{-# LANGUAGE DataKinds #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DerivingVia #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ImportQualifiedPost #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE StandaloneKindSignatures #-} {-# LANGUAGE StrictData #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ViewPatterns #-} module Data.Array.Nested.Internal.Mixed where import Prelude hiding (mconcat) import Control.DeepSeq (NFData) import Control.Monad (forM_, when) import Control.Monad.ST import Data.Array.RankedS qualified as S import Data.Bifunctor (bimap) import Data.Coerce import Data.Foldable (toList) import Data.Int import Data.Kind (Type) import Data.List.NonEmpty (NonEmpty(..)) import Data.List.NonEmpty qualified as NE import Data.Proxy import Data.Type.Equality import Data.Vector.Storable qualified as VS import Data.Vector.Storable.Mutable qualified as VSM import Foreign.C.Types (CInt) import Foreign.Storable (Storable) import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp) import GHC.Generics (Generic) import GHC.TypeLits import Unsafe.Coerce (unsafeCoerce) import Data.Array.Mixed.XArray (XArray(..)) import Data.Array.Mixed.XArray qualified as X import Data.Array.Mixed.Internal.Arith import Data.Array.Mixed.Shape import Data.Array.Mixed.Types import Data.Array.Mixed.Permutation import Data.Array.Mixed.Lemmas -- TODO: -- sumAllPrim :: (PrimElt a, NumElt a) => Mixed sh a -> a -- rminIndex1 :: Ranked (n + 1) a -> Ranked n Int -- gather/scatter-like things (most generally, the higher-order variants: accelerate's backpermute/permute) -- Remove current rdot and replace with: -- rdot1Inner :: Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked n a -- rdot :: Ranked n a -> Ranked n a -> a -- After benchmarking: matmul and matvec -- Invariant in the API -- ==================== -- -- In the underlying XArray, there is some shape for elements of an empty -- array. For example, for this array: -- -- arr :: Ranked I3 (Ranked I2 Int, Ranked I1 Float) -- rshape arr == 0 :.: 0 :.: 0 :.: ZIR -- -- the two underlying XArrays have a shape, and those shapes might be anything. -- The invariant is that these element shapes are unobservable in the API. -- (This is possible because you ought to not be able to get to such an element -- without indexing out of bounds.) -- -- Note, though, that the converse situation may arise: the outer array might -- be nonempty but then the inner arrays might. This is fine, an invariant only -- applies if the _outer_ array is empty. -- -- TODO: can we enforce that the elements of an empty (nested) array have -- all-zero shape? -- -> no, because mlift and also any kind of internals probing from outsiders -- Primitive element types -- ======================= -- -- There are a few primitive element types; arrays containing elements of such -- type are a newtype over an XArray, which it itself a newtype over a Vector. -- Unfortunately, the setup of the library requires us to list these primitive -- element types multiple times; to aid in extending the list, all these lists -- have been marked with [PRIMITIVE ELEMENT TYPES LIST]. -- | Wrapper type used as a tag to attach instances on. The instances on arrays -- of @'Primitive' a@ are more polymorphic than the direct instances for arrays -- of scalars; this means that if @orthotope@ supports an element type @T@ that -- this library does not (directly), it may just work if you use an array of -- @'Primitive' T@ instead. newtype Primitive a = Primitive a deriving (Show) -- | Element types that are primitive; arrays of these types are just a newtype -- wrapper over an array. class Storable a => PrimElt a where fromPrimitive :: Mixed sh (Primitive a) -> Mixed sh a toPrimitive :: Mixed sh a -> Mixed sh (Primitive a) default fromPrimitive :: Coercible (Mixed sh a) (Mixed sh (Primitive a)) => Mixed sh (Primitive a) -> Mixed sh a fromPrimitive = coerce default toPrimitive :: Coercible (Mixed sh (Primitive a)) (Mixed sh a) => Mixed sh a -> Mixed sh (Primitive a) toPrimitive = coerce -- [PRIMITIVE ELEMENT TYPES LIST] instance PrimElt Int instance PrimElt Int64 instance PrimElt Int32 instance PrimElt CInt instance PrimElt Float instance PrimElt Double instance PrimElt () -- | Mixed arrays: some dimensions are size-typed, some are not. Distributes -- over product-typed elements using a data family so that the full array is -- always in struct-of-arrays format. -- -- Built on top of 'XArray' which is built on top of @orthotope@, meaning that -- dimension permutations (e.g. 