{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE StrictData #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
module Data.Array.Nested.Internal.Mixed where

import Prelude hiding (mconcat)

import Control.DeepSeq (NFData(..))
import Control.Monad (forM_, when)
import Control.Monad.ST
import Data.Array.RankedS qualified as S
import Data.Bifunctor (bimap)
import Data.Coerce
import Data.Foldable (toList)
import Data.Int
import Data.Kind (Type, Constraint)
import Data.List.NonEmpty (NonEmpty(..))
import Data.List.NonEmpty qualified as NE
import Data.Proxy
import Data.Type.Equality
import Data.Vector.Storable qualified as VS
import Data.Vector.Storable.Mutable qualified as VSM
import Foreign.C.Types (CInt)
import Foreign.Storable (Storable)
import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp)
import GHC.Generics (Generic)
import GHC.TypeLits
import Unsafe.Coerce (unsafeCoerce)

import Data.Array.Mixed.XArray (XArray(..))
import Data.Array.Mixed.XArray qualified as X
import Data.Array.Mixed.Internal.Arith
import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
import Data.Array.Mixed.Permutation
import Data.Array.Mixed.Lemmas

-- TODO:
--   sumAllPrim :: (PrimElt a, NumElt a) => Mixed sh a -> a
--   rminIndex1 :: Ranked (n + 1) a -> Ranked n Int
--   gather/scatter-like things (most generally, the higher-order variants: accelerate's backpermute/permute)
--   After benchmarking: matmul and matvec



-- Invariant in the API
-- ====================
--
-- In the underlying XArray, there is some shape for elements of an empty
-- array. For example, for this array:
--
--   arr :: Ranked I3 (Ranked I2 Int, Ranked I1 Float)
--   rshape arr == 0 :.: 0 :.: 0 :.: ZIR
--
-- the two underlying XArrays have a shape, and those shapes might be anything.
-- The invariant is that these element shapes are unobservable in the API.
-- (This is possible because you ought to not be able to get to such an element
-- without indexing out of bounds.)
--
-- Note, though, that the converse situation may arise: the outer array might
-- be nonempty but then the inner arrays might. This is fine, an invariant only
-- applies if the _outer_ array is empty.
--
-- TODO: can we enforce that the elements of an empty (nested) array have
-- all-zero shape?
--   -> no, because mlift and also any kind of internals probing from outsiders


-- Primitive element types
-- =======================
--
-- There are a few primitive element types; arrays containing elements of such
-- type are a newtype over an XArray, which it itself a newtype over a Vector.
-- Unfortunately, the setup of the library requires us to list these primitive
-- element types multiple times; to aid in extending the list, all these lists
-- have been marked with [PRIMITIVE ELEMENT TYPES LIST].


-- | Wrapper type used as a tag to attach instances on. The instances on arrays
-- of @'Primitive' a@ are more polymorphic than the direct instances for arrays
-- of scalars; this means that if @orthotope@ supports an element type @T@ that
-- this library does not (directly), it may just work if you use an array of
-- @'Primitive' T@ instead.
newtype Primitive a = Primitive a
  deriving (Show)

-- | Element types that are primitive; arrays of these types are just a newtype
-- wrapper over an array.
class (Storable a, Elt a) => PrimElt a where
  fromPrimitive :: Mixed sh (Primitive a) -> Mixed sh a
  toPrimitive :: Mixed sh a -> Mixed sh (Primitive a)

  default fromPrimitive :: Coercible (Mixed sh a) (Mixed sh (Primitive a)) => Mixed sh (Primitive a) -> Mixed sh a
  fromPrimitive = coerce

  default toPrimitive :: Coercible (Mixed sh (Primitive a)) (Mixed sh a) => Mixed sh a -> Mixed sh (Primitive a)
  toPrimitive = coerce

-- [PRIMITIVE ELEMENT TYPES LIST]
instance PrimElt Bool
instance PrimElt Int
instance PrimElt Int64
instance PrimElt Int32
instance PrimElt CInt
instance PrimElt Float
instance PrimElt Double
instance PrimElt ()


