{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Data.Array.Mixed.Internal.Arith where

import Control.Monad (forM, guard)
import Data.Array.Internal qualified as OI
import Data.Array.Internal.RankedG qualified as RG
import Data.Array.Internal.RankedS qualified as RS
import Data.Bifunctor (second)
import Data.Bits
import Data.Int
import Data.List (sort)
import Data.Vector.Storable qualified as VS
import Data.Vector.Storable.Mutable qualified as VSM
import Foreign.C.Types
import Foreign.Marshal.Alloc (alloca)
import Foreign.Ptr
import Foreign.Storable (Storable(sizeOf), peek, poke)
import GHC.TypeLits
import GHC.TypeNats qualified as TypeNats
import Language.Haskell.TH
import System.IO (hFlush, stdout)
import System.IO.Unsafe

import Data.Array.Mixed.Internal.Arith.Foreign
import Data.Array.Mixed.Internal.Arith.Lists
import Data.Array.Mixed.Types (fromSNat')


-- TODO: need to sort strides for reduction-like functions so that the C inner-loop specialisation has some chance of working even after transposition


-- TODO: test all the cases of this thing with various input strides
liftVEltwise1 :: (Storable a, Storable b)
              => SNat n
              -> (VS.Vector a -> VS.Vector b)
              -> RS.Array n a -> RS.Array n b
liftVEltwise1 SNat f arr@(RS.A (RG.A sh (OI.T strides offset vec)))
  | Just (blockOff, blockSz) <- stridesDense sh offset strides =
      let vec' = f (VS.slice blockOff blockSz vec)
      in RS.A (RG.A sh (OI.T strides (offset - blockOff) vec'))
  | otherwise = RS.fromVector sh (f (RS.toVector arr))

-- TODO: test all the cases of this thing with various input strides
{-# NOINLINE liftOpEltwise1 #-}
liftOpEltwise1 :: (Storable a, Storable b)
               => SNat n
               -> (Ptr a -> Ptr a')
               -> (Ptr b -> Ptr b')
               -> (Int64 -> Ptr b' -> Ptr Int64 -> Ptr Int64 -> Ptr a' -> IO ())
               -> RS.Array n a -> RS.Array n b
liftOpEltwise1 sn@SNat ptrconv1 ptrconv2 cf_strided (RS.A (RG.A sh (OI.T strides offset vec)))
  -- TODO: less code duplication between these two branches
  | Just (blockOff, blockSz) <- stridesDense sh offset strides =
      if blockSz == 0
        then RS.A (RG.A sh (OI.T (map (const 0) strides) 0 VS.empty))
        else unsafePerformIO $ do
               outv <- VSM.unsafeNew blockSz
               VSM.unsafeWith outv $ \poutv ->
                 VS.unsafeWith (VS.singleton (fromIntegral blockSz)) $ \psh ->
                   VS.unsafeWith (VS.singleton 1) $ \pstrides ->
                     VS.unsafeWith (VS.slice blockOff blockSz vec) $ \pv ->
                       cf_strided 1 (ptrconv2 poutv) psh pstrides (ptrconv1 pv)
               RS.A . RG.A sh . OI.T strides (offset - blockOff) <$> VS.unsafeFreeze outv
  | otherwise = unsafePerformIO $ do
      outv <- VSM.unsafeNew (product sh)
      VSM.unsafeWith outv $ \poutv ->
        VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral sh)) $ \psh ->
          VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides)) $ \pstrides ->
            VS.unsafeWith (VS.slice offset (VS.length vec - offset) vec) $ \pv ->
              cf_strided (fromIntegral (fromSNat sn)) (ptrconv2 poutv) psh pstrides (ptrconv1 pv)
      RS.fromVector sh <$> VS.unsafeFreeze outv

-- TODO: test all the cases of this thing with various input strides
liftVEltwise2 :: Storable a
              => SNat n
              -> (a -> b)
              -> (Ptr a -> Ptr b)
              -> (a -> a -> a)
              -> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ())  -- ^ sv
              -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ())  -- ^ vs
              -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ())  -- ^ vv
              -> RS.Array n a -> RS.Array n a -> RS.Array n a
liftVEltwise2 sn@SNat valconv ptrconv f_ss f_sv f_vs f_vv
    arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1)))
    arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2)))
  | sh1 /= sh2 = error $ "liftVEltwise2: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2
  | product sh1 == 0 = RS.A (RG.A sh1 (OI.T (0 <$ strides1) 0 VS.empty))
  | otherwise = case (stridesDense sh1 offset1 strides1, stridesDense sh2 offset2 strides2) of
      (Just (_, 1), Just (_, 1)) ->  -- both are a (potentially replicated) scalar; just apply f to the scalars
        let vec' = VS.singleton (f_ss (vec1 VS.! offset1) (vec2 VS.! offset2))
        in RS.A (RG.A sh1 (OI.T strides1 0 vec'))

      (Just (_, 1), Just (blockOff, blockSz)) ->  -- scalar * dense
        let arr2' = RS.fromVector [blockSz] (VS.slice blockOff blockSz vec2)
            RS.A (RG.A _ (OI.T _ _ resvec)) = wrapBinarySV (SNat @1) valconv ptrconv f_sv (vec1 VS.! offset1) arr2'
        in RS.A (RG.A sh1 (OI.T strides2 (offset2 - blockOff) resvec))

      (Just (_, 1), Nothing) ->  -- scalar * array
        wrapBinarySV sn valconv ptrconv f_sv (vec1 VS.! offset1) arr2

      (Just (blockOff, blockSz), Just (_, 1)) ->  -- dense * scalar
        let arr1' = RS.fromVector [blockSz] (VS.slice blockOff blockSz vec1)
            RS.A (RG.A _ (OI.T _ _ resvec)) = wrapBinaryVS (SNat @1) valconv ptrconv f_vs arr1' (vec2 VS.! offset2)
        in RS.A (RG.A sh1 (OI.T strides1 (offset1 - blockOff) resvec))

      (Nothing, Just (_, 1)) ->  -- array * scalar
        wrapBinaryVS sn valconv ptrconv f_vs arr1 (vec2 VS.! offset2)

