{-# LANGUAGE DataKinds #-} {-# LANGUAGE ImportQualifiedPost #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} module Data.Array.Mixed.Internal.Arith where import Control.Monad (forM, guard) import Data.Array.Internal qualified as OI import Data.Array.Internal.RankedG qualified as RG import Data.Array.Internal.RankedS qualified as RS import Data.Bits import Data.Int import Data.List (sort) import Data.Vector.Storable qualified as VS import Data.Vector.Storable.Mutable qualified as VSM import Foreign.C.Types import Foreign.Ptr import Foreign.Storable (Storable) import GHC.TypeLits import GHC.TypeNats qualified as TypeNats import Language.Haskell.TH import System.IO.Unsafe import Data.Array.Mixed.Internal.Arith.Foreign import Data.Array.Mixed.Internal.Arith.Lists liftVEltwise1 :: Storable a => SNat n -> (VS.Vector a -> VS.Vector a) -> RS.Array n a -> RS.Array n a liftVEltwise1 SNat f arr@(RS.A (RG.A sh (OI.T strides offset vec))) | Just prefixSz <- stridesDense sh strides = let vec' = f (VS.slice offset prefixSz vec) in RS.A (RG.A sh (OI.T strides 0 vec')) | otherwise = RS.fromVector sh (f (RS.toVector arr)) -- TODO: test all the cases of this thing with various input strides liftVEltwise2 :: Storable a => SNat n -> (Either a (VS.Vector a) -> Either a (VS.Vector a) -> VS.Vector a) -> RS.Array n a -> RS.Array n a -> RS.Array n a liftVEltwise2 SNat f arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1))) arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2))) | sh1 /= sh2 = error $ "liftVEltwise2: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2 | product sh1 == 0 = arr1 -- if the arrays are empty, just return one of the empty inputs | otherwise = case (stridesDense sh1 strides1, stridesDense sh2 strides2) of (Just 1, Just 1) -> -- both are a (potentially replicated) scalar; just apply f to the scalars let vec' = f (Left (vec1 VS.! offset1)) (Left (vec2 VS.! offset2)) in RS.A (RG.A sh1 (OI.T strides1 0 vec')) (Just 1, Just n) -> -- scalar * dense RS.A (RG.A sh1 (OI.T strides2 0 (f (Left (vec1 VS.! offset1)) (Right (VS.slice offset2 n vec2))))) (Just n, Just 1) -> -- dense * scalar RS.A (RG.A sh1 (OI.T strides1 0 (f (Right (VS.slice offset1 n vec1)) (Left (vec2 VS.! offset2))))) (Just n, Just m) | n == m -- not sure if this check is necessary , strides1 == strides2 -> -- dense * dense but the strides match RS.A (RG.A sh1 (OI.T strides1 0 (f (Right (VS.slice offset1 n vec1)) (Right (VS.slice offset2 n vec2))))) (_, _) -> -- fallback case RS.fromVector sh1 (f (Right (RS.toVector arr1)) (Right (RS.toVector arr2))) -- | Given the shape vector and the stride vector, return whether this vector -- of strides uses a dense prefix of its backing array. If so, the number of -- elements in this prefix is returned. -- This excludes any offset. stridesDense :: [Int] -> [Int] -> Maybe Int stridesDense sh _ | any (<= 0) sh = Just 0 stridesDense sh str = -- sort dimensions on their stride, ascending, dropping any zero strides case dropWhile ((== 0) . fst) (sort (zip str sh)) of [] -> Just 1 (1, n) : (unzip -> (str', sh')) -> checkCover n sh' str' _ -> Nothing -- if the smallest stride is not 1, it will never be dense where -- Given size of currently densely covered region at beginning of the -- array, the remaining shape vector and the corresponding remaining stride -- vector, return whether this all together covers a dense prefix of the -- array. If it does, return