{-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} module Data.Array.Mixed.Lemmas where import Data.Proxy import Data.Type.Equality import GHC.TypeLits import Data.Array.Mixed.Permutation import Data.Array.Mixed.Shape import Data.Array.Mixed.Types -- * Reasoning helpers subst1 :: forall f a b. a :~: b -> f a :~: f b subst1 Refl = Refl subst2 :: forall f c a b. a :~: b -> f a c :~: f b c subst2 Refl = Refl -- * Lemmas -- ** Nat lemLeqSuccSucc :: (k + 1 <= n) => Proxy k -> Proxy n -> (k <=? n - 1) :~: True lemLeqSuccSucc _ _ = unsafeCoerceRefl lemLeqPlus :: n <= m => Proxy n -> Proxy m -> Proxy k -> (n <=? (m + k)) :~: 'True lemLeqPlus _ _ _ = Refl -- ** Append lemAppNil :: l ++ '[] :~: l lemAppNil = unsafeCoerceRefl lemAppAssoc :: Proxy a -> Proxy b -> Proxy c -> (a ++ b) ++ c :~: a ++ (b ++ c) lemAppAssoc _ _ _ = unsafeCoerceRefl lemAppLeft :: Proxy l -> a :~: b -> a ++ l :~: b ++ l lemAppLeft _ Refl = Refl -- ** Rank lemRankApp :: forall sh1 sh2. StaticShX sh1 -> StaticShX sh2 -> Rank (sh1 ++ sh2) :~: Rank sh1 + Rank sh2 lemRankApp ZKX _ = Refl lemRankApp (_ :!% (ssh1 :: StaticShX sh1T)) ssh2 = lem2 (Proxy @(Rank sh1T)) Proxy Proxy $ lem (Proxy @(Rank sh2)) (Proxy @(Rank sh1T)) (Proxy @(Rank (sh1T ++ sh2))) $ lemRankApp ssh1 ssh2 where lem :: proxy a -> proxy b -> proxy c -> c :~: b + a -> b + a :~: c lem _ _ _ Refl = Refl lem2 :: proxy a -> proxy b -> proxy c -> (a + b :~: c) -> c + 1 :~: (a + 1 + b) lem2 _ _ _ Refl = Refl lemRankAppComm :: StaticShX sh1 -> StaticShX sh2 -> Rank (sh1 ++ sh2) :~: Rank (sh2 ++ sh1) lemRankAppComm _ _ = unsafeCoerceRefl -- TODO improve this lemRankReplicate :: SNat n -> Rank (Replicate n (Nothing @Nat)) :~: n lemRankReplicate SZ = Refl lemRankReplicate (SS (n :: SNat nm1)) | Refl <- lemReplicateSucc @(Nothing @Nat) @nm1 , Refl <- lemRankReplicate n = Refl -- ** Various type families lemReplicatePlusApp :: forall n m a. SNat n -> Proxy m -> Proxy a -> Replicate (n + m) a :~: Replicate n a ++ Replicate m a lemReplicatePlusApp sn _ _ = go sn where go :: SNat n' -> Replicate (n' + m) a :~: Replicate n' a ++ Replicate m a go SZ = Refl go (SS (n :: SNat n'm1)) | Refl <- lemReplicateSucc @a @n'm1 , Refl <- go n = sym (lemReplicateSucc @a @(n'm1 + m)) lemDropLenApp :: Rank l1 <= Rank l2 => Proxy l1 -> Proxy l2 -> Proxy rest -> DropLen l1 l2 ++ rest :~: DropLen l1 (l2 ++ rest) lemDropLenApp _ _ _ = unsafeCoerceRefl lemTakeLenApp :: Rank l1 <= Rank l2 => Proxy l1 -> Proxy l2 -> Proxy rest -> TakeLen l1 l2 :~: TakeLen l1 (l2 ++ rest) lemTakeLenApp _ _ _ = unsafeCoerceRefl lemInitApp :: Proxy l -> Proxy x -> Init (l ++ '[x]) :~: l lemInitApp _ _ = unsafeCoerceRefl lemLastApp :: Proxy l -> Proxy x -> Last (l ++ '[x]) :~: x lemLastApp _ _ = unsafeCoerceRefl -- ** KnownNat lemKnownNatSucc :: KnownNat n => Dict KnownNat (n + 1) lemKnownNatSucc = Dict lemKnownNatRank :: ShX sh i -> Dict KnownNat (Rank sh) lemKnownNatRank ZSX = Dict lemKnownNatRank (_ :$% sh) | Dict <- lemKnownNatRank sh = Dict lemKnownNatRankSSX :: StaticShX sh -> Dict KnownNat (Rank sh) lemKnownNatRankSSX ZKX = Dict lemKnownNatRankSSX (_ :!% ssh) | Dict <- lemKnownNatRankSSX ssh = Dict -- ** Known shapes lemKnownReplicate :: SNat n -> Dict KnownShX (Replicate n Nothing) lemKnownReplicate sn = lemKnownShX (ssxFromSNat sn) lemKnownShX :: StaticShX sh -> Dict KnownShX sh lemKnownShX ZKX = Dict lemKnownShX (SKnown SNat :!% ssh) | Dict <- lemKnownShX ssh = Dict lemKnownShX (SUnknown () :!% ssh) | Dict <- lemKnownShX ssh = Dict