'mtranspose') are typically free. -- -- Many of the methods for working on 'Mixed' arrays come from the 'Elt' type -- class. type Mixed :: [Maybe Nat] -> Type -> Type data family Mixed sh a -- NOTE: When opening up the Mixed abstraction, you might see dimension sizes -- that you're not supposed to see. In particular, you might see (nonempty) -- sizes of the elements of an empty array, which is information that should -- ostensibly not exist; the full array is still empty. data instance Mixed sh (Primitive a) = M_Primitive !(IShX sh) !(XArray sh a) deriving (Eq, Generic) deriving (Show) via (ShowViaToListLinear sh (Primitive a)) -- | Only on scalars, because lexicographical ordering is strange on multi-dimensional arrays. deriving instance (Ord a, Storable a) => Ord (Mixed sh (Primitive a)) instance NFData a => NFData (Mixed sh (Primitive a)) -- [PRIMITIVE ELEMENT TYPES LIST] newtype instance Mixed sh Int = M_Int (Mixed sh (Primitive Int)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Int) newtype instance Mixed sh Int64 = M_Int64 (Mixed sh (Primitive Int64)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Int64) newtype instance Mixed sh Int32 = M_Int32 (Mixed sh (Primitive Int32)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Int32) newtype instance Mixed sh CInt = M_CInt (Mixed sh (Primitive CInt)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh CInt) newtype instance Mixed sh Float = M_Float (Mixed sh (Primitive Float)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Float) newtype instance Mixed sh Double = M_Double (Mixed sh (Primitive Double)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Double) newtype instance Mixed sh () = M_Nil (Mixed sh (Primitive ())) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh ()) -- no content, orthotope optimises this (via Vector) -- etc. -- [PRIMITIVE ELEMENT TYPES LIST] deriving instance Ord (Mixed sh Int) ; instance NFData (Mixed sh Int) deriving instance Ord (Mixed sh Int64) ; instance NFData (Mixed sh Int64) deriving instance Ord (Mixed sh Int32) ; instance NFData (Mixed sh Int32) deriving instance Ord (Mixed sh CInt) ; instance NFData (Mixed sh CInt) deriving instance Ord (Mixed sh Float) ; instance NFData (Mixed sh Float) deriving instance Ord (Mixed sh Double) ; instance NFData (Mixed sh Double) deriving instance Ord (Mixed sh ()) ; instance NFData (Mixed sh ()) data instance Mixed sh (a, b) = M_Tup2 !(Mixed sh a) !(Mixed sh b) deriving (Generic) deriving via (ShowViaToListLinear sh (a, b)) instance (Show a, Elt a, Show b, Elt b) => Show (Mixed sh (a, b)) instance (NFData (Mixed sh a), NFData (Mixed sh b)) => NFData (Mixed sh (a, b)) -- etc., larger tuples (perhaps use generics to allow arbitrary product types) data instance Mixed sh1 (Mixed sh2 a) = M_Nest !(IShX sh1) !(Mixed (sh1 ++ sh2) a) deriving (Generic) deriving via (ShowViaToListLinear sh1 (Mixed sh2 a)) instance (Show (Mixed sh2 a), Elt a) => Show (Mixed sh1 (Mixed sh2 a)) instance NFData (Mixed (sh1 ++ sh2) a) => NFData (Mixed sh1 (Mixed sh2 a)) -- | Internal helper data family mirroring 'Mixed' that consists of mutable -- vectors instead of 'XArray's. type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type data family MixedVecs s sh a newtype instance MixedVecs s sh (Primitive a) = MV_Primitive (VS.MVector s a) -- [PRIMITIVE ELEMENT TYPES LIST] newtype instance MixedVecs s sh Int = MV_Int (VS.MVector s Int) newtype instance MixedVecs s sh Int64 = MV_Int64 (VS.MVector s Int64) newtype instance MixedVecs s sh Int32 = MV_Int32 (VS.MVector s Int32) newtype instance MixedVecs s sh CInt = MV_CInt (VS.MVector s CInt) newtype instance MixedVecs s sh Double = MV_Double (VS.MVector s Double) newtype instance MixedVecs s sh Float = MV_Float (VS.MVector s Float) newtype instance MixedVecs s sh () = MV_Nil (VS.MVector s ()) -- no content, MVector optimises this -- etc. data instance MixedVecs s sh (a, b) = MV_Tup2 !(MixedVecs s sh a) !(MixedVecs s sh b) -- etc. data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest !(IShX sh2) !