      (Just (blockOff1, blockSz1), Just (blockOff2, blockSz2))
        | blockSz1 == blockSz2  -- not sure if this check is necessary, might be implied by the strides check
        , strides1 == strides2
        ->  -- dense * dense but the strides match
          let arr1' = RS.fromVector [blockSz1] (VS.slice blockOff1 blockSz1 vec1)
              arr2' = RS.fromVector [blockSz1] (VS.slice blockOff2 blockSz2 vec2)
              RS.A (RG.A _ (OI.T _ _ resvec)) = wrapBinaryVV (SNat @1) ptrconv f_vv arr1' arr2'
          in RS.A (RG.A sh1 (OI.T strides1 (offset1 - blockOff1) resvec))

      (_, _) ->  -- fallback case
        wrapBinaryVV sn ptrconv f_vv arr1 arr2

-- | Given shape vector, offset and stride vector, check whether this virtual
-- vector uses a dense subarray of its backing array. If so, the first index
-- and the number of elements in this subarray is returned.
-- This excludes any offset.
stridesDense :: [Int] -> Int -> [Int] -> Maybe (Int, Int)
stridesDense sh offset _ | any (<= 0) sh = Just (offset, 0)
stridesDense sh offsetNeg stridesNeg =
  -- First reverse all dimensions with negative stride, so that the first used
  -- value is at 'offset' and the rest is >= offset.
  let (offset, strides) = flipReverseds sh offsetNeg stridesNeg
  in -- sort dimensions on their stride, ascending, dropping any zero strides
     case filter ((/= 0) . fst) (sort (zip strides sh)) of
       [] -> Just (offset, 1)
       (1, n) : pairs -> (offset,) <$> checkCover n pairs
       _ -> Nothing  -- if the smallest stride is not 1, it will never be dense
  where
    -- Given size of currently densely covered region at beginning of the
    -- array and the remaining (stride, size) pairs with all strides >=1,
    -- return whether this all together covers a dense prefix of the array. If
    -- it does, return the number of elements in this prefix.
    checkCover :: Int -> [(Int, Int)] -> Maybe Int
    checkCover block [] = Just block
    checkCover block ((s, n) : pairs) = guard (s <= block) >> checkCover ((n-1) * s + block) pairs

    -- Given shape, offset and strides, returns new (offset, strides) such that all strides are >=0
    flipReverseds :: [Int] -> Int -> [Int] -> (Int, [Int])
    flipReverseds [] off [] = (off, [])
    flipReverseds (n : sh') off (s : str')
      | s >= 0 = second (s :) (flipReverseds sh' off str')
      | otherwise =
          let off' = off + (n - 1) * s
          in second ((-s) :) (flipReverseds sh' off' str')
    flipReverseds _ _ _ = error "flipReverseds: invalid arguments"

{-# NOINLINE wrapBinarySV #-}
wrapBinarySV :: Storable a
             => SNat n
             -> (a -> b)
             -> (Ptr a -> Ptr b)
             -> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ())
             -> a -> RS.Array n a
             -> RS.Array n a
wrapBinarySV sn@SNat valconv ptrconv cf_strided x (RS.A (RG.A sh (OI.T strides offset vec))) =
  unsafePerformIO $ do
    outv <- VSM.unsafeNew (product sh)
    VSM.unsafeWith outv $ \poutv ->
      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral sh)) $ \psh ->
        VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides)) $ \pstrides ->
          VS.unsafeWith (VS.slice offset (VS.length vec - offset) vec) $ \pv ->
            cf_strided (fromIntegral (fromSNat' sn)) psh (ptrconv poutv) (valconv x) pstrides (ptrconv pv)
    RS.fromVector sh <$> VS.unsafeFreeze outv

wrapBinaryVS :: Storable a
             => SNat n
             -> (a -> b)
             -> (Ptr a -> Ptr b)
             -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ())
             -> RS.Array n a -> a
             -> RS.Array n a
wrapBinaryVS sn valconv ptrconv cf_strided arr y =
  wrapBinarySV sn valconv ptrconv
               (\rank psh poutv y' pstrides pv -> cf_strided rank psh poutv pstrides pv y') y arr

-- | This function assumes that the two shapes are equal.
{-# NOINLINE wrapBinaryVV #-}
wrapBinaryVV :: Storable a
             => SNat n
             -> (Ptr a -> Ptr b)
             -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ())
             -> RS.Array n a -> RS.Array n a
             -> RS.Array n a
wrapBinaryVV sn@SNat ptrconv cf_strided
    (RS.A (RG.A sh (OI.T strides1 offset1 vec1)))
    (RS.A (RG.A _  (OI.T strides2 offset2 vec2))) =
  unsafePerformIO $ do
    outv <- VSM.unsafeNew (product sh)
    VSM.unsafeWith outv $ \poutv ->
      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral sh)) $ \psh ->
      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides1)) $ \pstrides1 ->
      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides2)) $ \pstrides2 ->
      VS.unsafeWith (VS.slice offset1 (VS.length vec1 - offset1) vec1) $ \pv1 ->
      VS.unsafeWith (VS.slice offset2 (VS.length vec2 - offset2) vec2) $ \pv2 ->
        cf_strided (fromIntegral (fromSNat' sn)) psh (ptrconv poutv) pstrides1 (ptrconv pv1) pstrides2 (ptrconv pv2)
    RS.fromVector sh <$> VS.unsafeFreeze outv

{-# NOINLINE vectorOp1 #-}
vectorOp1 :: forall a b. Storable a
          => (Ptr a -> Ptr b)
          -> (Int64 -> Ptr b -> Ptr b -> IO ())
          -> VS.Vector a -> VS.Vector a
vectorOp1 ptrconv f v = unsafePerformIO $ do
  outv <- VSM.unsafeNew (VS.length v)
  VSM.unsafeWith outv $ \poutv ->
    VS.unsafeWith v $ \pv ->
      f (fromIntegral (VS.length v)) (ptrconv poutv) (ptrconv pv)
  VS.unsafeFreeze outv

-- | If two vectors are given, assumes that they have the same length.
{-# NOINLINE vectorOp2 #-}
vectorOp2 :: forall a b. Storable a
          => (a -> b)
          -> (Ptr a -> Ptr b)
          -> (a -> a -> a)
          -> (Int64 -> Ptr b -> b -> Ptr b -> IO ())  -- sv
          -> (Int64 -> Ptr b -> Ptr b -> b -> IO ())  -- vs
          -> (Int64 -> Ptr b -> Ptr b -> Ptr b -> IO ())  -- vv
          -> Either a (VS.Vector a) -> Either a (VS.Vector a) -> VS.Vector a
vectorOp2 valconv ptrconv fss fsv fvs fvv = \cases
  (Left x) (Left y) -> VS.singleton (fss x y)

