{-# LANGUAGE NumericUnderscores #-} {-# LANGUAGE TypeApplications #-} module Main where import qualified Numeric.LinearAlgebra as LA import Test.Tasty.Bench import Data.Array.Nested import Data.Array.Nested.Internal.Mixed (mliftPrim, mliftPrim2) import Data.Array.Nested.Internal.Ranked (arithPromoteRanked, arithPromoteRanked2) main :: IO () main = defaultMain [bgroup "Num" [bench "sum(+) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (arithPromoteRanked2 (mliftPrim2 (+)) a b))) (riota @Double n, riota n) ,bench "sum(*) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (arithPromoteRanked2 (mliftPrim2 (*)) a b))) (riota @Double n, riota n) ,bench "sum(/) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (arithPromoteRanked2 (mliftPrim2 (/)) a b))) (riota @Double n, riota n) ,bench "sum(**) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (arithPromoteRanked2 (mliftPrim2 (**)) a b))) (riota @Double n, riota n) ,bench "sum(sin) Double [1e6]" $ let n = 1_000_000 in nf (\a -> runScalar (rsumOuter1 (arithPromoteRanked (mliftPrim sin) a))) (riota @Double n) ,bench "sum Double [1e6]" $ let n = 1_000_000 in nf (\a -> runScalar (rsumOuter1 a)) (riota @Double n) ] ,bgroup "NumElt" [bench "sum(+) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (a + b))) (riota @Double n, riota n) ,bench "sum(*) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (a * b))) (riota @Double n, riota n) ,bench "sum(/) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (a / b))) (riota @Double n, riota n) ,bench "sum(**) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> runScalar (rsumOuter1 (a ** b))) (riota @Double n, riota n) ,bench "sum(sin) Double [1e6]" $ let n = 1_000_000 in nf (\a -> runScalar (rsumOuter1 (sin a))) (riota @Double n) ,bench "sum Double [1e6]" $ let n = 1_000_000 in nf (\a -> runScalar (rsumOuter1 a)) (riota @Double n) ] ,bgroup "hmatrix" [bench "sum(+) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> LA.sumElements (a + b)) (LA.linspace @Double n (0.0, fromIntegral (n - 1)) ,LA.linspace @Double n (0.0, fromIntegral (n - 1))) ,bench "sum(*) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> LA.sumElements (a * b)) (LA.linspace @Double n (0.0, fromIntegral (n - 1)) ,LA.linspace @Double n (0.0, fromIntegral (n - 1))) ,bench "sum(/) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> LA.sumElements (a / b)) (LA.linspace @Double n (0.0, fromIntegral (n - 1)) ,LA.linspace @Double n (0.0, fromIntegral (n - 1))) ,bench "sum(**) Double [1e6]" $ let n = 1_000_000 in nf (\(a, b) -> LA.sumElements (a ** b)) (LA.linspace @Double n (0.0, fromIntegral (n - 1)) ,LA.linspace @Double n (0.0, fromIntegral (n - 1))) ,bench "sum(sin) Double [1e6]" $ let n = 1_000_000 in nf (\a -> LA.sumElements (sin a)) (LA.linspace @Double n (0.0, fromIntegral (n - 1))) ,bench "sum Double [1e6]" $ let n = 1_000_000 in nf (\a -> LA.sumElements a) (LA.linspace @Double n (0.0, fromIntegral (n - 1))) ] ]