalate ", " (map pretty al) ++ ")" prettyI _ (IResize d s) = "resize " ++ pretty d ++ " <- " ++ pretty s prettyI _ INop = "nop" instance Pretty IRTerm where prettyI _ (IJcc ct s1 s2 did1 did2) = pretty ct ++ " " ++ pretty s1 ++ ", " ++ pretty s2 ++ " -> " ++ show did1 ++ " | " ++ show did2 prettyI _ (IJmp did) = "jmp " ++ show did prettyI _ IRet = "ret" prettyI _ (IRetr ref) = "retr " ++ pretty ref prettyI _ ITermNone = "?NONE?" instance Pretty ArithType where prettyI _ AAdd = "add" prettyI _ ASub = "sub" prettyI _ AMul = "mul" prettyI _ ADiv = "div" prettyI _ AMod = "mod" prettyI _ AAnd = "and" prettyI _ AOr = "or" prettyI _ AXor = "xor" prettyI _ AEq = "eq" prettyI _ ANeq = "neq" prettyI _ AGt = "gt" prettyI _ ALt = "lt" prettyI _ AGeq = "geq" prettyI _ ALeq = "leq" instance Pretty CmpType where prettyI _ CEq = "jeq" prettyI _ CNeq = "jne" prettyI _ CGt = "jg" prettyI _ CLt = "jl" prettyI _ CGeq = "jge" prettyI _ CLeq = "jle" blockIdOf :: BB -> Id blockIdOf (BB bid _ _) = bid refSize :: Ref -> Size refSize (Temp sz _) = sz refSize (Argument sz _) = sz refSize (Global sz _) = sz refSize (Constant sz _) = sz isConstant :: Ref -> Bool isConstant (Constant _ _) = True isConstant _ = False evaluateArith :: ArithType -> Value -> Value -> Value evaluateArith at a b = case at of AAdd -> a + b ASub -> a - b AMul -> a * b ADiv -> if b == 0 then error "Division by zero detected" else a `div` b AMod -> if b == 0 then error "Modulo by zero detected" else a `mod` b AAnd -> a .&. b AOr -> a .|. b AXor -> a `xor` b AEq -> if a == b then 1 else 0 ANeq -> if a /= b then 1 else 0 AGt -> if a > b then 1 else 0 ALt -> if a < b then 1 else 0 AGeq -> if a >= b then 1 else 0 ALeq -> if a <= b then 1 else 0 evaluateCmp :: CmpType -> Value -> Value -> Bool evaluateCmp ct a b = case ct of CEq -> a == b CNeq -> a /= b CGt -> a > b CLt -> a < b CGeq -> a >= b CLeq -> a <= b isCommutative :: ArithType -> Bool isCommutative AAdd = True isCommutative AMul = True isCommutative AAnd = True isCommutative AOr = True isCommutative AXor = True isCommutative AEq = True isCommutative ANeq = True isCommutative ASub = False isCommutative ADiv = False isCommutative AMod = False isCommutative AGt = False isCommutative ALt = False isCommutative AGeq = False isCommutative ALeq = False isIMov :: IRIns -> Bool isIMov (IMov _ _) = True isIMov _ = False isILoad :: IRIns -> Bool isILoad (ILoad _ _) = True isILoad _ = False isIAri :: IRIns -> Bool isIAri (IAri _ _ _ _) = True isIAri _ = False isIResize :: IRIns -> Bool isIResize (IResize _ _) = True isIResize _ = False jumpTargets :: IRTerm -> [Id] jumpTargets (IJcc _ _ _ i2 i1) = [i1, i2] jumpTargets (IJmp i) = [i] jumpTargets _ = []