-- | Mixed arrays: some dimensions are size-typed, some are not. Distributes
-- over product-typed elements using a data family so that the full array is
-- always in struct-of-arrays format.
--
-- Built on top of 'XArray' which is built on top of @orthotope@, meaning that
-- dimension permutations (e.g. 'mtranspose') are typically free.
--
-- Many of the methods for working on 'Mixed' arrays come from the 'Elt' type
-- class.
type Mixed :: [Maybe Nat] -> Type -> Type
data family Mixed sh a
-- NOTE: When opening up the Mixed abstraction, you might see dimension sizes
-- that you're not supposed to see. In particular, you might see (nonempty)
-- sizes of the elements of an empty array, which is information that should
-- ostensibly not exist; the full array is still empty.

data instance Mixed sh (Primitive a) = M_Primitive !(IShX sh) !(XArray sh a)
  deriving (Eq, Ord, Generic)

-- [PRIMITIVE ELEMENT TYPES LIST]
newtype instance Mixed sh Bool = M_Bool (Mixed sh (Primitive Bool)) deriving (Eq, Ord, Generic)
newtype instance Mixed sh Int = M_Int (Mixed sh (Primitive Int)) deriving (Eq, Ord, Generic)
newtype instance Mixed sh Int64 = M_Int64 (Mixed sh (Primitive Int64)) deriving (Eq, Ord, Generic)
newtype instance Mixed sh Int32 = M_Int32 (Mixed sh (Primitive Int32)) deriving (Eq, Ord, Generic)
newtype instance Mixed sh CInt = M_CInt (Mixed sh (Primitive CInt)) deriving (Eq, Ord, Generic)
newtype instance Mixed sh Float = M_Float (Mixed sh (Primitive Float)) deriving (Eq, Ord, Generic)
newtype instance Mixed sh Double = M_Double (Mixed sh (Primitive Double)) deriving (Eq, Ord, Generic)
newtype instance Mixed sh () = M_Nil (Mixed sh (Primitive ())) deriving (Eq, Ord, Generic)  -- no content, orthotope optimises this (via Vector)
-- etc.

data instance Mixed sh (a, b) = M_Tup2 !(Mixed sh a) !(Mixed sh b) deriving (Generic)
-- etc., larger tuples (perhaps use generics to allow arbitrary product types)

deriving instance (Eq (Mixed sh a), Eq (Mixed sh b)) => Eq (Mixed sh (a, b))
deriving instance (Ord (Mixed sh a), Ord (Mixed sh b)) => Ord (Mixed sh (a, b))

data instance Mixed sh1 (Mixed sh2 a) = M_Nest !(IShX sh1) !(Mixed (sh1 ++ sh2) a) deriving (Generic)

deriving instance Eq (Mixed (sh1 ++ sh2) a) => Eq (Mixed sh1 (Mixed sh2 a))
deriving instance Ord (Mixed (sh1 ++ sh2) a) => Ord (Mixed sh1 (Mixed sh2 a))


-- | Internal helper data family mirroring 'Mixed' that consists of mutable
-- vectors instead of 'XArray's.
type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type
data family MixedVecs s sh a

newtype instance MixedVecs s sh (Primitive a) = MV_Primitive (VS.MVector s a)

-- [PRIMITIVE ELEMENT TYPES LIST]
newtype instance MixedVecs s sh Bool = MV_Bool (VS.MVector s Bool)
newtype instance MixedVecs s sh Int = MV_Int (VS.MVector s Int)
newtype instance MixedVecs s sh Int64 = MV_Int64 (VS.MVector s Int64)
newtype instance MixedVecs s sh Int32 = MV_Int32 (VS.MVector s Int32)
newtype instance MixedVecs s sh CInt = MV_CInt (VS.MVector s CInt)
newtype instance MixedVecs s sh Double = MV_Double (VS.MVector s Double)
newtype instance MixedVecs s sh Float = MV_Float (VS.MVector s Float)
newtype instance MixedVecs s sh () = MV_Nil (VS.MVector s ())  -- no content, MVector optimises this
-- etc.