  (Left x) (Right vy) ->
    unsafePerformIO $ do
      outv <- VSM.unsafeNew (VS.length vy)
      VSM.unsafeWith outv $ \poutv ->
        VS.unsafeWith vy $ \pvy ->
          fsv (fromIntegral (VS.length vy)) (ptrconv poutv) (valconv x) (ptrconv pvy)
      VS.unsafeFreeze outv

  (Right vx) (Left y) ->
    unsafePerformIO $ do
      outv <- VSM.unsafeNew (VS.length vx)
      VSM.unsafeWith outv $ \poutv ->
        VS.unsafeWith vx $ \pvx ->
          fvs (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (valconv y)
      VS.unsafeFreeze outv

  (Right vx) (Right vy)
    | VS.length vx == VS.length vy ->
        unsafePerformIO $ do
          outv <- VSM.unsafeNew (VS.length vx)
          VSM.unsafeWith outv $ \poutv ->
            VS.unsafeWith vx $ \pvx ->
              VS.unsafeWith vy $ \pvy ->
                fvv (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (ptrconv pvy)
          VS.unsafeFreeze outv
    | otherwise -> error $ "vectorOp: unequal lengths: " ++ show (VS.length vx) ++ " /= " ++ show (VS.length vy)

-- TODO: test handling of negative strides
-- | Reduce along the inner dimension
{-# NOINLINE vectorRedInnerOp #-}
vectorRedInnerOp :: forall a b n. (Num a, Storable a)
                 => SNat n
                 -> (a -> b)
                 -> (Ptr a -> Ptr b)
                 -> (Int64 -> Ptr b -> b -> Ptr b -> IO ())  -- ^ scale by constant
                 -> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ reduction kernel
                 -> RS.Array (n + 1) a -> RS.Array n a
vectorRedInnerOp sn@SNat valconv ptrconv fscale fred (RS.A (RG.A sh (OI.T strides offset vec)))
  | null sh = error "unreachable"
  | last sh <= 0 = RS.stretch (init sh) (RS.fromList (1 <$ init sh) [0])
  | any (<= 0) (init sh) = RS.A (RG.A (init sh) (OI.T (0 <$ init strides) 0 VS.empty))
  -- now the input array is nonempty
  | last sh == 1 = RS.A (RG.A (init sh) (OI.T (init strides) offset vec))
  | last strides == 0 =
      liftVEltwise1 sn
        (vectorOp1 id (\n pout px -> fscale n (ptrconv pout) (valconv (fromIntegral (last sh))) (ptrconv px)))
        (RS.A (RG.A (init sh) (OI.T (init strides) offset vec)))
  -- now there is useful work along the inner dimension
  | otherwise =
      let -- replicated dimensions: dimensions with zero stride. The reduction
          -- kernel need not concern itself with those (and in fact has a
          -- precondition that there are no such dimensions in its input).
          replDims = map (== 0) strides
          -- filter out replicated dimensions
          (shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims]
          -- replace replicated dimensions with ones
          shOnes = zipWith (\n repl -> if repl then 1 else n) sh replDims
          ndimsF = length shF  -- > 0, otherwise `last strides == 0`

          -- reversed dimensions: dimensions with negative stride. Reversal is
          -- irrelevant for a reduction, and indeed the kernel has a
          -- precondition that there are no such dimensions.
          revDims = map (< 0) stridesF
          stridesR = map abs stridesF
          offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF)
          -- The *R values give an array with strides all > 0, hence the
          -- left-most element is at offsetR.
      in unsafePerformIO $ do
           outvR <- VSM.unsafeNew (product (init shF))
           VSM.unsafeWith outvR $ \poutvR ->
             VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF ->
               VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR ->
                 VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR ->
                   fred (fromIntegral ndimsF) (ptrconv poutvR) pshF pstridesR (ptrconv pvecR)
           TypeNats.withSomeSNat (fromIntegral (ndimsF - 1)) $ \(SNat :: SNat lenFm1) ->
             RS.stretch (init sh)  -- replicate to original shape
               . RS.reshape (init shOnes)  -- add 1-sized dimensions where the original was replicated
               . RS.rev (map fst (filter snd (zip [0..] revDims)))  -- re-reverse the correct dimensions
               . RS.fromVector @_ @lenFm1 (init shF)  -- the partially-reversed result array
               <$> VS.unsafeFreeze outvR

-- TODO: test handling of negative strides
-- | Reduce full array
{-# NOINLINE vectorRedFullOp #-}
vectorRedFullOp :: forall a b n. (Num a, Storable a)
                => SNat n
                -> (a -> Int -> a)
                -> (b -> a)
                -> (Ptr a -> Ptr b)
                -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO b)  -- ^ reduction kernel
                -> RS.Array n a -> a
vectorRedFullOp _ scaleval valbackconv ptrconv fred (RS.A (RG.A sh (OI.T strides offset vec)))
  | null sh = vec VS.! offset  -- 0D array has one element
  | any (<= 0) sh = 0
  -- now the input array is nonempty
  | all (== 0) strides = fromIntegral (product sh) * vec VS.! offset
  -- now there is at least one non-replicated dimension
  | otherwise =
      let -- replicated dimensions: dimensions with zero stride. The reduction
          -- kernel need not concern itself with those (and in fact has a
          -- precondition that there are no such dimensions in its input).
          replDims = map (== 0) strides
          -- filter out replicated dimensions
          (shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims]
          ndimsF = length shF  -- > 0, otherwise `all (== 0) strides`
          -- we should scale up the output this many times to account for the replicated dimensions
          multiplier = product [n | (n, True) <- zip sh replDims]

          -- reversed dimensions: dimensions with negative stride. Reversal is
          -- irrelevant for a reduction, and indeed the kernel has a
          -- precondition that there are no such dimensions.
          revDims = map (< 0) stridesF
          stridesR = map abs stridesF
          offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF)
          -- The *R values give an array with strides all > 0, hence the
          -- left-most element is at offsetR.
      in unsafePerformIO $ do
           VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF ->
             VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR ->
               VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR ->
                 (`scaleval` multiplier) . valbackconv
                   <$> fred (fromIntegral ndimsF) pshF pstridesR (ptrconv pvecR)