(MixedVecs s (sh1 ++ sh2) a) -- Helpers for Show instances for the Mixed arrays newtype ShowViaToListLinear sh a = ShowViaToListLinear (Mixed sh a) instance (Show a, Elt a) => Show (ShowViaToListLinear sh a) where showsPrec d (ShowViaToListLinear arr) = showParen (d > 10) $ -- TODO: to avoid ambiguity, this should type-apply the shape to mfromListLinear showString "mfromListLinear " . shows (shxToList (mshape arr)) . showString " " . shows (mtoListLinear arr) newtype ShowViaPrimitive sh a = ShowViaPrimitive (Mixed sh (Primitive a)) instance (Show a, Storable a) => Show (ShowViaPrimitive sh a) where showsPrec d (ShowViaPrimitive parr@(M_Primitive sh _)) = showParen (d > 10) $ -- TODO: to avoid ambiguity, this should type-apply the shape to mfromListLinear showString "mfromListLinear " . shows (shxToList sh) . showString " " . shows (coerce @[Primitive a] @[a] (mtoListLinear parr)) mliftNumElt1 :: PrimElt a => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) a) -> Mixed sh a -> Mixed sh a mliftNumElt1 f (toPrimitive -> M_Primitive sh (XArray arr)) = fromPrimitive $ M_Primitive sh (XArray (f (shxRank sh) arr)) mliftNumElt2 :: PrimElt a => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) a -> S.Array (Rank sh) a) -> Mixed sh a -> Mixed sh a -> Mixed sh a mliftNumElt2 f (toPrimitive -> M_Primitive sh1 (XArray arr1)) (toPrimitive -> M_Primitive sh2 (XArray arr2)) | sh1 == sh2 = fromPrimitive $ M_Primitive sh1 (XArray (f (shxRank sh1) arr1 arr2)) | otherwise = error $ "Data.Array.Nested: Shapes unequal in elementwise Num operation: " ++ show sh1 ++ " vs " ++ show sh2 instance (NumElt a, PrimElt a, Num a) => Num (Mixed sh a) where (+) = mliftNumElt2 numEltAdd (-) = mliftNumElt2 numEltSub (*) = mliftNumElt2 numEltMul negate = mliftNumElt1 numEltNeg abs = mliftNumElt1 numEltAbs signum = mliftNumElt1 numEltSignum -- TODO: THIS IS BAD, WE NEED TO REMOVE THIS fromInteger n = unsafeCoerce @(Mixed '[] a) @(Mixed sh a) $ fromPrimitive $ M_Primitive ZSX (X.scalar (fromInteger n)) instance (FloatElt a, NumElt a, PrimElt a, Num a) => Fractional (Mixed sh a) where fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit mreplicate" recip = mliftNumElt1 floatEltRecip (/) = mliftNumElt2 floatEltDiv instance (FloatElt a, NumElt a, PrimElt a, Num a) => Floating (Mixed sh a) where pi = error "Data.Array.Nested.pi: No singletons available, use explicit mreplicate" exp = mliftNumElt1 floatEltExp log = mliftNumElt1 floatEltLog sqrt = mliftNumElt1 floatEltSqrt (**) = mliftNumElt2 floatEltPow logBase = mliftNumElt2 floatEltLogbase sin = mliftNumElt1 floatEltSin cos = mliftNumElt1 floatEltCos tan = mliftNumElt1 floatEltTan asin = mliftNumElt1 floatEltAsin acos = mliftNumElt1 floatEltAcos atan = mliftNumElt1 floatEltAtan sinh = mliftNumElt1 floatEltSinh cosh = mliftNumElt1 floatEltCosh tanh = mliftNumElt1 floatEltTanh asinh = mliftNumElt1 floatEltAsinh acosh = mliftNumElt1 floatEltAcosh atanh = mliftNumElt1 floatEltAtanh log1p = mliftNumElt1 floatEltLog1p expm1 = mliftNumElt1 floatEltExpm1 log1pexp = mliftNumElt1 floatEltLog1pexp log1mexp = mliftNumElt1 floatEltLog1mexp -- | Allowable element types in a mixed array, and by extension in a 'Ranked' or -- 'Shaped' array. Note the polymorphic instance for 'Elt' of @'Primitive' -- a@; see the documentation for 'Primitive' for more details. class Elt a where -- ====== PUBLIC METHODS ====== -- mshape :: Mixed sh a -> IShX sh mindex :: Mixed sh a -> IIxX sh -> a mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IIxX sh -> Mixed sh' a mscalar :: a -> Mixed '[] a -- | All arrays in the list, even subarrays inside @a@, must have the same -- shape; if they do not, a runtime error will be thrown. See the -- documentation of 'mgenerate' for more information about this restriction. -- Furthermore, the length of the list must correspond with @n@: if @n@ is -- @Just m@ and @m@ does not equal the length of the list, a runtime error is -- thrown. -- -- Consider also 'mfromListPrim', which can avoid intermediate arrays. mfromListOuter :: forall sh. NonEmpty (Mixed sh a) -> Mixed (Nothing : sh) a mtoListOuter :: Mixed (n : sh) a -> [Mixed sh a] -- | Note: this library makes no particular guarantees about the shapes of -- arrays "inside" an empty array. With 'mlift', 'mlift2' and 'mliftL' you can see the -- full 'XArray' and as such you can distinguish different empty arrays by -- the "shapes" of their elements. This information is meaningless, so you -- should not use it. mlift :: forall sh1 sh2. StaticShX sh2 -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b) -> Mixed sh1 a -> Mixed sh2 a -- | See the documentation for 'mlift'. mlift2 :: forall sh1 sh2 sh3. StaticShX sh3 -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b) -> Mixed sh1 a -> Mixed sh2 a -> Mixed sh3 a -- TODO: mliftL is currently unused. -- | All arrays in the input must have equal shapes, including subarrays -- inside their elements. mliftL :: forall sh1 sh2. StaticShX sh2 -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b)) -> NonEmpty (Mixed sh1 a) -> NonEmpty (Mixed sh2 a) mcast :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2 => StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') a -> Mixed (sh2 ++ sh') a mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh) => Perm is -> Mixed sh a -> Mixed (PermutePrefix is sh) a -- | All arrays in the input must have equal shapes, including subarrays -- inside their elements. mconcat :: NonEmpty (Mixed (Nothing : sh) a) -> Mixed (Nothing : sh) a -- ====== PRIVATE METHODS ====== -- -- | Tree giving the shape of every array component. type ShapeTree a mshapeTree :: a -> ShapeTree a mshapeTreeEq :: Proxy a -> ShapeTree a -> ShapeTree a -> Bool mshapeTreeEmpty :: Proxy a -> ShapeTree a -> Bool mshowShapeTree :: Proxy a -> ShapeTree a -> String -- | Given the shape of this array, an index and a value, write the value at -- that index in the vectors. mvecsWrite :: IShX sh -> IIxX sh -> a -> MixedVecs s sh a -> ST s () -- | Given the shape of this array, an index and a value, write the value at -- that index in the vectors. mvecsWritePartial :: IShX (sh ++ sh') -> IIxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s () -- | Given the shape of this array, finalise the vectors into 'XArray's. mvecsFreeze :: IShX sh -> MixedVecs s sh a -> ST s (Mixed sh a) -- | Element types for which we have evidence of the (static part of the) shape -- in a type class constraint. Compare the instance contexts of the instances -- of this class with those of 'Elt': some instances have an additional -- "known-shape" constraint. -- -- This class is (currently) only required for 'mgenerate', -- 'Data.Array.Nested.Ranked.rgenerate' and -- 'Data.Array.Nested.Shaped.sgenerate'. class Elt a => KnownElt a where -- | Create an empty array. The given shape must have size zero; this may or may not be checked. memptyArray :: IShX sh -> Mixed sh a -- | Create uninitialised vectors for this array type, given the shape of -- this vector and an example for the contents. mvecsUnsafeNew :: IShX sh -> a -> ST s (MixedVecs s sh a) mvecsNewEmpty :: Proxy a -> ST s (MixedVecs s sh a) -- Arrays of scalars are basically just arrays of scalars. instance Storable a => Elt (Primitive a) where mshape (M_Primitive sh _) = sh mindex (M_Primitive _ a) i = Primitive (X.index a i) mindexPartial (M_Primitive sh a) i = M_Primitive (shxDropIx sh i) (X.indexPartial a i) mscalar (Primitive x) = M_Primitive ZSX (X.scalar x) mfromListOuter l@(arr1 :| _) = let sh = SUnknown (length l) :$% mshape arr1 in M_Primitive sh (X.fromListOuter (ssxFromShape sh) (map (\(M_Primitive _ a) -> a) (toList l))) mtoListOuter (M_Primitive sh arr) = map (M_Primitive (shxTail sh)) (X.toListOuter arr) mlift :: forall sh1 sh2. StaticShX sh2 -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a) -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) mlift ssh2 f (M_Primitive _ a) | Refl <- lemAppNil @sh1 , Refl <- lemAppNil @sh2 , let result = f ZKX a = M_Primitive (X.shape ssh2 result) result mlift2 :: forall sh1 sh2 sh3. StaticShX sh3 -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a -> XArray (sh3 ++ '[]) a) -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) -> Mixed sh3 (Primitive a) mlift2 ssh3 f (M_Primitive _ a) (M_Primitive _ b) | Refl <- lemAppNil @sh1 , Refl <- lemAppNil @sh2 , Refl <- lemAppNil @sh3 , let result = f ZKX a b = M_Primitive (X.shape ssh3 result) result mliftL :: forall sh1 sh2. StaticShX sh2 -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b)) -> NonEmpty (Mixed sh1 (Primitive a)) -> NonEmpty (Mixed sh2 (Primitive a)) mliftL ssh2 f l | Refl <- lemAppNil @sh1 , Refl <- lemAppNil @sh2 = fmap (\arr -> M_Primitive (X.shape ssh2 arr) arr) $ f ZKX (fmap (\(M_Primitive _ arr) -> arr) l) mcast :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2 => StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') (Primitive a) -> Mixed (sh2 ++ sh') (Primitive a) mcast ssh1 sh2 _ (M_Primitive sh1' arr) = let (_, sh') = shxSplitApp (Proxy @sh') ssh1 sh1' in M_Primitive (shxAppend sh2 sh') (X.cast ssh1 sh2 (ssxFromShape sh') arr) mtranspose perm (M_Primitive sh arr) = M_Primitive (shxPermutePrefix perm sh) (X.transpose (ssxFromShape sh) perm arr) mconcat :: forall sh. NonEmpty (Mixed (Nothing : sh) (Primitive a)) -> Mixed (Nothing : sh) (Primitive a) mconcat l@(M_Primitive (_ :$% sh) _ :| _) = let result = X.concat (ssxFromShape sh) (fmap (\(M_Primitive _ arr) -> arr) l) in M_Primitive (X.shape (SUnknown () :!