data instance MixedVecs s sh (a, b) = MV_Tup2 !(MixedVecs s sh a) !(MixedVecs s sh b)
-- etc.

data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest !(IShX sh2) !(MixedVecs s (sh1 ++ sh2) a)


-- Helpers for Show instances for the Mixed arrays

newtype ShowViaToListLinear sh a = ShowViaToListLinear (Mixed sh a)

instance (Show a, Elt a) => Show (ShowViaToListLinear sh a) where
  showsPrec d (ShowViaToListLinear arr) = showParen (d > 10) $
    -- TODO: to avoid ambiguity, this should type-apply the shape to mfromListLinear
    showString "mfromListLinear " . shows (shxToList (mshape arr)) . showString " "
      . shows (mtoListLinear arr)

newtype ShowViaPrimitive sh a = ShowViaPrimitive (Mixed sh (Primitive a))

instance (Show a, Storable a) => Show (ShowViaPrimitive sh a) where
  showsPrec d (ShowViaPrimitive parr@(M_Primitive sh _)) = showParen (d > 10) $
    -- TODO: to avoid ambiguity, this should type-apply the shape to mfromListLinear
    showString "mfromListLinear " . shows (shxToList sh) . showString " "
      . shows (coerce @[Primitive a] @[a] (mtoListLinear parr))

deriving via (ShowViaToListLinear sh a) instance (Show a, Elt a) => Show (Mixed sh a)

instance Elt a => NFData (Mixed sh a) where
  rnf = mrnf


mliftNumElt1 :: (PrimElt a, PrimElt b)
             => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) b)
             -> Mixed sh a -> Mixed sh b
mliftNumElt1 f (toPrimitive -> M_Primitive sh (XArray arr)) = fromPrimitive $ M_Primitive sh (XArray (f (shxRank sh) arr))

mliftNumElt2 :: (PrimElt a, PrimElt b, PrimElt c)
             => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) b -> S.Array (Rank sh) c)
             -> Mixed sh a -> Mixed sh b -> Mixed sh c
mliftNumElt2 f (toPrimitive -> M_Primitive sh1 (XArray arr1)) (toPrimitive -> M_Primitive sh2 (XArray arr2))
  | sh1 == sh2 = fromPrimitive $ M_Primitive sh1 (XArray (f (shxRank sh1) arr1 arr2))
  | otherwise = error $ "Data.Array.Nested: Shapes unequal in elementwise Num operation: " ++ show sh1 ++ " vs " ++ show sh2

instance (NumElt a, PrimElt a) => Num (Mixed sh a) where
  (+) = mliftNumElt2 numEltAdd
  (-) = mliftNumElt2 numEltSub
  (*) = mliftNumElt2 numEltMul
  negate = mliftNumElt1 numEltNeg
  abs = mliftNumElt1 numEltAbs
  signum = mliftNumElt1 numEltSignum
  -- TODO: THIS IS BAD, WE NEED TO REMOVE THIS
  fromInteger = error "Data.Array.Nested.fromInteger: Cannot implement fromInteger, use mreplicateScal"

instance (FloatElt a, PrimElt a) => Fractional (Mixed sh a) where
  fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit mreplicate"
  recip = mliftNumElt1 floatEltRecip
  (/) = mliftNumElt2 floatEltDiv

instance (FloatElt a, PrimElt a) => Floating (Mixed sh a) where
  pi = error "Data.Array.Nested.pi: No singletons available, use explicit mreplicate"
  exp = mliftNumElt1 floatEltExp
  log = mliftNumElt1 floatEltLog
  sqrt = mliftNumElt1 floatEltSqrt