-- TODO: test this function
-- | Find extremum (minindex ("argmin") or maxindex) in full array
{-# NOINLINE vectorExtremumOp #-}
vectorExtremumOp :: forall a b n. Storable a
                 => (Ptr a -> Ptr b)
                 -> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ extremum kernel
                 -> RS.Array n a -> [Int]  -- result length: n
vectorExtremumOp ptrconv fextrem (RS.A (RG.A sh (OI.T strides offset vec)))
  | null sh = []
  | any (<= 0) sh = error "Extremum (minindex/maxindex): empty array"
  -- now the input array is nonempty
  | all (== 0) strides = 0 <$ sh
  -- now there is at least one non-replicated dimension
  | otherwise =
      let -- replicated dimensions: dimensions with zero stride. The extremum
          -- kernel need not concern itself with those (and in fact has a
          -- precondition that there are no such dimensions in its input).
          replDims = map (== 0) strides
          -- filter out replicated dimensions
          (shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims]
          ndimsF = length shF  -- > 0, because not all strides were <=0

          -- un-reverse reversed dimensions
          revDims = map (< 0) stridesF
          stridesR = map abs stridesF
          offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF)

          -- function to insert zeros in replicated-out dimensions
          insertZeros :: [Bool] -> [Int] -> [Int]
          insertZeros [] idx = idx
          insertZeros (True : repls) idx = 0 : insertZeros repls idx
          insertZeros (False : repls) (i : idx) = i : insertZeros repls idx
          insertZeros (_:_) [] = error "unreachable"
      in unsafePerformIO $ do
           outvR <- VSM.unsafeNew (length shF)
           VSM.unsafeWith outvR $ \poutvR ->
             VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF ->
               VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR ->
                 VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR ->
                   fextrem poutvR (fromIntegral ndimsF) pshF pstridesR (ptrconv pvecR)
           insertZeros replDims
             . zipWith3 (\rev n i -> if rev then n - 1 - i else i) revDims shF  -- re-reverse the reversed dimensions
             . map (fromIntegral @Int64 @Int)
             . VS.toList
             <$> VS.unsafeFreeze outvR

vectorDotprodInnerOp :: forall a b n. (Num a, Storable a)
                     => SNat n
                     -> (a -> b)
                     -> (Ptr a -> Ptr b)
                     -> (SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a)  -- ^ elementwise multiplication
                     -> (Int64 -> Ptr b -> b -> Ptr b -> IO ())  -- ^ scale by constant
                     -> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ reduction kernel
                     -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ())  -- ^ dotprod kernel
                     -> RS.Array (n + 1) a -> RS.Array (n + 1) a -> RS.Array n a
vectorDotprodInnerOp sn@SNat valconv ptrconv fmul fscale fred fdotinner
    arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1)))
    arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2)))
  | null sh1 || null sh2 = error "unreachable"
  | sh1 /= sh2 = error $ "vectorDotprodInnerOp: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2
  | last sh1 <= 0 = RS.stretch (init sh1) (RS.fromList (1 <$ init sh1) [0])
  | any (<= 0) (init sh1) = RS.A (RG.A (init sh1) (OI.T (0 <$ init strides1) 0 VS.empty))
  -- now the input arrays are nonempty
  | last sh1 == 1 = fmul sn (RS.reshape (init sh1) arr1) (RS.reshape (init sh1) arr2)
  | last strides1 == 0 =
      fmul sn
        (RS.A (RG.A (init sh1) (OI.T (init strides1) offset1 vec1)))
        (vectorRedInnerOp sn valconv ptrconv fscale fred arr2)
  | last strides2 == 0 =
      fmul sn
        (vectorRedInnerOp sn valconv ptrconv fscale fred arr1)
        (RS.A (RG.A (init sh2) (OI.T (init strides2) offset2 vec2)))
  -- now there is useful dotprod work along the inner dimension
  | otherwise = unsafePerformIO $ do
      let inrank = fromSNat' sn + 1
      outv <- VSM.unsafeNew (product (init sh1))
      VSM.unsafeWith outv $ \poutv ->
        VS.unsafeWith (VS.fromListN inrank (map fromIntegral sh1)) $ \psh ->
        VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides1)) $ \pstrides1 ->
        VS.unsafeWith vec1 $ \pvec1 ->
        VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides2)) $ \pstrides2 ->
        VS.unsafeWith vec2 $ \pvec2 ->
          fdotinner (fromIntegral @Int @Int64 inrank) psh (ptrconv poutv)
                    pstrides1 (ptrconv pvec1 `plusPtr` (sizeOf (undefined :: a) * offset1))
                    pstrides2 (ptrconv pvec2 `plusPtr` (sizeOf (undefined :: a) * offset2))
      RS.fromVector @_ @n (init sh1) <$> VS.unsafeFreeze outv

{-# NOINLINE dotScalarVector #-}
dotScalarVector :: forall a b. (Num a, Storable a)
                => Int -> (Ptr a -> Ptr b)
                -> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ reduction kernel
                -> a -> VS.Vector a -> a
dotScalarVector len ptrconv fred scalar vec = unsafePerformIO $ do
  alloca @a $ \pout -> do
    alloca @Int64 $ \pshape -> do
      poke pshape (fromIntegral @Int @Int64 len)
      alloca @Int64 $ \pstride -> do
        poke pstride 1
        VS.unsafeWith vec $ \pvec ->
          fred 1 (ptrconv pout) pshape pstride (ptrconv pvec)
    res <- peek pout
    return (scalar * res)

{-# NOINLINE dotVectorVector #-}
dotVectorVector :: Storable a => Int -> (b -> a) -> (Ptr a -> Ptr b)
                -> (Int64 -> Ptr b -> Ptr b -> IO b)  -- ^ dotprod kernel
                -> VS.Vector a -> VS.Vector a -> a
dotVectorVector len valbackconv ptrconv fdot vec1 vec2 = unsafePerformIO $ do
  VS.unsafeWith vec1 $ \pvec1 ->
    VS.unsafeWith vec2 $ \pvec2 ->
      valbackconv <$> fdot (fromIntegral @Int @Int64 len) (ptrconv pvec1) (ptrconv pvec2)