% ssxFromShape sh) result) result type ShapeTree (Primitive a) = () mshapeTree _ = () mshapeTreeEq _ () () = True mshapeTreeEmpty _ () = False mshowShapeTree _ () = "()" mvecsWrite sh i (Primitive x) (MV_Primitive v) = VSM.write v (ixxToLinear sh i) x -- TODO: this use of toVector is suboptimal mvecsWritePartial :: forall sh' sh s. IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Primitive a) -> MixedVecs s (sh ++ sh') (Primitive a) -> ST s () mvecsWritePartial sh i (M_Primitive sh' arr) (MV_Primitive v) = do let arrsh = X.shape (ssxFromShape sh') arr offset = ixxToLinear sh (ixxAppend i (ixxZero' arrsh)) VS.copy (VSM.slice offset (shxSize arrsh) v) (X.toVector arr) mvecsFreeze sh (MV_Primitive v) = M_Primitive sh . X.fromVector sh <$> VS.freeze v -- [PRIMITIVE ELEMENT TYPES LIST] deriving via Primitive Int instance Elt Int deriving via Primitive Int64 instance Elt Int64 deriving via Primitive Int32 instance Elt Int32 deriving via Primitive CInt instance Elt CInt deriving via Primitive Double instance Elt Double deriving via Primitive Float instance Elt Float deriving via Primitive () instance Elt () instance Storable a => KnownElt (Primitive a) where memptyArray sh = M_Primitive sh (X.empty sh) mvecsUnsafeNew sh _ = MV_Primitive <$> VSM.unsafeNew (shxSize sh) mvecsNewEmpty _ = MV_Primitive <$> VSM.unsafeNew 0 -- [PRIMITIVE ELEMENT TYPES LIST] deriving via Primitive Int instance KnownElt Int deriving via Primitive Int64 instance KnownElt Int64 deriving via Primitive Int32 instance KnownElt Int32 deriving via Primitive CInt instance KnownElt CInt deriving via Primitive Double instance KnownElt Double deriving via Primitive Float instance KnownElt Float deriving via Primitive () instance KnownElt () -- Arrays of pairs are pairs of arrays. instance (Elt a, Elt b) => Elt (a, b) where mshape (M_Tup2 a _) = mshape a mindex (M_Tup2 a b) i = (mindex a i, mindex b i) mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i) mscalar (x, y) = M_Tup2 (mscalar x) (mscalar y) mfromListOuter l = M_Tup2 (mfromListOuter ((\(M_Tup2 x _) -> x) <$> l)) (mfromListOuter ((\(M_Tup2 _ y) -> y) <$> l)) mtoListOuter (M_Tup2 a b) = zipWith M_Tup2 (mtoListOuter a) (mtoListOuter b) mlift ssh2 f (M_Tup2 a b) = M_Tup2 (mlift ssh2 f a) (mlift ssh2 f b) mlift2 ssh3 f (M_Tup2 a b) (M_Tup2 x y) = M_Tup2 (mlift2 ssh3 f a x) (mlift2 ssh3 f b y) mliftL ssh2 f = let unzipT2l [] = ([], []) unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2) unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2) in uncurry (NE.zipWith M_Tup2) . bimap (mliftL ssh2 f) (mliftL ssh2 f) . unzipT2 mcast ssh1 sh2 psh' (M_Tup2 a b) = M_Tup2 (mcast ssh1 sh2 psh' a) (mcast ssh1 sh2 psh' b) mtranspose perm (M_Tup2 a b) = M_Tup2 (mtranspose perm a) (mtranspose perm b) mconcat = let unzipT2l [] = ([], []) unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2) unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2) in uncurry M_Tup2 . bimap mconcat mconcat . unzipT2 type ShapeTree (a, b) = (ShapeTree a, ShapeTree b) mshapeTree (x, y) = (mshapeTree x, mshapeTree y) mshapeTreeEq _ (t1, t2) (t1', t2') = mshapeTreeEq (Proxy @a) t1 t1' && mshapeTreeEq (Proxy @b) t2 t2' mshapeTreeEmpty _ (t1, t2) = mshapeTreeEmpty (Proxy @a) t1 && mshapeTreeEmpty (Proxy @b) t2 mshowShapeTree _ (t1, t2) = "(" ++ mshowShapeTree (Proxy @a) t1 ++ ", " ++ mshowShapeTree (Proxy @b) t2 ++ ")" mvecsWrite sh i (x, y) (MV_Tup2 a b) = do mvecsWrite sh i x a mvecsWrite sh i y b mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do mvecsWritePartial sh i x a mvecsWritePartial sh i y b mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b instance (KnownElt a, KnownElt b) => KnownElt (a, b) where memptyArray sh = M_Tup2 (memptyArray sh) (memptyArray sh) mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y mvecsNewEmpty _ = MV_Tup2 <$> mvecsNewEmpty (Proxy @a) <*> mvecsNewEmpty (Proxy @b) -- Arrays of arrays are just arrays, but with more dimensions. instance Elt a => Elt (Mixed sh' a) where -- TODO: this is quadratic in the nesting depth because it repeatedly -- truncates the shape vector to one a little shorter. Fix with a -- moverlongShape method, a prefix of which is mshape. mshape :: forall sh. Mixed sh (Mixed sh' a) -> IShX sh mshape (M_Nest sh arr) = fst (shxSplitApp (Proxy @sh') (ssxFromShape sh) (mshape arr)) mindex :: Mixed sh (Mixed sh' a) -> IIxX sh -> Mixed sh' a mindex (M_Nest _ arr) i = mindexPartial arr i mindexPartial :: forall sh1 sh2. Mixed (sh1 ++ sh2) (Mixed sh' a) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a) mindexPartial (M_Nest sh arr) i | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') = M_Nest (shxDropIx sh i) (mindexPartial @a @sh1 @(sh2 ++ sh') arr i) mscalar = M_Nest ZSX mfromListOuter :: forall sh. NonEmpty (Mixed sh (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a) mfromListOuter l@(arr :| _) = M_Nest (SUnknown (length l) :$% mshape arr) (mfromListOuter ((\(M_Nest _ a) -> a) <$> l)) mtoListOuter (M_Nest