  (**) = mliftNumElt2 floatEltPow
  logBase = mliftNumElt2 floatEltLogbase

  sin = mliftNumElt1 floatEltSin
  cos = mliftNumElt1 floatEltCos
  tan = mliftNumElt1 floatEltTan
  asin = mliftNumElt1 floatEltAsin
  acos = mliftNumElt1 floatEltAcos
  atan = mliftNumElt1 floatEltAtan
  sinh = mliftNumElt1 floatEltSinh
  cosh = mliftNumElt1 floatEltCosh
  tanh = mliftNumElt1 floatEltTanh
  asinh = mliftNumElt1 floatEltAsinh
  acosh = mliftNumElt1 floatEltAcosh
  atanh = mliftNumElt1 floatEltAtanh
  log1p = mliftNumElt1 floatEltLog1p
  expm1 = mliftNumElt1 floatEltExpm1
  log1pexp = mliftNumElt1 floatEltLog1pexp
  log1mexp = mliftNumElt1 floatEltLog1mexp

mquotArray, mremArray :: (IntElt a, PrimElt a) => Mixed sh a -> Mixed sh a -> Mixed sh a
mquotArray = mliftNumElt2 intEltQuot
mremArray = mliftNumElt2 intEltRem

matan2Array :: (FloatElt a, PrimElt a) => Mixed sh a -> Mixed sh a -> Mixed sh a
matan2Array = mliftNumElt2 floatEltAtan2


-- | Allowable element types in a mixed array, and by extension in a 'Ranked' or
-- 'Shaped' array. Note the polymorphic instance for 'Elt' of @'Primitive'
-- a@; see the documentation for 'Primitive' for more details.
class Elt a where
  -- ====== PUBLIC METHODS ====== --

  mshape :: Mixed sh a -> IShX sh
  mindex :: Mixed sh a -> IIxX sh -> a
  mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IIxX sh -> Mixed sh' a
  mscalar :: a -> Mixed '[] a

  -- | All arrays in the list, even subarrays inside @a@, must have the same
  -- shape; if they do not, a runtime error will be thrown. See the
  -- documentation of 'mgenerate' for more information about this restriction.
  -- Furthermore, the length of the list must correspond with @n@: if @n@ is
  -- @Just m@ and @m@ does not equal the length of the list, a runtime error is
  -- thrown.
  --
  -- Consider also 'mfromListPrim', which can avoid intermediate arrays.
  mfromListOuter :: forall sh. NonEmpty (Mixed sh a) -> Mixed (Nothing : sh) a

  mtoListOuter :: Mixed (n : sh) a -> [Mixed sh a]

  -- | Note: this library makes no particular guarantees about the shapes of
  -- arrays "inside" an empty array. With 'mlift', 'mlift2' and 'mliftL' you can see the
  -- full 'XArray' and as such you can distinguish different empty arrays by
  -- the "shapes" of their elements. This information is meaningless, so you
  -- should not use it.
  mlift :: forall sh1 sh2.
           StaticShX sh2
        -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
        -> Mixed sh1 a -> Mixed sh2 a

  -- | See the documentation for 'mlift'.
  mlift2 :: forall sh1 sh2 sh3.
            StaticShX sh3
         -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
         -> Mixed sh1 a -> Mixed sh2 a -> Mixed sh3 a

  -- TODO: mliftL is currently unused.
  -- | All arrays in the input must have equal shapes, including subarrays
  -- inside their elements.
  mliftL :: forall sh1 sh2.
            StaticShX sh2
         -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b))
         -> NonEmpty (Mixed sh1 a) -> NonEmpty (Mixed sh2 a)

  mcastPartial :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2
               => StaticShX sh1 -> StaticShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') a -> Mixed (sh2 ++ sh') a

  mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh)
             => Perm is -> Mixed sh a -> Mixed (PermutePrefix is sh) a

  -- | All arrays in the input must have equal shapes, including subarrays
  -- inside their elements.
  mconcat :: NonEmpty (Mixed (Nothing : sh) a) -> Mixed (Nothing : sh) a

  mrnf :: Mixed sh a -> ()

  -- ====== PRIVATE METHODS ====== --

  -- | Tree giving the shape of every array component.
  type ShapeTree a

  mshapeTree :: a -> ShapeTree a

  mshapeTreeEq :: Proxy a -> ShapeTree a -> ShapeTree a -> Bool

  mshapeTreeEmpty :: Proxy a -> ShapeTree a -> Bool

  mshowShapeTree :: Proxy a -> ShapeTree a -> String

  -- | Given the shape of this array, an index and a value, write the value at
  -- that index in the vectors.
  mvecsWrite :: IShX sh -> IIxX sh -> a -> MixedVecs s sh a -> ST s ()