{-# NOINLINE dotVectorVectorStrided #-}
dotVectorVectorStrided :: Storable a => Int -> (b -> a) -> (Ptr a -> Ptr b)
                       -> (Int64 -> Int64 -> Int64 -> Ptr b -> Int64 -> Int64 -> Ptr b -> IO b)  -- ^ dotprod kernel
                       -> Int -> Int -> VS.Vector a
                       -> Int -> Int -> VS.Vector a
                       -> a
dotVectorVectorStrided len valbackconv ptrconv fdot offset1 stride1 vec1 offset2 stride2 vec2 = unsafePerformIO $ do
  VS.unsafeWith vec1 $ \pvec1 ->
    VS.unsafeWith vec2 $ \pvec2 ->
      valbackconv <$> fdot (fromIntegral @Int @Int64 len)
                           (fromIntegral offset1) (fromIntegral stride1) (ptrconv pvec1)
                           (fromIntegral offset2) (fromIntegral stride2) (ptrconv pvec2)

flipOp :: (Int64 -> Ptr a -> a -> Ptr a -> IO ())
       ->  Int64 -> Ptr a -> Ptr a -> a -> IO ()
flipOp f n out v s = f n out s v

$(fmap concat . forM typesList $ \arithtype -> do
    let ttyp = conT (atType arithtype)
    fmap concat . forM [minBound..maxBound] $ \arithop -> do
      let name = mkName (aboName arithop ++ "Vector" ++ nameBase (atType arithtype))
          cnamebase = "c_binary_" ++ atCName arithtype
          c_ss_str = varE (aboNumOp arithop)
          c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
          c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
          c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
      sequence [SigD name <$>
                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |]
               ,do body <- [| \sn -> liftVEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |]
                   return $ FunD name [Clause [] (NormalB body) []]])

$(fmap concat . forM intTypesList $ \arithtype -> do
    let ttyp = conT (atType arithtype)
    fmap concat . forM [minBound..maxBound] $ \arithop -> do
      let name = mkName (aiboName arithop ++ "Vector" ++ nameBase (atType arithtype))
          cnamebase = "c_ibinary_" ++ atCName arithtype
          c_ss_str = varE (aiboNumOp arithop)
          c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop)))
          c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop)))
          c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop)))
      sequence [SigD name <$>
                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |]
               ,do body <- [| \sn -> liftVEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |]
                   return $ FunD name [Clause [] (NormalB body) []]])

$(fmap concat . forM floatTypesList $ \arithtype -> do
    let ttyp = conT (atType arithtype)
    fmap concat . forM [minBound..maxBound] $ \arithop -> do
      let name = mkName (afboName arithop ++ "Vector" ++ nameBase (atType arithtype))
          cnamebase = "c_fbinary_" ++ atCName arithtype
          c_ss_str = varE (afboNumOp arithop)
          c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
          c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
          c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
      sequence [SigD name <$>
                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |]
               ,do body <- [| \sn -> liftVEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |]
                   return $ FunD name [Clause [] (NormalB body) []]])

$(fmap concat . forM typesList $ \arithtype -> do
    let ttyp = conT (atType arithtype)
    fmap concat . forM [minBound..maxBound] $ \arithop -> do
      let name = mkName (auoName arithop ++ "Vector" ++ nameBase (atType arithtype))
          c_op_strided = varE (mkName ("c_unary_" ++ atCName arithtype ++ "_strided")) `appE` litE (integerL (fromIntegral (auoEnum arithop)))
      sequence [SigD name <$>
                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |]
               ,do body <- [| \sn -> liftOpEltwise1 sn id id $c_op_strided |]
                   return $ FunD name [Clause [] (NormalB body) []]])

$(fmap concat . forM floatTypesList $ \arithtype -> do
    let ttyp = conT (atType arithtype)
    fmap concat . forM [minBound..maxBound] $ \arithop -> do
      let name = mkName (afuoName arithop ++ "Vector" ++ nameBase (atType arithtype))
          c_op_strided = varE (mkName ("c_funary_" ++ atCName arithtype ++ "_strided")) `appE` litE (integerL (fromIntegral (afuoEnum arithop)))
      sequence [SigD name <$>
                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |]
               ,do body <- [| \sn -> liftOpEltwise1 sn id id $c_op_strided |]
                   return $ FunD name [Clause [] (NormalB body) []]])

mulWithInt :: Num a => a -> Int -> a
mulWithInt a i = a * fromIntegral i

scaleFromSVStrided :: (Int64 -> Ptr Int64 -> Ptr a -> a -> Ptr Int64 -> Ptr a -> IO ())
                   -> Int64 -> Ptr a -> a -> Ptr a -> IO ()
scaleFromSVStrided fsv n out x ys =
  VS.unsafeWith (VS.singleton n) $ \psh ->
    VS.unsafeWith (VS.singleton 1) $ \pstrides ->
      fsv 1 psh out x pstrides ys

$(fmap concat . forM typesList $ \arithtype -> do
    let ttyp = conT (atType arithtype)
    fmap concat . forM [minBound..maxBound] $ \arithop -> do
      let scaleVar = case arithop of
                       RO_SUM -> varE 'mulWithInt
                       RO_PRODUCT -> varE '(^)
      let name1 = mkName (aroName arithop ++ "1Vector" ++ nameBase (atType arithtype))
          namefull = mkName (aroName arithop ++ "FullVector" ++ nameBase (atType arithtype))
          c_op1 = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop)))
          c_opfull = varE (mkName ("c_reducefull_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop)))
          c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL)))
      sequence [SigD name1 <$>
                     [t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |]
               ,do body <- [| \sn -> vectorRedInnerOp sn id id (scaleFromSVStrided $c_scale_op) $c_op1 |]
                   return $ FunD name1 [Clause [] (NormalB body) []]
               ,SigD namefull <$>
                     [t| forall n. SNat n -> RS.Array n $ttyp -> $ttyp |]
               ,do body <- [| \sn -> vectorRedFullOp sn $scaleVar id id $c_opfull |]
                   return $ FunD namefull [Clause [] (NormalB body) []]
               ])

$(fmap concat . forM typesList $ \arithtype ->
    fmap concat . forM ["min", "max"] $ \fname -> do
      let ttyp = conT (atType arithtype)
          name = mkName (fname ++ "indexVector" ++ nameBase (atType arithtype))
          c_op = varE (mkName ("c_extremum_" ++ fname ++ "_" ++ atCName arithtype))
      sequence [SigD name <$>
                     [t| forall n. RS.Array n $ttyp -> [Int] |]
               ,do body <- [| vectorExtremumOp id $c_op |]
                   return $ FunD name [Clause [] (NormalB body) []]])