the number of elements in this prefix. checkCover :: Int -> [Int] -> [Int] -> Maybe Int checkCover block [] [] = Just block checkCover block (n : sh') (s : str') = guard (s <= block) >> checkCover (max block (n * s)) sh' str' checkCover _ _ _ = error "Orthotope array's shape vector and stride vector have different lengths" {-# NOINLINE vectorOp1 #-} vectorOp1 :: forall a b. Storable a => (Ptr a -> Ptr b) -> (Int64 -> Ptr b -> Ptr b -> IO ()) -> VS.Vector a -> VS.Vector a vectorOp1 ptrconv f v = unsafePerformIO $ do outv <- VSM.unsafeNew (VS.length v) VSM.unsafeWith outv $ \poutv -> VS.unsafeWith v $ \pv -> f (fromIntegral (VS.length v)) (ptrconv poutv) (ptrconv pv) VS.unsafeFreeze outv -- | If two vectors are given, assumes that they have the same length. {-# NOINLINE vectorOp2 #-} vectorOp2 :: forall a b. Storable a => (a -> b) -> (Ptr a -> Ptr b) -> (a -> a -> a) -> (Int64 -> Ptr b -> b -> Ptr b -> IO ()) -- sv -> (Int64 -> Ptr b -> Ptr b -> b -> IO ()) -- vs -> (Int64 -> Ptr b -> Ptr b -> Ptr b -> IO ()) -- vv -> Either a (VS.Vector a) -> Either a (VS.Vector a) -> VS.Vector a vectorOp2 valconv ptrconv fss fsv fvs fvv = \cases (Left x) (Left y) -> VS.singleton (fss x y) (Left x) (Right vy) -> unsafePerformIO $ do outv <- VSM.unsafeNew (VS.length vy) VSM.unsafeWith outv $ \poutv -> VS.unsafeWith vy $ \pvy -> fsv (fromIntegral (VS.length vy)) (ptrconv poutv) (valconv x) (ptrconv pvy) VS.unsafeFreeze outv (Right vx) (Left y) -> unsafePerformIO $ do outv <- VSM.unsafeNew (VS.length vx) VSM.unsafeWith outv $ \poutv -> VS.unsafeWith vx $ \pvx -> fvs (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (valconv y) VS.unsafeFreeze outv (Right vx) (Right vy) | VS.length vx == VS.length vy -> unsafePerformIO $ do outv <- VSM.unsafeNew (VS.length vx) VSM.unsafeWith outv $ \poutv -> VS.unsafeWith vx $ \pvx -> VS.unsafeWith vy $ \pvy -> fvv (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (ptrconv pvy) VS.unsafeFreeze outv | otherwise -> error $ "vectorOp: unequal lengths: " ++ show (VS.length vx) ++ " /= " ++ show (VS.length vy) -- | Reduce along the inner dimension {-# NOINLINE vectorRedInnerOp #-} vectorRedInnerOp :: forall a b n. (Num a, Storable a) => SNat n -> (a -> b) -> (Ptr a -> Ptr b) -> (Int64 -> Ptr b -> b -> Ptr b -> IO ()) -- ^ scale by constant -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> Ptr b -> IO ()) -- ^ reduction kernel -> RS.Array (n + 1) a -> RS.Array n a vectorRedInnerOp sn@SNat valconv ptrconv fscale fred (RS.A (RG.A sh (OI.T strides offset vec))) | null sh = error "unreachable" | last sh <= 0 = RS.stretch (init sh) (RS.fromList (map (const 1) (init sh)) [0]) | any (<= 0) (init sh) = RS.A (RG.A (init sh) (OI.T (map (const 0) (init strides)) 0 VS.empty)) -- now the input array is nonempty | last sh == 1 = RS.A (RG.A (init sh) (OI.T (init strides) offset vec)) | last strides == 0 = liftVEltwise1 sn (vectorOp1 id (\n pout px -> fscale n (ptrconv pout) (valconv (fromIntegral (last sh))) (ptrconv px))) (RS.A (RG.A (init sh) (OI.T (init strides) offset vec))) -- now there is useful work along the inner dimension | otherwise = let -- replicated dimensions: dimensions with zero stride. The reduction -- kernel need not concern itself with those (and in fact has a -- precondition that there are no such dimensions in its input). replDims = map (== 0) strides -- filter out replicated dimensions (shF, stridesF) = unzip $ map fst $ filter (not . snd) (zip (zip sh strides) replDims) -- replace replicated dimensions with ones shOnes = zipWith (\n repl -> if repl then 1 else n) sh replDims ndimsF = length shF -- > 0, otherwise `last strides == 0` in unsafePerformIO $ do outv <- VSM.unsafeNew (product (init shF)) VSM.unsafeWith outv $ \poutv -> VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF -> VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesF)) $ \pstridesF -> VS.unsafeWith (VS.slice offset (VS.length vec - offset) vec) $ \pvec -> fred (fromIntegral ndimsF) pshF pstridesF (ptrconv poutv) (ptrconv pvec) TypeNats.withSomeSNat (fromIntegral (ndimsF - 1)) $ \(SNat :: SNat lenFm1) -> RS.stretch (init sh) . RS.reshape (init shOnes) . RS.fromVector @_ @lenFm1 (init shF) <$> VS.unsafeFreeze outv -- TODO: test this function -- | Find extremum (minindex ("argmin") or maxindex) in full array {-# NOINLINE vectorExtremumOp #-} vectorExtremumOp :: forall a b n. Storable a => (Ptr a -> Ptr b) -> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ()) -- ^ extremum kernel -> RS.Array n a -> [Int] -- result length: n vectorExtremumOp ptrconv fextrem (RS.A (RG.A sh (OI.T strides offset vec))) | null sh = [] | any (<= 0) sh = error "Extremum (minindex/maxindex): empty array" -- now the input array is nonempty | all (<= 0) strides = 0 <$ sh | otherwise = let -- replicated dimensions: dimensions with zero stride. The extremum -- kernel need not concern itself with those (and in fact has a -- precondition that there are no such dimensions in its input). replDims = map (== 0) strides -- filter out replicated dimensions (shF, stridesF) = unzip $ map fst $ filter (not . snd) (zip (zip sh strides) replDims) ndimsF = length shF -- > 0, because not all strides were <=0 -- function to insert zeros in replicated-out dimensions insertZeros [] idx = idx insertZeros (True : repls) idx = 0 : insertZeros repls idx insertZeros (False : repls) (i : idx) = i : insertZeros repls idx insertZeros (_:_) [] = error "unreachable" in unsafePerformIO $ do outv <- VSM.unsafeNew (length shF) VSM.unsafeWith outv $ \poutv -> VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF -> VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesF)) $ \pstridesF -> VS.unsafeWith (VS.slice offset (VS.length vec - offset) vec) $ \pvec -> fextrem poutv (fromIntegral ndimsF) pshF pstridesF (ptrconv pvec) insertZeros replDims . map (fromIntegral @Int64 @Int) . VS.toList <$> VS.unsafeFreeze outv flipOp :: (Int64 -> Ptr a -> a -> Ptr a -> IO ()) -> Int64 -> Ptr a -> Ptr a -> a -> IO () flipOp f n out v s = f n out s v $(fmap concat . forM typesList $ \arithtype -> do let ttyp = conT (atType arithtype) fmap concat . forM [minBound..maxBound] $ \arithop -> do let name = mkName (aboName arithop ++ "Vector" ++ nameBase (atType arithtype)) cnamebase = "c_binary_" ++ atCName arithtype c_ss = varE (aboNumOp arithop) c_sv = varE (mkName (cnamebase ++ "_sv")) `appE` litE (integerL (fromIntegral (aboEnum arithop))) c_vs = varE (mkName (cnamebase ++ "_vs")) `appE` litE (integerL (fromIntegral (aboEnum arithop))) c_vv = varE (mkName (cnamebase ++ "_vv")) `appE` litE (integerL (fromIntegral (aboEnum arithop))) sequence [SigD name <$> [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |] ,do body <- [| \sn -> liftVEltwise2 sn (vectorOp2 id id $c_ss $c_sv $c_vs $c_vv) |] return $ FunD name [Clause [] (NormalB body) []]]) $(fmap concat . forM floatTypesList $ \arithtype -> do let ttyp = conT (atType arithtype) fmap concat . forM [minBound..maxBound] $ \arithop -> do let name = mkName (afboName arithop ++ "Vector" ++ nameBase (atType arithtype)) cnamebase = "c_fbinary_" ++ atCName arithtype c_ss = varE (afboNumOp arithop) c_sv = varE (mkName (cnamebase ++ "_sv")) `appE` litE (integerL (fromIntegral (afboEnum arithop))) c_vs = varE (mkName (cnamebase ++ "_vs")) `appE` litE (integerL (fromIntegral (afboEnum arithop))) c_vv = varE (mkName (cnamebase ++ "_vv")) `appE` litE (integerL (fromIntegral (afboEnum arithop))) sequence [SigD name <$> [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |] ,do body <- [| \sn -> liftVEltwise2 sn (vectorOp2 id id $c_ss $c_sv $c_vs $c_vv) |] return $ FunD name [Clause [] (NormalB body) []]]) $(fmap concat . forM typesList $ \arithtype -> do let ttyp = conT (atType arithtype) fmap concat . forM [minBound..maxBound] $ \arithop -> do let name = mkName (auoName arithop ++ "Vector" ++ nameBase (atType arithtype)) c_op = varE (mkName ("c_unary_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (auoEnum arithop))) sequence [SigD name <$> [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |] ,do body <- [| \sn -> liftVEltwise1 sn (vectorOp1 id $c_op) |] return $ FunD name [Clause [] (NormalB body) []]]) $(fmap concat . forM floatTypesList $ \arithtype -> do let ttyp = conT (atType arithtype) fmap concat . forM [minBound..maxBound] $ \arithop -> do let name = mkName (afuoName arithop ++ "Vector" ++ nameBase (atType arithtype)) c_op = varE (mkName ("c_funary_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (afuoEnum arithop))) sequence [SigD name <$> [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |] ,do body <- [| \sn -> liftVEltwise1 sn (vectorOp1 id $c_op) |] return $ FunD name [Clause [] (NormalB body) []]]) $(fmap concat . forM typesList $ \arithtype -> do let ttyp = conT (atType arithtype) fmap concat . forM [minBound..maxBound] $ \arithop -> do let name = mkName (aroName arithop ++ "Vector" ++ nameBase (atType arithtype)) c_op = varE (mkName ("c_reduce_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop))) c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL))) sequence [SigD name <$> [t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |] ,do body <- [| \sn -> vectorRedInnerOp sn id id $c_scale_op $c_op |] return $ FunD name [Clause [] (NormalB body) []]]) $(fmap concat . forM typesList $ \arithtype -> fmap concat . forM ["min", "max"] $ \fname -> do let ttyp = conT (atType arithtype) name = mkName (fname ++ "indexVector" ++ nameBase (atType arithtype)) c_op = varE (mkName ("c_extremum_" ++ fname ++ "_" ++ atCName arithtype)) sequence [SigD name <$> [t| forall n. RS.Array n $ttyp -> [Int] |] ,do body <- [| vectorExtremumOp id $c_op |] return $ FunD name [Clause [] (NormalB body) []]]) -- This branch is ostensibly a runtime branch, but will (hopefully) be -- constant-folded away by GHC. intWidBranch1 :: forall i n. (FiniteBits i, Storable i) => (Int64 -> Ptr Int32 -> Ptr Int32 -> IO ()) -> (Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -> (SNat n -> RS.Array n i -> RS.Array n i) intWidBranch1 f32 f64 sn | finiteBitSize (undefined :: i) == 32 = liftVEltwise1 sn (vectorOp1 @i @Int32 castPtr f32) | finiteBitSize (undefined :: i) == 64 = liftVEltwise1 sn (vectorOp1 @i @Int64 castPtr f64) | otherwise = error "Unsupported Int width" intWidBranch2 :: forall i n. (FiniteBits