sh arr) = map (M_Nest (shxTail sh)) (mtoListOuter arr) mlift :: forall sh1 sh2. StaticShX sh2 -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b) -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) mlift ssh2 f (M_Nest sh1 arr) = let result = mlift (ssxAppend ssh2 ssh') f' arr (sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape result) in M_Nest sh2 result where ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr))) f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b f' sshT | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT) , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT) = f (ssxAppend ssh' sshT) mlift2 :: forall sh1 sh2 sh3. StaticShX sh3 -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b -> XArray (sh3 ++ shT) b) -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) -> Mixed sh3 (Mixed sh' a) mlift2 ssh3 f (M_Nest sh1 arr1) (M_Nest _ arr2) = let result = mlift2 (ssxAppend ssh3 ssh') f' arr1 arr2 (sh3, _) = shxSplitApp (Proxy @sh') ssh3 (mshape result) in M_Nest sh3 result where ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1))) f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b -> XArray ((sh3 ++ sh') ++ shT) b f' sshT | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT) , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT) , Refl <- lemAppAssoc (Proxy @sh3) (Proxy @sh') (Proxy @shT) = f (ssxAppend ssh' sshT) mliftL :: forall sh1 sh2. StaticShX sh2 -> (forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray (sh1 ++ shT) b) -> NonEmpty (XArray (sh2 ++ shT) b)) -> NonEmpty (Mixed sh1 (Mixed sh' a)) -> NonEmpty (Mixed sh2 (Mixed sh' a)) mliftL ssh2 f l@(M_Nest sh1 arr1 :| _) = let result = mliftL (ssxAppend ssh2 ssh') f' (fmap (\(M_Nest _ arr) -> arr) l) (sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape (NE.head result)) in fmap (M_Nest sh2) result where ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1))) f' :: forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray ((sh1 ++ sh') ++ shT) b) -> NonEmpty (XArray ((sh2 ++ sh') ++ shT) b) f' sshT | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT) , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT) = f (ssxAppend ssh' sshT) mcast :: forall sh1 sh2 shT. Rank sh1 ~ Rank sh2 => StaticShX sh1 -> IShX sh2 -> Proxy shT -> Mixed (sh1 ++ shT) (Mixed sh' a) -> Mixed (sh2 ++ shT) (Mixed sh' a) mcast ssh1 sh2 _ (M_Nest sh1T arr) | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @shT) (Proxy @sh') , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @shT) (Proxy @sh') = let (_, shT) = shxSplitApp (Proxy @shT) ssh1 sh1T in M_Nest (shxAppend sh2 shT) (mcast ssh1 sh2 (Proxy @(shT ++ sh')) arr) mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh) => Perm is -> Mixed sh (Mixed sh' a) -> Mixed (PermutePrefix is sh) (Mixed sh' a) mtranspose perm (M_Nest sh arr) | let sh' = shxDropSh @sh @sh' (mshape arr) sh , Refl <- lemRankApp (ssxFromShape sh) (ssxFromShape sh') , Refl <- lemLeqPlus (Proxy @(Rank is)) (Proxy @(Rank sh)) (Proxy @(Rank sh')) , Refl <- lemAppAssoc (Proxy @(Permute is (TakeLen is (sh ++ sh')))) (Proxy @(DropLen is sh)) (Proxy @sh') , Refl <- lemDropLenApp (Proxy @is) (Proxy @sh) (Proxy @sh') , Refl <- lemTakeLenApp (Proxy @is) (Proxy @sh) (Proxy @sh') = M_Nest (shxPermutePrefix perm sh) (mtranspose perm arr) mconcat :: NonEmpty (Mixed (Nothing : sh) (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a) mconcat l@(M_Nest sh1 _ :| _) = let result = mconcat (fmap (\(M_Nest _ arr) -> arr) l) in M_Nest (fst (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape result))) result type ShapeTree (Mixed sh' a) = (IShX sh', ShapeTree a) mshapeTree :: Mixed sh' a -> ShapeTree (Mixed sh' a) mshapeTree arr = (mshape arr, mshapeTree (mindex arr (ixxZero (ssxFromShape (mshape arr))))) mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2 mshapeTreeEmpty _ (sh, t) = shxSize sh == 0 && mshapeTreeEmpty (Proxy @a) t mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")" mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (shxAppend sh sh') idx val vecs mvecsWritePartial :: forall sh1 sh2 s. IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a) -> MixedVecs s (sh1 ++ sh2) (Mixed sh' a) -> ST s () mvecsWritePartial sh12 idx (M_Nest _ arr) (MV_Nest sh' vecs) | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') = mvecsWritePartial (shxAppend sh12 sh') idx arr vecs mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest sh <$> mvecsFreeze (shxAppend sh sh') vecs instance (KnownShX sh', KnownElt a) => KnownElt (Mixed sh' a) where memptyArray sh = M_Nest sh (memptyArray (shxAppend