$(fmap concat . forM typesList $ \arithtype -> do
    let ttyp = conT (atType arithtype)
        name = mkName ("dotprodinnerVector" ++ nameBase (atType arithtype))
        c_op = varE (mkName ("c_dotprodinner_" ++ atCName arithtype))
        mul_op = varE (mkName ("mulVector" ++ nameBase (atType arithtype)))
        c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL)))
        c_red_op = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum RO_SUM)))
    sequence [SigD name <$>
                   [t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |]
             ,do body <- [| \sn -> vectorDotprodInnerOp sn id id $mul_op (scaleFromSVStrided $c_scale_op) $c_red_op $c_op |]
                 return $ FunD name [Clause [] (NormalB body) []]])

foreign import ccall unsafe "oxarrays_stats_enable" c_stats_enable :: Int32 -> IO ()
foreign import ccall unsafe "oxarrays_stats_print_all" c_stats_print_all :: IO ()

statisticsEnable :: Bool -> IO ()
statisticsEnable b = c_stats_enable (if b then 1 else 0)

-- | Consumes the log: one particular event will only ever be printed once,
-- even if statisticsPrintAll is called multiple times.
statisticsPrintAll :: IO ()
statisticsPrintAll = do
  hFlush stdout  -- lower the chance of overlapping output
  c_stats_print_all

-- This branch is ostensibly a runtime branch, but will (hopefully) be
-- constant-folded away by GHC.
intWidBranch1 :: forall i n. (FiniteBits i, Storable i)
              => (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ())
              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())
              -> (SNat n -> RS.Array n i -> RS.Array n i)
intWidBranch1 f32 f64 sn
  | finiteBitSize (undefined :: i) == 32 = liftOpEltwise1 sn castPtr castPtr f32
  | finiteBitSize (undefined :: i) == 64 = liftOpEltwise1 sn castPtr castPtr f64
  | otherwise = error "Unsupported Int width"

intWidBranch2 :: forall i n. (FiniteBits i, Storable i, Integral i)
              => (i -> i -> i)  -- ss
                 -- int32
              -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Int32 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- sv
              -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> Int32 -> IO ())  -- vs
              -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- vv
                 -- int64
              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- sv
              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Int64 -> IO ())  -- vs
              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- vv
              -> (SNat n -> RS.Array n i -> RS.Array n i -> RS.Array n i)
intWidBranch2 ss sv32 vs32 vv32 sv64 vs64 vv64 sn
  | finiteBitSize (undefined :: i) == 32 = liftVEltwise2 sn fromIntegral castPtr ss sv32 vs32 vv32
  | finiteBitSize (undefined :: i) == 64 = liftVEltwise2 sn fromIntegral castPtr ss sv64 vs64 vv64
  | otherwise = error "Unsupported Int width"

intWidBranchRed1 :: forall i n. (FiniteBits i, Storable i, Integral i)
                 => -- int32
                    (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ())  -- ^ scale by constant
                 -> (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ reduction kernel
                    -- int64
                 -> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ())  -- ^ scale by constant
                 -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ reduction kernel
                 -> (SNat n -> RS.Array (n + 1) i -> RS.Array n i)
intWidBranchRed1 fsc32 fred32 fsc64 fred64 sn
  | finiteBitSize (undefined :: i) == 32 = vectorRedInnerOp @i @Int32 sn fromIntegral castPtr fsc32 fred32
  | finiteBitSize (undefined :: i) == 64 = vectorRedInnerOp @i @Int64 sn fromIntegral castPtr fsc64 fred64
  | otherwise = error "Unsupported Int width"

intWidBranchRedFull :: forall i n. (FiniteBits i, Storable i, Integral i)
                    => (i -> Int -> i)  -- ^ scale op
                       -- int32
                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO Int32)  -- ^ reduction kernel
                       -- int64
                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO Int64)  -- ^ reduction kernel
                    -> (SNat n -> RS.Array n i -> i)
intWidBranchRedFull fsc fred32 fred64 sn
  | finiteBitSize (undefined :: i) == 32 = vectorRedFullOp @i @Int32 sn fsc fromIntegral castPtr fred32
  | finiteBitSize (undefined :: i) == 64 = vectorRedFullOp @i @Int64 sn fsc fromIntegral castPtr fred64
  | otherwise = error "Unsupported Int width"

intWidBranchExtr :: forall i n. (FiniteBits i, Storable i, Integral i)
                 => -- int32
                    (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ extremum kernel
                    -- int64
                 -> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ extremum kernel
                 -> (RS.Array n i -> [Int])
intWidBranchExtr fextr32 fextr64
  | finiteBitSize (undefined :: i) == 32 = vectorExtremumOp @i @Int32 castPtr fextr32
  | finiteBitSize (undefined :: i) == 64 = vectorExtremumOp @i @Int64 castPtr fextr64
  | otherwise = error "Unsupported Int width"

intWidBranchDotprod :: forall i n. (FiniteBits i, Storable i, Integral i, NumElt i)
                    => -- int32
                       (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ())  -- ^ scale by constant
                    -> (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ reduction kernel
                    -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ dotprod kernel
                       -- int64
                    -> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ())  -- ^ scale by constant
                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ reduction kernel
                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ dotprod kernel
                    -> (SNat n -> RS.Array (n + 1) i -> RS.Array (n + 1) i -> RS.Array n i)
intWidBranchDotprod fsc32 fred32 fdot32 fsc64 fred64 fdot64 sn
  | finiteBitSize (undefined :: i) == 32 = vectorDotprodInnerOp @i @Int32 sn fromIntegral castPtr numEltMul fsc32 fred32 fdot32
  | finiteBitSize (undefined :: i) == 64 = vectorDotprodInnerOp @i @Int64 sn fromIntegral castPtr numEltMul fsc64 fred64 fdot64
  | otherwise = error "Unsupported Int width"

class NumElt a where
  numEltAdd :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
  numEltSub :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
  numEltMul :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
  numEltNeg :: SNat n -> RS.Array n a -> RS.Array n a
  numEltAbs :: SNat n -> RS.Array n a -> RS.Array n a
  numEltSignum :: SNat n -> RS.Array n a -> RS.Array n a
  numEltSum1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a
  numEltProduct1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a
  numEltSumFull :: SNat n -> RS.Array n a -> a
  numEltProductFull :: SNat n -> RS.Array n a -> a
  numEltMinIndex :: SNat n -> RS.Array n a -> [Int]
  numEltMaxIndex :: SNat n -> RS.Array n a -> [Int]
  numEltDotprodInner :: SNat n -> RS.Array (n + 1) a -> RS.Array (n + 1) a -> RS.Array n a

