summaryrefslogtreecommitdiff
path: root/ast.hs
blob: 4862a9297dae470b808770da9c708a0812e97201 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
{-# LANGUAGE TupleSections, BangPatterns, DeriveDataTypeable #-}

module AST where

import qualified Data.Map.Strict as Map
import Data.List
import Data.Data
import Data.Typeable
import Control.DeepSeq

import PrettyPrint
import Debug


data AST = Number Double
         | Variable String
         | Sum [AST]
         | Product [AST]
         | Negative AST
         | Reciprocal AST
         | Apply String [AST]
         -- The following only in patterns:
         | Capture String
         | CaptureTerm String
         | CaptureConstr String AST  -- AST argument only for constructor; only WHNF
         deriving (Eq,Typeable,Data)

instance PrettyPrint AST where
    prettyPrint (Number n) = show n

    prettyPrint (Variable n) = n

    prettyPrint (Sum []) = "(+)"
    prettyPrint (Sum args) = intercalate " + " $ map prettyPrint args

    prettyPrint (Product []) = "(*)"
    prettyPrint (Product args) = intercalate "*" $ map gopp args
        where gopp s@(Sum _) = '(' : prettyPrint s ++ ")"
              gopp n = prettyPrint n

    prettyPrint (Negative n) = '-' : case n of
        s@(Sum _) -> '(' : prettyPrint s ++ ")"
        n -> prettyPrint n

    prettyPrint (Reciprocal n) = "1/" ++ case n of
        s@(Sum _) -> '(' : prettyPrint s ++ ")"
        s@(Product _) -> '(' : prettyPrint s ++ ")"
        s@(Reciprocal _) -> '(' : prettyPrint s ++ ")"
        n -> prettyPrint n

    prettyPrint (Apply name args) = name ++ "(" ++ intercalate "," (map prettyPrint args) ++ ")"

    prettyPrint (Capture name) = '[' : name ++ "]"

    prettyPrint (CaptureTerm name) = '[' : '[' : name ++ "]]"

    prettyPrint (CaptureConstr name c) = '[' : name ++ ":" ++ showConstr (toConstr c) ++ "]"

instance Show AST where
    show = prettyPrint

instance NFData AST where
    rnf (Number !_) = ()
    rnf (Variable !_) = ()
    rnf (Sum l) = seq (length $ map rnf l) ()
    rnf (Product l) = seq (length $ map rnf l) ()
    rnf (Negative n) = rnf n
    rnf (Reciprocal n) = rnf n
    rnf (Apply !_ l) = seq (length $ map rnf l) ()
    rnf (Capture !_) = ()
    rnf (CaptureTerm !_) = ()
    rnf (CaptureConstr !_ !_) = ()  -- explicitly not deepseq'ing the ast node

instance Ord AST where
    compare (Number a) (Number b) = compare a b
    compare (Variable a) (Variable b) = compare a b
    compare (Sum a) (Sum b) = compare a b
    compare (Product a) (Product b) = compare a b
    compare (Negative a) (Negative b) = compare a b
    compare (Reciprocal a) (Reciprocal b) = compare a b
    compare (Apply n1 a) (Apply n2 b) = let r = compare n1 n2 in if r == EQ then compare a b else r
    compare (Capture a) (Capture b) = compare a b
    compare (CaptureTerm a) (CaptureTerm b) = compare a b
    compare (CaptureConstr n1 node1) (CaptureConstr n2 node2) = let r = compare n1 n2 in if r == EQ then compare node1 node2 else r