  -- | Given the shape of this array, an index and a value, write the value at
  -- that index in the vectors.
  mvecsWritePartial :: IShX (sh ++ sh') -> IIxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s ()

  -- | Given the shape of this array, finalise the vectors into 'XArray's.
  mvecsFreeze :: IShX sh -> MixedVecs s sh a -> ST s (Mixed sh a)


-- | Element types for which we have evidence of the (static part of the) shape
-- in a type class constraint. Compare the instance contexts of the instances
-- of this class with those of 'Elt': some instances have an additional
-- "known-shape" constraint.
--
-- This class is (currently) only required for 'mgenerate',
-- 'Data.Array.Nested.Ranked.rgenerate' and
-- 'Data.Array.Nested.Shaped.sgenerate'.
class Elt a => KnownElt a where
  -- | Create an empty array. The given shape must have size zero; this may or may not be checked.
  memptyArrayUnsafe :: IShX sh -> Mixed sh a

  -- | Create uninitialised vectors for this array type, given the shape of
  -- this vector and an example for the contents.
  mvecsUnsafeNew :: IShX sh -> a -> ST s (MixedVecs s sh a)

  mvecsNewEmpty :: Proxy a -> ST s (MixedVecs s sh a)


-- Arrays of scalars are basically just arrays of scalars.
instance Storable a => Elt (Primitive a) where
  mshape (M_Primitive sh _) = sh
  mindex (M_Primitive _ a) i = Primitive (X.index a i)
  mindexPartial (M_Primitive sh a) i = M_Primitive (shxDropIx sh i) (X.indexPartial a i)
  mscalar (Primitive x) = M_Primitive ZSX (X.scalar x)
  mfromListOuter l@(arr1 :| _) =
    let sh = SUnknown (length l) :$% mshape arr1
    in M_Primitive sh (X.fromListOuter (ssxFromShape sh) (map (\(M_Primitive _ a) -> a) (toList l)))
  mtoListOuter (M_Primitive sh arr) = map (M_Primitive (shxTail sh)) (X.toListOuter arr)

  mlift :: forall sh1 sh2.
           StaticShX sh2
        -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a)
        -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a)
  mlift ssh2 f (M_Primitive _ a)
    | Refl <- lemAppNil @sh1
    , Refl <- lemAppNil @sh2
    , let result = f ZKX a
    = M_Primitive (X.shape ssh2 result) result

  mlift2 :: forall sh1 sh2 sh3.
            StaticShX sh3
         -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a -> XArray (sh3 ++ '[]) a)
         -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) -> Mixed sh3 (Primitive a)
  mlift2 ssh3 f (M_Primitive _ a) (M_Primitive _ b)
    | Refl <- lemAppNil @sh1
    , Refl <- lemAppNil @sh2
    , Refl <- lemAppNil @sh3
    , let result = f ZKX a b
    = M_Primitive (X.shape ssh3 result) result

  mliftL :: forall sh1 sh2.
            StaticShX sh2
         -> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b))
         -> NonEmpty (Mixed sh1 (Primitive a)) -> NonEmpty (Mixed sh2 (Primitive a))
  mliftL ssh2 f l
    | Refl <- lemAppNil @sh1
    , Refl <- lemAppNil @sh2
    = fmap (\arr -> M_Primitive (X.shape ssh2 arr) arr) $
        f ZKX (fmap (\(M_Primitive _ arr) -> arr) l)

  mcastPartial :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2
               => StaticShX sh1 -> StaticShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') (Primitive a) -> Mixed (sh2 ++ sh') (Primitive a)
  mcastPartial ssh1 ssh2 _ (M_Primitive sh1' arr) =
    let (sh1, sh') = shxSplitApp (Proxy @sh') ssh1 sh1'
        sh2 = shxCast' sh1 ssh2
    in M_Primitive (shxAppend sh2 sh') (X.cast ssh1 sh2 (ssxFromShape sh') arr)