instance NumElt Int32 where
  numEltAdd = addVectorInt32
  numEltSub = subVectorInt32
  numEltMul = mulVectorInt32
  numEltNeg = negVectorInt32
  numEltAbs = absVectorInt32
  numEltSignum = signumVectorInt32
  numEltSum1Inner = sum1VectorInt32
  numEltProduct1Inner = product1VectorInt32
  numEltSumFull = sumFullVectorInt32
  numEltProductFull = productFullVectorInt32
  numEltMinIndex _ = minindexVectorInt32
  numEltMaxIndex _ = maxindexVectorInt32
  numEltDotprodInner = dotprodinnerVectorInt32

instance NumElt Int64 where
  numEltAdd = addVectorInt64
  numEltSub = subVectorInt64
  numEltMul = mulVectorInt64
  numEltNeg = negVectorInt64
  numEltAbs = absVectorInt64
  numEltSignum = signumVectorInt64
  numEltSum1Inner = sum1VectorInt64
  numEltProduct1Inner = product1VectorInt64
  numEltSumFull = sumFullVectorInt64
  numEltProductFull = productFullVectorInt64
  numEltMinIndex _ = minindexVectorInt64
  numEltMaxIndex _ = maxindexVectorInt64
  numEltDotprodInner = dotprodinnerVectorInt64

instance NumElt Float where
  numEltAdd = addVectorFloat
  numEltSub = subVectorFloat
  numEltMul = mulVectorFloat
  numEltNeg = negVectorFloat
  numEltAbs = absVectorFloat
  numEltSignum = signumVectorFloat
  numEltSum1Inner = sum1VectorFloat
  numEltProduct1Inner = product1VectorFloat
  numEltSumFull = sumFullVectorFloat
  numEltProductFull = productFullVectorFloat
  numEltMinIndex _ = minindexVectorFloat
  numEltMaxIndex _ = maxindexVectorFloat
  numEltDotprodInner = dotprodinnerVectorFloat

instance NumElt Double where
  numEltAdd = addVectorDouble
  numEltSub = subVectorDouble
  numEltMul = mulVectorDouble
  numEltNeg = negVectorDouble
  numEltAbs = absVectorDouble
  numEltSignum = signumVectorDouble
  numEltSum1Inner = sum1VectorDouble
  numEltProduct1Inner = product1VectorDouble
  numEltSumFull = sumFullVectorDouble
  numEltProductFull = productFullVectorDouble
  numEltMinIndex _ = minindexVectorDouble
  numEltMaxIndex _ = maxindexVectorDouble
  numEltDotprodInner = dotprodinnerVectorDouble

instance NumElt Int where
  numEltAdd = intWidBranch2 @Int (+)
                (c_binary_i32_sv_strided (aboEnum BO_ADD)) (c_binary_i32_vs_strided (aboEnum BO_ADD)) (c_binary_i32_vv_strided (aboEnum BO_ADD))
                (c_binary_i64_sv_strided (aboEnum BO_ADD)) (c_binary_i64_vs_strided (aboEnum BO_ADD)) (c_binary_i64_vv_strided (aboEnum BO_ADD))
  numEltSub = intWidBranch2 @Int (-)
                (c_binary_i32_sv_strided (aboEnum BO_SUB)) (c_binary_i32_vs_strided (aboEnum BO_SUB)) (c_binary_i32_vv_strided (aboEnum BO_SUB))
                (c_binary_i64_sv_strided (aboEnum BO_SUB)) (c_binary_i64_vs_strided (aboEnum BO_SUB)) (c_binary_i64_vv_strided (aboEnum BO_SUB))
  numEltMul = intWidBranch2 @Int (*)
                (c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_binary_i32_vs_strided (aboEnum BO_MUL)) (c_binary_i32_vv_strided (aboEnum BO_MUL))
                (c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_binary_i64_vs_strided (aboEnum BO_MUL)) (c_binary_i64_vv_strided (aboEnum BO_MUL))
  numEltNeg = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_NEG)) (c_unary_i64_strided (auoEnum UO_NEG))
  numEltAbs = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_ABS)) (c_unary_i64_strided (auoEnum UO_ABS))
  numEltSignum = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_SIGNUM)) (c_unary_i64_strided (auoEnum UO_SIGNUM))
  numEltSum1Inner = intWidBranchRed1 @Int
                      (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM))
                      (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM))
  numEltProduct1Inner = intWidBranchRed1 @Int
                          (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_PRODUCT))
                          (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_PRODUCT))
  numEltSumFull = intWidBranchRedFull @Int (*) (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM))
  numEltProductFull = intWidBranchRedFull @Int (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT))
  numEltMinIndex _ = intWidBranchExtr @Int c_extremum_min_i32 c_extremum_min_i64
  numEltMaxIndex _ = intWidBranchExtr @Int c_extremum_max_i32 c_extremum_max_i64
  numEltDotprodInner = intWidBranchDotprod @Int (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32
                                                (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64

instance NumElt CInt where
  numEltAdd = intWidBranch2 @CInt (+)
                (c_binary_i32_sv_strided (aboEnum BO_ADD)) (c_binary_i32_vs_strided (aboEnum BO_ADD)) (c_binary_i32_vv_strided (aboEnum BO_ADD))
                (c_binary_i64_sv_strided (aboEnum BO_ADD)) (c_binary_i64_vs_strided (aboEnum BO_ADD)) (c_binary_i64_vv_strided (aboEnum BO_ADD))
  numEltSub = intWidBranch2 @CInt (-)
                (c_binary_i32_sv_strided (aboEnum BO_SUB)) (c_binary_i32_vs_strided (aboEnum BO_SUB)) (c_binary_i32_vv_strided (aboEnum BO_SUB))
                (c_binary_i64_sv_strided (aboEnum BO_SUB)) (c_binary_i64_vs_strided (aboEnum BO_SUB)) (c_binary_i64_vv_strided (aboEnum BO_SUB))
  numEltMul = intWidBranch2 @CInt (*)
                (c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_binary_i32_vs_strided (aboEnum BO_MUL)) (c_binary_i32_vv_strided (aboEnum BO_MUL))
                (c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_binary_i64_vs_strided (aboEnum BO_MUL)) (c_binary_i64_vv_strided (aboEnum BO_MUL))
  numEltNeg = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_NEG)) (c_unary_i64_strided (auoEnum UO_NEG))
  numEltAbs = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_ABS)) (c_unary_i64_strided (auoEnum UO_ABS))
  numEltSignum = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_SIGNUM)) (c_unary_i64_strided (auoEnum UO_SIGNUM))
  numEltSum1Inner = intWidBranchRed1 @CInt
                      (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM))
                      (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM))
  numEltProduct1Inner = intWidBranchRed1 @CInt
                          (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_PRODUCT))
                          (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_PRODUCT))
  numEltSumFull = intWidBranchRedFull @CInt mulWithInt (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM))
  numEltProductFull = intWidBranchRedFull @CInt (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT))
  numEltMinIndex _ = intWidBranchExtr @CInt c_extremum_min_i32 c_extremum_min_i64
  numEltMaxIndex _ = intWidBranchExtr @CInt c_extremum_max_i32 c_extremum_max_i64
  numEltDotprodInner = intWidBranchDotprod @CInt (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32
                                                 (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64