sh (shxCompleteZeros (knownShX @sh')))) mvecsUnsafeNew sh example | shxSize sh' == 0 = mvecsNewEmpty (Proxy @(Mixed sh' a)) | otherwise = MV_Nest sh' <$> mvecsUnsafeNew (shxAppend sh sh') (mindex example (ixxZero (ssxFromShape sh'))) where sh' = mshape example mvecsNewEmpty _ = MV_Nest (shxCompleteZeros (knownShX @sh')) <$> mvecsNewEmpty (Proxy @a) mrank :: Elt a => Mixed sh a -> SNat (Rank sh) mrank = shxRank . mshape -- | The total number of elements in the array. msize :: Elt a => Mixed sh a -> Int msize = shxSize . mshape -- | Create an array given a size and a function that computes the element at a -- given index. -- -- __WARNING__: It is required that every @a@ returned by the argument to -- 'mgenerate' has the same shape. For example, the following will throw a -- runtime error: -- -- > foo :: Mixed [Nothing] (Mixed [Nothing] Double) -- > foo = mgenerate (10 :.: ZIR) $ \(i :.: ZIR) -> -- > mgenerate (i :.: ZIR) $ \(j :.: ZIR) -> -- > ... -- -- because the size of the inner 'mgenerate' is not always the same (it depends -- on @i@). Nested arrays in @ox-arrays@ are always stored fully flattened, so -- the entire hierarchy (after distributing out tuples) must be a rectangular -- array. The type of 'mgenerate' allows this requirement to be broken very -- easily, hence the runtime check. mgenerate :: forall sh a. KnownElt a => IShX sh -> (IIxX sh -> a) -> Mixed sh a mgenerate sh f = case shxEnum sh of [] -> memptyArray sh firstidx : restidxs -> let firstelem = f (ixxZero' sh) shapetree = mshapeTree firstelem in if mshapeTreeEmpty (Proxy @a) shapetree then memptyArray sh else runST $ do vecs <- mvecsUnsafeNew sh firstelem mvecsWrite sh firstidx firstelem vecs -- TODO: This is likely fine if @a@ is big, but if @a@ is a -- scalar this array copying inefficient. Should improve this. forM_ restidxs $ \idx -> do let val = f idx when (not (mshapeTreeEq (Proxy @a) (mshapeTree val) shapetree)) $ error "Data.Array.Nested mgenerate: generated values do not have equal shapes" mvecsWrite sh idx val vecs mvecsFreeze sh vecs msumOuter1P :: forall sh n a. (Storable a, NumElt a) => Mixed (n : sh) (Primitive a) -> Mixed sh (Primitive a) msumOuter1P (M_Primitive (n :$% sh) arr) = let nssh = fromSMayNat (\_ -> SUnknown ()) SKnown n :!% ZKX in M_Primitive sh (X.sumOuter nssh (ssxFromShape sh) arr) msumOuter1 :: forall sh n a. (NumElt a, PrimElt a) => Mixed (n : sh) a -> Mixed sh a msumOuter1 = fromPrimitive . msumOuter1P @sh @n @a . toPrimitive mappend :: forall n m sh a. Elt a => Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (AddMaybe n m : sh) a mappend arr1 arr2 = mlift2 (snm :!% ssh) f arr1 arr2 where sn :$% sh = mshape arr1 sm :$% _ = mshape arr2 ssh = ssxFromShape sh snm :: SMayNat () SNat (AddMaybe n m) snm = case (sn, sm) of (SUnknown{}, _) -> SUnknown () (SKnown{}, SUnknown{}) -> SUnknown () (SKnown n, SKnown m) -> SKnown (snatPlus n m) f :: forall sh' b. Storable b => StaticShX sh' -> XArray (n : sh ++ sh') b -> XArray (m : sh ++ sh') b -> XArray (AddMaybe n m : sh ++ sh') b f ssh' = X.append (ssxAppend ssh ssh') mfromVectorP :: forall sh a. Storable a => IShX sh -> VS.Vector a -> Mixed sh (Primitive a) mfromVectorP sh v = M_Primitive sh (X.fromVector sh v) mfromVector :: forall sh a. PrimElt a => IShX sh -> VS.Vector a -> Mixed sh a mfromVector sh v = fromPrimitive (mfromVectorP sh v) mtoVectorP :: Storable a => Mixed sh (Primitive a) -> VS.Vector a mtoVectorP (M_Primitive _ v) = X.toVector v mtoVector :: PrimElt a => Mixed sh a -> VS.Vector a mtoVector arr = mtoVectorP (toPrimitive arr) mfromList1 :: Elt a => NonEmpty a -> Mixed '[Nothing] a mfromList1 = mfromListOuter . fmap mscalar -- TODO: optimise? mfromList1Prim :: PrimElt a => [a] -> Mixed '[Nothing] a mfromList1Prim l = let ssh = SUnknown () :!% ZKX xarr = X.fromList1 ssh l in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr mtoList1 :: Elt a => Mixed '[n] a -> [a] mtoList1 = map munScalar . mtoListOuter mfromListPrim :: PrimElt a => [a] -> Mixed '[Nothing] a mfromListPrim l = let ssh = SUnknown () :!% ZKX xarr = X.fromList1 ssh l in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr mfromListPrimLinear :: PrimElt a => IShX sh -> [a] -> Mixed sh a mfromListPrimLinear sh l = let M_Primitive _ xarr = toPrimitive (mfromListPrim l) in fromPrimitive $ M_Primitive sh (X.reshape (SUnknown () :!