  mtranspose perm (M_Primitive sh arr) =
    M_Primitive (shxPermutePrefix perm sh)
                (X.transpose (ssxFromShape sh) perm arr)

  mconcat :: forall sh. NonEmpty (Mixed (Nothing : sh) (Primitive a)) -> Mixed (Nothing : sh) (Primitive a)
  mconcat l@(M_Primitive (_ :$% sh) _ :| _) =
    let result = X.concat (ssxFromShape sh) (fmap (\(M_Primitive _ arr) -> arr) l)
    in M_Primitive (X.shape (SUnknown () :!% ssxFromShape sh) result) result

  mrnf (M_Primitive sh a) = rnf sh `seq` rnf a

  type ShapeTree (Primitive a) = ()
  mshapeTree _ = ()
  mshapeTreeEq _ () () = True
  mshapeTreeEmpty _ () = False
  mshowShapeTree _ () = "()"
  mvecsWrite sh i (Primitive x) (MV_Primitive v) = VSM.write v (ixxToLinear sh i) x

  -- TODO: this use of toVector is suboptimal
  mvecsWritePartial
    :: forall sh' sh s.
       IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Primitive a) -> MixedVecs s (sh ++ sh') (Primitive a) -> ST s ()
  mvecsWritePartial sh i (M_Primitive sh' arr) (MV_Primitive v) = do
    let arrsh = X.shape (ssxFromShape sh') arr
        offset = ixxToLinear sh (ixxAppend i (ixxZero' arrsh))
    VS.copy (VSM.slice offset (shxSize arrsh) v) (X.toVector arr)

  mvecsFreeze sh (MV_Primitive v) = M_Primitive sh . X.fromVector sh <$> VS.freeze v

-- [PRIMITIVE ELEMENT TYPES LIST]
deriving via Primitive Bool instance Elt Bool
deriving via Primitive Int instance Elt Int
deriving via Primitive Int64 instance Elt Int64
deriving via Primitive Int32 instance Elt Int32
deriving via Primitive CInt instance Elt CInt
deriving via Primitive Double instance Elt Double
deriving via Primitive Float instance Elt Float
deriving via Primitive () instance Elt ()

instance Storable a => KnownElt (Primitive a) where
  memptyArrayUnsafe sh = M_Primitive sh (X.empty sh)
  mvecsUnsafeNew sh _ = MV_Primitive <$> VSM.unsafeNew (shxSize sh)
  mvecsNewEmpty _ = MV_Primitive <$> VSM.unsafeNew 0

-- [PRIMITIVE ELEMENT TYPES LIST]
deriving via Primitive Bool instance KnownElt Bool
deriving via Primitive Int instance KnownElt Int
deriving via Primitive Int64 instance KnownElt Int64
deriving via Primitive Int32 instance KnownElt Int32
deriving via Primitive CInt instance KnownElt CInt
deriving via Primitive Double instance KnownElt Double
deriving via Primitive Float instance KnownElt Float
deriving via Primitive () instance KnownElt ()

-- Arrays of pairs are pairs of arrays.
instance (Elt a, Elt b) => Elt (a, b) where
  mshape (M_Tup2 a _) = mshape a
  mindex (M_Tup2 a b) i = (mindex a i, mindex b i)
  mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i)
  mscalar (x, y) = M_Tup2 (mscalar x) (mscalar y)
  mfromListOuter l =
    M_Tup2 (mfromListOuter ((\(M_Tup2 x _) -> x) <$> l))
           (mfromListOuter ((\(M_Tup2 _ y) -> y) <$> l))
  mtoListOuter (M_Tup2 a b) = zipWith M_Tup2 (mtoListOuter a) (mtoListOuter b)
  mlift ssh2 f (M_Tup2 a b) = M_Tup2 (mlift ssh2 f a) (mlift ssh2 f b)
  mlift2 ssh3 f (M_Tup2 a b) (M_Tup2 x y) = M_Tup2 (mlift2 ssh3 f a x) (mlift2 ssh3 f b y)
  mliftL ssh2 f =
    let unzipT2l [] = ([], [])
        unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2)
        unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2)
    in uncurry (NE.zipWith M_Tup2) . bimap (mliftL ssh2 f) (mliftL ssh2 f) . unzipT2