class NumElt a => IntElt a where
  intEltQuot :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
  intEltRem :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a

instance IntElt Int32 where
  intEltQuot = quotVectorInt32
  intEltRem = remVectorInt32

instance IntElt Int64 where
  intEltQuot = quotVectorInt64
  intEltRem = remVectorInt64

instance IntElt Int where
  intEltQuot = intWidBranch2 @Int quot
                 (c_binary_i32_sv_strided (aiboEnum IB_QUOT)) (c_binary_i32_vs_strided (aiboEnum IB_QUOT)) (c_binary_i32_vv_strided (aiboEnum IB_QUOT))
                 (c_binary_i64_sv_strided (aiboEnum IB_QUOT)) (c_binary_i64_vs_strided (aiboEnum IB_QUOT)) (c_binary_i64_vv_strided (aiboEnum IB_QUOT))
  intEltRem = intWidBranch2 @Int rem
                (c_binary_i32_sv_strided (aiboEnum IB_REM)) (c_binary_i32_vs_strided (aiboEnum IB_REM)) (c_binary_i32_vv_strided (aiboEnum IB_REM))
                (c_binary_i64_sv_strided (aiboEnum IB_REM)) (c_binary_i64_vs_strided (aiboEnum IB_REM)) (c_binary_i64_vv_strided (aiboEnum IB_REM))

instance IntElt CInt where
  intEltQuot = intWidBranch2 @CInt quot
                 (c_binary_i32_sv_strided (aiboEnum IB_QUOT)) (c_binary_i32_vs_strided (aiboEnum IB_QUOT)) (c_binary_i32_vv_strided (aiboEnum IB_QUOT))
                 (c_binary_i64_sv_strided (aiboEnum IB_QUOT)) (c_binary_i64_vs_strided (aiboEnum IB_QUOT)) (c_binary_i64_vv_strided (aiboEnum IB_QUOT))
  intEltRem = intWidBranch2 @CInt rem
                (c_binary_i32_sv_strided (aiboEnum IB_REM)) (c_binary_i32_vs_strided (aiboEnum IB_REM)) (c_binary_i32_vv_strided (aiboEnum IB_REM))
                (c_binary_i64_sv_strided (aiboEnum IB_REM)) (c_binary_i64_vs_strided (aiboEnum IB_REM)) (c_binary_i64_vv_strided (aiboEnum IB_REM))

class NumElt a => FloatElt a where
  floatEltDiv :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
  floatEltPow :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
  floatEltLogbase :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
  floatEltRecip :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltExp :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltLog :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltSqrt :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltSin :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltCos :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltTan :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltAsin :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltAcos :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltAtan :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltSinh :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltCosh :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltTanh :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltAsinh :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltAcosh :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltAtanh :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltLog1p :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltExpm1 :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltLog1pexp :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltLog1mexp :: SNat n -> RS.Array n a -> RS.Array n a
  floatEltAtan2 :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a

instance FloatElt Float where
  floatEltDiv = divVectorFloat
  floatEltPow = powVectorFloat
  floatEltLogbase = logbaseVectorFloat
  floatEltRecip = recipVectorFloat
  floatEltExp = expVectorFloat
  floatEltLog = logVectorFloat
  floatEltSqrt = sqrtVectorFloat
  floatEltSin = sinVectorFloat
  floatEltCos = cosVectorFloat
  floatEltTan = tanVectorFloat
  floatEltAsin = asinVectorFloat
  floatEltAcos = acosVectorFloat
  floatEltAtan = atanVectorFloat
  floatEltSinh = sinhVectorFloat
  floatEltCosh = coshVectorFloat
  floatEltTanh = tanhVectorFloat
  floatEltAsinh = asinhVectorFloat
  floatEltAcosh = acoshVectorFloat
  floatEltAtanh = atanhVectorFloat
  floatEltLog1p = log1pVectorFloat
  floatEltExpm1 = expm1VectorFloat
  floatEltLog1pexp = log1pexpVectorFloat
  floatEltLog1mexp = log1mexpVectorFloat
  floatEltAtan2 = atan2VectorFloat

instance FloatElt Double where
  floatEltDiv = divVectorDouble
  floatEltPow = powVectorDouble
  floatEltLogbase = logbaseVectorDouble
  floatEltRecip = recipVectorDouble
  floatEltExp = expVectorDouble
  floatEltLog = logVectorDouble
  floatEltSqrt = sqrtVectorDouble
  floatEltSin = sinVectorDouble
  floatEltCos = cosVectorDouble
  floatEltTan = tanVectorDouble
  floatEltAsin = asinVectorDouble
  floatEltAcos = acosVectorDouble
  floatEltAtan = atanVectorDouble
  floatEltSinh = sinhVectorDouble
  floatEltCosh = coshVectorDouble
  floatEltTanh = tanhVectorDouble
  floatEltAsinh = asinhVectorDouble
  floatEltAcosh = acoshVectorDouble
  floatEltAtanh = atanhVectorDouble
  floatEltLog1p = log1pVectorDouble
  floatEltExpm1 = expm1VectorDouble
  floatEltLog1pexp = log1pexpVectorDouble
  floatEltLog1mexp = log1mexpVectorDouble
  floatEltAtan2 = atan2VectorDouble