i, Storable i, Integral i) => (i -> i -> i) -- ss -- int32 -> (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ()) -- sv -> (Int64 -> Ptr Int32 -> Ptr Int32 -> Int32 -> IO ()) -- vs -> (Int64 -> Ptr Int32 -> Ptr Int32 -> Ptr Int32 -> IO ()) -- vv -- int64 -> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ()) -- sv -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Int64 -> IO ()) -- vs -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- vv -> (SNat n -> RS.Array n i -> RS.Array n i -> RS.Array n i) intWidBranch2 ss sv32 vs32 vv32 sv64 vs64 vv64 sn | finiteBitSize (undefined :: i) == 32 = liftVEltwise2 sn (vectorOp2 @i @Int32 fromIntegral castPtr ss sv32 vs32 vv32) | finiteBitSize (undefined :: i) == 64 = liftVEltwise2 sn (vectorOp2 @i @Int64 fromIntegral castPtr ss sv64 vs64 vv64) | otherwise = error "Unsupported Int width" intWidBranchRed :: forall i n. (FiniteBits i, Storable i, Integral i) => -- int32 (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ()) -- ^ scale by constant -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int32 -> IO ()) -- ^ reduction kernel -- int64 -> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ()) -- ^ scale by constant -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- ^ reduction kernel -> (SNat n -> RS.Array (n + 1) i -> RS.Array n i) intWidBranchRed fsc32 fred32 fsc64 fred64 sn | finiteBitSize (undefined :: i) == 32 = vectorRedInnerOp @i @Int32 sn fromIntegral castPtr fsc32 fred32 | finiteBitSize (undefined :: i) == 64 = vectorRedInnerOp @i @Int64 sn fromIntegral castPtr fsc64 fred64 | otherwise = error "Unsupported Int width" intWidBranchExtr :: forall i n. (FiniteBits i, Storable i, Integral i) => -- int32 (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ()) -- ^ extremum kernel -- int64 -> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- ^ extremum kernel -> (RS.Array n i -> [Int]) intWidBranchExtr fextr32 fextr64 | finiteBitSize (undefined :: i) == 32 = vectorExtremumOp @i @Int32 castPtr fextr32 | finiteBitSize (undefined :: i) == 64 = vectorExtremumOp @i @Int64 castPtr fextr64 | otherwise = error "Unsupported Int width" class NumElt a where numEltAdd :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a numEltSub :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a numEltMul :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a numEltNeg :: SNat n -> RS.Array n a -> RS.Array n a numEltAbs :: SNat n -> RS.Array n a -> RS.Array n a numEltSignum :: SNat n -> RS.Array n a -> RS.Array n a numEltSum1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a numEltProduct1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a numEltMinIndex :: RS.Array n a -> [Int] numEltMaxIndex :: RS.Array n a -> [Int] instance NumElt Int32 where numEltAdd = addVectorInt32 numEltSub = subVectorInt32 numEltMul = mulVectorInt32 numEltNeg = negVectorInt32 numEltAbs = absVectorInt32 numEltSignum = signumVectorInt32 numEltSum1Inner = sum1VectorInt32 numEltProduct1Inner = product1VectorInt32 numEltMinIndex = minindexVectorInt32 numEltMaxIndex = maxindexVectorInt32 instance NumElt Int64 where numEltAdd = addVectorInt64 numEltSub = subVectorInt64 numEltMul = mulVectorInt64 numEltNeg = negVectorInt64 numEltAbs = absVectorInt64 numEltSignum = signumVectorInt64 numEltSum1Inner = sum1VectorInt64 numEltProduct1Inner = product1VectorInt64 numEltMinIndex = minindexVectorInt64 numEltMaxIndex = maxindexVectorInt64 