% ZKX) sh xarr) -- This forall is there so that a simple type application can constrain the -- shape, in case the user wants to use OverloadedLists for the shape. mfromListLinear :: forall sh a. Elt a => IShX sh -> NonEmpty a -> Mixed sh a mfromListLinear sh l = mreshape sh (mfromList1 l) mtoListLinear :: Elt a => Mixed sh a -> [a] mtoListLinear arr = map (mindex arr) (shxEnum (mshape arr)) -- TODO: optimise munScalar :: Elt a => Mixed '[] a -> a munScalar arr = mindex arr ZIX mnest :: forall sh sh' a. Elt a => StaticShX sh -> Mixed (sh ++ sh') a -> Mixed sh (Mixed sh' a) mnest ssh arr = M_Nest (fst (shxSplitApp (Proxy @sh') ssh (mshape arr))) arr munNest :: Mixed sh (Mixed sh' a) -> Mixed (sh ++ sh') a munNest (M_Nest _ arr) = arr mrerankP :: forall sh1 sh2 sh a b. (Storable a, Storable b) => StaticShX sh -> IShX sh2 -> (Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive b)) -> Mixed (sh ++ sh1) (Primitive a) -> Mixed (sh ++ sh2) (Primitive b) mrerankP ssh sh2 f (M_Primitive sh arr) = let sh1 = shxDropSSX sh ssh in M_Primitive (shxAppend (shxTakeSSX (Proxy @sh1) sh ssh) sh2) (X.rerank ssh (ssxFromShape sh1) (ssxFromShape sh2) (\a -> let M_Primitive _ r = f (M_Primitive sh1 a) in r) arr) -- | See the caveats at @X.rerank@. mrerank :: forall sh1 sh2 sh a b. (PrimElt a, PrimElt b) => StaticShX sh -> IShX sh2 -> (Mixed sh1 a -> Mixed sh2 b) -> Mixed (sh ++ sh1) a -> Mixed (sh ++ sh2) b mrerank ssh sh2 f (toPrimitive -> arr) = fromPrimitive $ mrerankP ssh sh2 (toPrimitive . f . fromPrimitive) arr mreplicate :: forall sh sh' a. Elt a => IShX sh -> Mixed sh' a -> Mixed (sh ++ sh') a mreplicate sh arr = let ssh' = ssxFromShape (mshape arr) in mlift (ssxAppend (ssxFromShape sh) ssh') (\(sshT :: StaticShX shT) -> case lemAppAssoc (Proxy @sh) (Proxy @sh') (Proxy @shT) of Refl -> X.replicate sh (ssxAppend ssh' sshT)) arr mreplicateScalP :: forall sh a. Storable a => IShX sh -> a -> Mixed sh (Primitive a) mreplicateScalP sh x = M_Primitive sh (X.replicateScal sh x) mreplicateScal :: forall sh a. PrimElt a => IShX sh -> a -> Mixed sh a mreplicateScal sh x = fromPrimitive (mreplicateScalP sh x) mslice :: Elt a => SNat i -> SNat n -> Mixed (Just (i + n + k) : sh) a -> Mixed (Just n : sh) a mslice i n arr = let _ :$% sh = mshape arr in mlift (SKnown n :!% ssxFromShape sh) (\_ -> X.slice i n) arr msliceU :: Elt a => Int -> Int -> Mixed (Nothing : sh) a -> Mixed (Nothing : sh) a msliceU i n arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.sliceU i n) arr mrev1 :: Elt a => Mixed (n : sh) a -> Mixed (n : sh) a mrev1 arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.rev1) arr mreshape :: forall sh sh' a. Elt a => IShX sh' -> Mixed sh a -> Mixed sh' a mreshape sh' arr = mlift (ssxFromShape sh') (\sshIn -> X.reshapePartial (ssxFromShape (mshape arr)) sshIn sh') arr mflatten :: Elt a => Mixed sh a -> Mixed '[Flatten sh] a mflatten arr = mreshape (shxFlatten (mshape arr) :$% ZSX) arr miota :: (Enum a, PrimElt a) => SNat n -> Mixed '[Just n] a miota sn = fromPrimitive $ M_Primitive (SKnown sn :$% ZSX) (X.iota sn) -- | Throws if the array is empty. mminIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh mminIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) = ixxFromList (ssxFromShape sh) (numEltMinIndex arr) -- | Throws if the array is empty. mmaxIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh mmaxIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) = ixxFromList (ssxFromShape sh) (numEltMaxIndex arr) mdot1 :: (PrimElt a, NumElt a) => Mixed '[n] a -> Mixed '[n] a -> a mdot1 (toPrimitive -> M_Primitive _ (XArray arr1)) (toPrimitive -> M_Primitive _ (XArray arr2)) = numEltDotprod arr1 arr2 -- | This has a temporary, suboptimal implementation in terms of 'mflatten'. -- Prefer 'mdot1' if applicable. mdot :: (PrimElt a, NumElt a) => Mixed sh a -> Mixed sh a -> a mdot a b = mdot1 (fromPrimitive (mflatten (toPrimitive a))) (fromPrimitive (mflatten (toPrimitive b))) mtoXArrayPrimP :: Mixed sh (Primitive a) -> (IShX sh, XArray sh a) mtoXArrayPrimP (M_Primitive sh arr) = (sh, arr) mtoXArrayPrim :: PrimElt a => Mixed sh a -> (IShX sh, XArray sh a) mtoXArrayPrim = mtoXArrayPrimP . toPrimitive mfromXArrayPrimP :: StaticShX sh -> XArray sh a -> Mixed sh (Primitive a) mfromXArrayPrimP ssh arr = M_Primitive (X.shape ssh arr) arr mfromXArrayPrim :: PrimElt a => StaticShX sh -> XArray sh a -> Mixed sh a mfromXArrayPrim = (fromPrimitive .) . mfromXArrayPrimP mliftPrim :: PrimElt a => (a -> a) -> Mixed sh a -> Mixed sh a mliftPrim f (toPrimitive -> M_Primitive sh (X.XArray arr)) = fromPrimitive $ M_Primitive sh (X.XArray (S.mapA f arr)) mliftPrim2 :: PrimElt a => (a -> a -> a) -> Mixed sh a -> Mixed sh a -> Mixed sh a mliftPrim2 f (toPrimitive -> M_Primitive sh (X.XArray arr1)) (toPrimitive -> M_Primitive _ (X.XArray arr2)) = fromPrimitive $ M_Primitive sh (X.XArray (S.zipWithA f arr1 arr2))