    compare (Capture _) _ = LT  -- Unbounded captures first for efficient
    compare _ (Capture _) = GT  -- extraction with span isCapture
    compare (Number _) _ = LT
    compare _ (Number _) = GT
    compare (Variable _) _ = LT
    compare _ (Variable _) = GT
    compare (Sum _) _ = LT
    compare _ (Sum _) = GT
    compare (Product _) _ = LT
    compare _ (Product _) = GT
    compare (Negative _) _ = LT
    compare _ (Negative _) = GT
    compare (Reciprocal _) _ = LT
    compare _ (Reciprocal _) = GT
    compare (Apply _ _) _ = LT
    compare _ (Apply _ _) = GT
    compare (CaptureTerm _) _ = LT
    compare _ (CaptureTerm _) = GT
    -- compare (CaptureConstr _ _) _ = LT
    -- compare _ (CaptureConstr _ _) = GT


astIsNumber :: AST -> Bool
astIsNumber (Number _) = True
astIsNumber _ = False

astIsCapture :: AST -> Bool
astIsCapture (Capture _) = True
astIsCapture _ = False


astFromNumber :: AST -> Double
astFromNumber (Number n) = n


astMatchSimple :: AST -> AST -> Bool
astMatchSimple pat sub = let res = {-(\x -> trace (" !! RESULT: " ++ show x ++ " !! ") x) $-} astMatch pat sub
    in if null res
        then False
        else any Map.null res


astMatch :: AST                   -- pattern
         -> AST                   -- subject
         -> [Map.Map String AST]  -- list of possible capture assignments
astMatch pat sub = assertS "No captures in astMatch subject" (not $ hasCaptures sub) $
    case pat of
        Number x -> case sub of
            Number y | x == y -> [Map.empty]
            _ -> []

        Variable name -> case sub of
            Variable name2 | name == name2 -> [Map.empty]
            _ -> []

        Sum [term] -> case sub of
            Sum l2 -> matchList Sum [term] l2
            s -> astMatch term s

        Sum l -> case sub of
            Sum l2 -> matchList Sum l l2
            _ -> []

        Product [term] -> case sub of
            Product l2 -> matchList Product [term] l2
            s -> astMatch term s

        Product l -> case sub of
            Product l2 -> matchList Product l l2
            _ -> []

        Negative n -> case sub of
            Negative n2 -> astMatch n n2
            _ -> []

        Reciprocal n -> case sub of
            Reciprocal n2 -> astMatch n n2
            _ -> []

        Apply name l -> case sub of
            Apply name2 l2 | name == name2 -> matchOrderedList l l2
            _ -> []

        Capture name -> [Map.singleton name sub]

        CaptureTerm name -> [Map.singleton name sub]

        CaptureConstr name constr ->
            if toConstr sub == toConstr constr
                then [Map.singleton name sub]
                else []


matchList :: ([AST] -> AST)        -- AST constructor for this list (for insertion in capture)
          -> [AST]                 -- unordered patterns
          -> [AST]                 -- unordered subjects
          -> [Map.Map String AST]  -- list of possible capture assignments
matchList constr pats subs =
    let ordered = sort pats
        (captures,nocaps) = span astIsCapture ordered
    in assertS "At most one capture in sum/product" (length captures <= 1) $ case captures of
        [] -> matchListDBG Nothing nocaps subs
        [c] -> matchListDBG (Just c) nocaps subs
    where matchList' :: Maybe AST -> [AST] -> [AST] -> [Map.Map String AST]
          matchList' Nothing [] [] = [Map.empty]
          matchList' Nothing [] _ = []
          matchList' (Just (Capture name)) [] subs = [Map.singleton name $ constr subs]
          matchList' (Just node) [] subs = astMatch node (constr subs)
          matchList' mcap (pat:pats) subs =
              let firstmatches = concat $ mapDel (\s other -> map (,other) $ astMatch pat s) subs
                  processed = concat
                              $ map (\(ass,rest) ->
                                         let replpats = map (replaceCaptures ass) pats
                                             replmcap = fmap (replaceCaptures ass) mcap
                                         in map (Map.union ass) $ matchListDBG replmcap replpats rest)
                                    firstmatches
              in {-trace ("firstmatches = "++show firstmatches) $ trace ("processed = "++show processed) $-} processed