  mcastPartial ssh1 sh2 psh' (M_Tup2 a b) =
    M_Tup2 (mcastPartial ssh1 sh2 psh' a) (mcastPartial ssh1 sh2 psh' b)

  mtranspose perm (M_Tup2 a b) = M_Tup2 (mtranspose perm a) (mtranspose perm b)
  mconcat =
    let unzipT2l [] = ([], [])
        unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2)
        unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2)
    in uncurry M_Tup2 . bimap mconcat mconcat . unzipT2

  mrnf (M_Tup2 a b) = mrnf a `seq` mrnf b

  type ShapeTree (a, b) = (ShapeTree a, ShapeTree b)
  mshapeTree (x, y) = (mshapeTree x, mshapeTree y)
  mshapeTreeEq _ (t1, t2) (t1', t2') = mshapeTreeEq (Proxy @a) t1 t1' && mshapeTreeEq (Proxy @b) t2 t2'
  mshapeTreeEmpty _ (t1, t2) = mshapeTreeEmpty (Proxy @a) t1 && mshapeTreeEmpty (Proxy @b) t2
  mshowShapeTree _ (t1, t2) = "(" ++ mshowShapeTree (Proxy @a) t1 ++ ", " ++ mshowShapeTree (Proxy @b) t2 ++ ")"
  mvecsWrite sh i (x, y) (MV_Tup2 a b) = do
    mvecsWrite sh i x a
    mvecsWrite sh i y b
  mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do
    mvecsWritePartial sh i x a
    mvecsWritePartial sh i y b
  mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b

instance (KnownElt a, KnownElt b) => KnownElt (a, b) where
  memptyArrayUnsafe sh = M_Tup2 (memptyArrayUnsafe sh) (memptyArrayUnsafe sh)
  mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y
  mvecsNewEmpty _ = MV_Tup2 <$> mvecsNewEmpty (Proxy @a) <*> mvecsNewEmpty (Proxy @b)

-- Arrays of arrays are just arrays, but with more dimensions.
instance Elt a => Elt (Mixed sh' a) where
  -- TODO: this is quadratic in the nesting depth because it repeatedly
  -- truncates the shape vector to one a little shorter. Fix with a
  -- moverlongShape method, a prefix of which is mshape.
  mshape :: forall sh. Mixed sh (Mixed sh' a) -> IShX sh
  mshape (M_Nest sh arr)
    = fst (shxSplitApp (Proxy @sh') (ssxFromShape sh) (mshape arr))

  mindex :: Mixed sh (Mixed sh' a) -> IIxX sh -> Mixed sh' a
  mindex (M_Nest _ arr) i = mindexPartial arr i

  mindexPartial :: forall sh1 sh2.
                   Mixed (sh1 ++ sh2) (Mixed sh' a) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
  mindexPartial (M_Nest sh arr) i
    | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
    = M_Nest (shxDropIx sh i) (mindexPartial @a @sh1 @(sh2 ++ sh') arr i)

  mscalar = M_Nest ZSX

  mfromListOuter :: forall sh. NonEmpty (Mixed sh (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a)
  mfromListOuter l@(arr :| _) =
    M_Nest (SUnknown (length l) :$% mshape arr)
           (mfromListOuter ((\(M_Nest _ a) -> a) <$> l))

  mtoListOuter (M_Nest sh arr) = map (M_Nest (shxTail sh)) (mtoListOuter arr)

  mlift :: forall sh1 sh2.
           StaticShX sh2
        -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b)
        -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a)
  mlift ssh2 f (M_Nest sh1 arr) =
    let result = mlift (ssxAppend ssh2 ssh') f' arr
        (sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape result)
    in M_Nest sh2 result
    where
      ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr)))

      f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b
      f' sshT
        | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
        , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
        = f (ssxAppend ssh' sshT)