instance NumElt Float where numEltAdd = addVectorFloat numEltSub = subVectorFloat numEltMul = mulVectorFloat numEltNeg = negVectorFloat numEltAbs = absVectorFloat numEltSignum = signumVectorFloat numEltSum1Inner = sum1VectorFloat numEltProduct1Inner = product1VectorFloat numEltMinIndex = minindexVectorFloat numEltMaxIndex = maxindexVectorFloat instance NumElt Double where numEltAdd = addVectorDouble numEltSub = subVectorDouble numEltMul = mulVectorDouble numEltNeg = negVectorDouble numEltAbs = absVectorDouble numEltSignum = signumVectorDouble numEltSum1Inner = sum1VectorDouble numEltProduct1Inner = product1VectorDouble numEltMinIndex = minindexVectorDouble numEltMaxIndex = maxindexVectorDouble instance NumElt Int where numEltAdd = intWidBranch2 @Int (+) (c_binary_i32_sv (aboEnum BO_ADD)) (flipOp (c_binary_i32_sv (aboEnum BO_ADD))) (c_binary_i32_vv (aboEnum BO_ADD)) (c_binary_i64_sv (aboEnum BO_ADD)) (flipOp (c_binary_i64_sv (aboEnum BO_ADD))) (c_binary_i64_vv (aboEnum BO_ADD)) numEltSub = intWidBranch2 @Int (-) (c_binary_i32_sv (aboEnum BO_SUB)) (flipOp (c_binary_i32_sv (aboEnum BO_SUB))) (c_binary_i32_vv (aboEnum BO_SUB)) (c_binary_i64_sv (aboEnum BO_SUB)) (flipOp (c_binary_i64_sv (aboEnum BO_SUB))) (c_binary_i64_vv (aboEnum BO_SUB)) numEltMul = intWidBranch2 @Int (*) (c_binary_i32_sv (aboEnum BO_MUL)) (flipOp (c_binary_i32_sv (aboEnum BO_MUL))) (c_binary_i32_vv (aboEnum BO_MUL)) (c_binary_i64_sv (aboEnum BO_MUL)) (flipOp (c_binary_i64_sv (aboEnum BO_MUL))) (c_binary_i64_vv (aboEnum BO_MUL)) numEltNeg = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_NEG)) (c_unary_i64 (auoEnum UO_NEG)) numEltAbs = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_ABS)) (c_unary_i64 (auoEnum UO_ABS)) numEltSignum = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_SIGNUM)) (c_unary_i64 (auoEnum UO_SIGNUM)) numEltSum1Inner = intWidBranchRed @Int (c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_SUM1)) (c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_SUM1)) numEltProduct1Inner = intWidBranchRed @Int (c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_PRODUCT1)) (c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_PRODUCT1)) numEltMinIndex = intWidBranchExtr @Int c_extremum_min_i32 c_extremum_min_i64 numEltMaxIndex = intWidBranchExtr @Int c_extremum_max_i32 c_extremum_max_i64 instance NumElt CInt where numEltAdd = intWidBranch2 @CInt (+) (c_binary_i32_sv (aboEnum BO_ADD)) (flipOp (c_binary_i32_sv (aboEnum BO_ADD))) (c_binary_i32_vv (aboEnum BO_ADD)) (c_binary_i64_sv (aboEnum BO_ADD)) (flipOp (c_binary_i64_sv (aboEnum BO_ADD))) (c_binary_i64_vv (aboEnum BO_ADD)) numEltSub = intWidBranch2 @CInt (-) (c_binary_i32_sv (aboEnum BO_SUB)) (flipOp (c_binary_i32_sv (aboEnum BO_SUB))) (c_binary_i32_vv (aboEnum BO_SUB)) (c_binary_i64_sv (aboEnum BO_SUB)) (flipOp (c_binary_i64_sv (aboEnum BO_SUB))) (c_binary_i64_vv (aboEnum BO_SUB)) numEltMul = intWidBranch2 @CInt (*) (c_binary_i32_sv (aboEnum BO_MUL)) (flipOp (c_binary_i32_sv (aboEnum BO_MUL))) (c_binary_i32_vv (aboEnum BO_MUL)) (c_binary_i64_sv (aboEnum BO_MUL)) (flipOp (c_binary_i64_sv (aboEnum BO_MUL))) (c_binary_i64_vv (aboEnum BO_MUL)) numEltNeg = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_NEG)) (c_unary_i64 (auoEnum UO_NEG)) numEltAbs = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_ABS)) (c_unary_i64 (auoEnum UO_ABS)) numEltSignum = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_SIGNUM)) (c_unary_i64 (auoEnum UO_SIGNUM)) numEltSum1Inner = intWidBranchRed @CInt (c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_SUM1)) (c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_SUM1)) numEltProduct1Inner = intWidBranchRed @CInt (c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_PRODUCT1)) (c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_PRODUCT1)) numEltMinIndex = intWidBranchExtr @CInt c_extremum_min_i32 c_extremum_min_i64 numEltMaxIndex = intWidBranchExtr @CInt c_extremum_max_i32 c_extremum_max_i64 class FloatElt a where floatEltDiv :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a floatEltPow :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a floatEltLogbase :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a floatEltRecip :: SNat n -> RS.Array n a -> RS.Array n a floatEltExp :: SNat n -> RS.Array n a -> RS.Array n a floatEltLog :: SNat n -> RS.Array n a -> RS.Array n a floatEltSqrt :: SNat n -> RS.Array n a -> RS.Array n a floatEltSin :: SNat n -> RS.Array n a -> RS.Array n a floatEltCos :: SNat n -> RS.Array n a -> RS.Array n a floatEltTan :: SNat n -> RS.Array n a -> RS.Array n a floatEltAsin :: SNat n -> RS.Array n a -> RS.Array n a floatEltAcos :: SNat n -> RS.Array n a -> RS.Array n a floatEltAtan :: SNat n -> RS.Array n a -> RS.Array n a floatEltSinh :: SNat n -> RS.Array n a -> RS.Array n a floatEltCosh :: SNat n -> RS.Array n a -> RS.Array n a floatEltTanh :: SNat n -> RS.Array n a -> RS.Array n a floatEltAsinh :: SNat n -> RS.Array n a -> RS.Array n a floatEltAcosh :: SNat n -> RS.Array n a -> RS.Array n a floatEltAtanh :: SNat n -> RS.Array n a -> RS.Array n a floatEltLog1p :: SNat n -> RS.Array n a -> RS.Array n a floatEltExpm1 :: SNat n -> RS.Array n a -> RS.Array n a floatEltLog1pexp :: SNat n -> RS.Array n a -> RS.Array n a floatEltLog1mexp :: SNat n -> RS.Array n a -> RS.Array n a instance FloatElt Float where floatEltDiv = divVectorFloat floatEltPow = powVectorFloat floatEltLogbase = logbaseVectorFloat floatEltRecip = recipVectorFloat floatEltExp = expVectorFloat floatEltLog = logVectorFloat floatEltSqrt = sqrtVectorFloat floatEltSin = sinVectorFloat floatEltCos = cosVectorFloat floatEltTan = tanVectorFloat floatEltAsin = asinVectorFloat floatEltAcos = acosVectorFloat floatEltAtan = atanVectorFloat floatEltSinh = sinhVectorFloat floatEltCosh = coshVectorFloat floatEltTanh = tanhVectorFloat floatEltAsinh = asinhVectorFloat floatEltAcosh = acoshVectorFloat floatEltAtanh = atanhVectorFloat floatEltLog1p = log1pVectorFloat floatEltExpm1 = expm1VectorFloat floatEltLog1pexp = log1pexpVectorFloat floatEltLog1mexp = log1mexpVectorFloat instance FloatElt Double where floatEltDiv = divVectorDouble floatEltPow = powVectorDouble floatEltLogbase = logbaseVectorDouble floatEltRecip = recipVectorDouble floatEltExp = expVectorDouble floatEltLog = logVectorDouble floatEltSqrt = sqrtVectorDouble floatEltSin = sinVectorDouble floatEltCos = cosVectorDouble floatEltTan = tanVectorDouble floatEltAsin = asinVectorDouble floatEltAcos = acosVectorDouble floatEltAtan = atanVectorDouble floatEltSinh = sinhVectorDouble floatEltCosh = coshVectorDouble floatEltTanh = tanhVectorDouble floatEltAsinh = asinhVectorDouble floatEltAcosh = acoshVectorDouble floatEltAtanh = atanhVectorDouble floatEltLog1p = log1pVectorDouble floatEltExpm1 = expm1VectorDouble floatEltLog1pexp = log1pexpVectorDouble floatEltLog1mexp = log1mexpVectorDouble