          matchListDBG :: Maybe AST -> [AST] -> [AST] -> [Map.Map String AST]
          matchListDBG mcap pats subs = {-force $ trace ("\n<< "++show (mcap,pats,subs)++" >>\n")
                                        $-} matchList' mcap pats subs


matchOrderedList :: [AST]                 -- ordered patterns
                 -> [AST]                 -- ordered subjects
                 -> [Map.Map String AST]  -- list of possible capture assignments
matchOrderedList [] [] = [Map.empty]
matchOrderedList [] _ = []
matchOrderedList _ [] = []
matchOrderedList (pat:pats) (sub:subs) =
    let opts = astMatch pat sub
        newpatsopts = [(map (replaceCaptures opt) pats,opt) | opt <- opts]
            -- ^ list of possible refined versions of the (rest of the) pattern list
    in {-trace (show (pat:pats) ++ " -- " ++ show (sub:subs)) $ traceShow opts $-}
       concat $ map (\(newpats,opt) -> map (Map.union opt)
              $ matchOrderedList newpats subs) newpatsopts


replaceCaptures :: Map.Map String AST -> AST -> AST
replaceCaptures mp n = case n of
    Number _ -> n
    Variable _ -> n
    Sum l -> Sum $ map (replaceCaptures mp) l
    Product l -> Product $ map (replaceCaptures mp) l
    Negative n2 -> Negative $ replaceCaptures mp n2
    Reciprocal n2 -> Reciprocal $ replaceCaptures mp n2
    Apply name n2 -> Apply name $ map (replaceCaptures mp) n2
    Capture name -> maybe n id $ Map.lookup name mp
    CaptureTerm name -> maybe n id $ Map.lookup name mp
    CaptureConstr name c -> maybe n id $ Map.lookup name mp


hasCaptures :: AST -> Bool
hasCaptures n = case n of
    Number _ -> False
    Variable _ -> False
    Sum l -> any id [hasCaptures m | m <- l]
    Product l -> any id [hasCaptures m | m <- l]
    Negative m -> hasCaptures m
    Reciprocal m -> hasCaptures m
    Apply _ l -> any id [hasCaptures m | m <- l]
    Capture _ -> True
    CaptureTerm _ -> True
    CaptureConstr _ _ -> True


assert :: Bool -> a -> a
assert = assertS "(no reason)"

assertS :: String -> Bool -> a -> a
assertS _ True = id
assertS s False = error $ "Condition not satisfied in assert: " ++ s


mapDel :: (a -> [a] -> b) -> [a] -> [b]
mapDel _ [] = []
mapDel f l =
    let splits = zip l
                 $ map (\(a,b:bs) -> a++bs)
                 $ iterate (\(a,b:bs) -> (a++[b],bs)) ([],l)
    in map (uncurry f) splits


-- some testing things
--pat = Sum [Number 1,Capture "x",Negative $ Capture "x"]
--sub = Sum [Number 4,Variable "a",Number 1,Negative $ Sum [Variable "a",Number 4]]

--pat = Sum [Negative $ Capture "x"]
--sub = Sum [Negative $ Sum [Variable "a",Number 4]]

--pat = Sum [Capture "x",Negative (Capture "x"),CaptureTerm "y",CaptureTerm "z"]
--sub = let x = Reciprocal (Number 7) in Sum [x,Negative x,Number 7,Number 8]

--pat = Sum [CaptureTerm "x",CaptureTerm "y",Capture "rest",Negative $ Capture "rest"]
--sub = Sum [Number 1,Number 2,Negative $ Number 1,Variable "kaas",Negative $ Sum [Negative $ Number 1,Variable "kaas"]]

pat = Sum [Product [Capture "x"],Product [Capture "x"]]
sub = Sum [Product [Number 1],Product [Number 1]]

main = do
    let res = astMatch pat sub
    deepseq res $ putStrLn $ "\x1B[32m"++show res++"\x1B[0m"