  mlift2 :: forall sh1 sh2 sh3.
            StaticShX sh3
         -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b -> XArray (sh3 ++ shT) b)
         -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) -> Mixed sh3 (Mixed sh' a)
  mlift2 ssh3 f (M_Nest sh1 arr1) (M_Nest _ arr2) =
    let result = mlift2 (ssxAppend ssh3 ssh') f' arr1 arr2
        (sh3, _) = shxSplitApp (Proxy @sh') ssh3 (mshape result)
    in M_Nest sh3 result
    where
      ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1)))

      f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b -> XArray ((sh3 ++ sh') ++ shT) b
      f' sshT
        | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
        , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
        , Refl <- lemAppAssoc (Proxy @sh3) (Proxy @sh') (Proxy @shT)
        = f (ssxAppend ssh' sshT)

  mliftL :: forall sh1 sh2.
            StaticShX sh2
         -> (forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray (sh1 ++ shT) b) -> NonEmpty (XArray (sh2 ++ shT) b))
         -> NonEmpty (Mixed sh1 (Mixed sh' a)) -> NonEmpty (Mixed sh2 (Mixed sh' a))
  mliftL ssh2 f l@(M_Nest sh1 arr1 :| _) =
    let result = mliftL (ssxAppend ssh2 ssh') f' (fmap (\(M_Nest _ arr) -> arr) l)
        (sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape (NE.head result))
    in fmap (M_Nest sh2) result
    where
      ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1)))

      f' :: forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray ((sh1 ++ sh') ++ shT) b) -> NonEmpty (XArray ((sh2 ++ sh') ++ shT) b)
      f' sshT
        | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
        , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
        = f (ssxAppend ssh' sshT)

  mcastPartial :: forall sh1 sh2 shT. Rank sh1 ~ Rank sh2
               => StaticShX sh1 -> StaticShX sh2 -> Proxy shT -> Mixed (sh1 ++ shT) (Mixed sh' a) -> Mixed (sh2 ++ shT) (Mixed sh' a)
  mcastPartial ssh1 ssh2 _ (M_Nest sh1T arr)
    | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @shT) (Proxy @sh')
    , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @shT) (Proxy @sh')
    = let (sh1, shT) = shxSplitApp (Proxy @shT) ssh1 sh1T
          sh2 = shxCast' sh1 ssh2
      in M_Nest (shxAppend sh2 shT) (mcastPartial ssh1 ssh2 (Proxy @(shT ++ sh')) arr)

  mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh)
             => Perm is -> Mixed sh (Mixed sh' a)
             -> Mixed (PermutePrefix is sh) (Mixed sh' a)
  mtranspose perm (M_Nest sh arr)
    | let sh' = shxDropSh @sh @sh' (mshape arr) sh
    , Refl <- lemRankApp (ssxFromShape sh) (ssxFromShape sh')
    , Refl <- lemLeqPlus (Proxy @(Rank is)) (Proxy @(Rank sh)) (Proxy @(Rank sh'))
    , Refl <- lemAppAssoc (Proxy @(Permute is (TakeLen is (sh ++ sh')))) (Proxy @(DropLen is sh)) (Proxy @sh')
    , Refl <- lemDropLenApp (Proxy @is) (Proxy @sh) (Proxy @sh')
    , Refl <- lemTakeLenApp (Proxy @is) (Proxy @sh) (Proxy @sh')
    = M_Nest (shxPermutePrefix perm sh)
             (mtranspose perm arr)

  mconcat :: NonEmpty (Mixed (Nothing : sh) (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a)
  mconcat l@(M_Nest sh1 _ :| _) =
    let result = mconcat (fmap (\(M_Nest _ arr) -> arr) l)
    in M_Nest (fst (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape result))) result

  mrnf (M_Nest sh arr) = rnf sh `seq` mrnf arr

  type ShapeTree (Mixed sh' a) = (IShX sh', ShapeTree a)

  mshapeTree :: Mixed sh' a -> ShapeTree (Mixed sh' a)
  mshapeTree arr = (mshape arr, mshapeTree (mindex arr (ixxZero (ssxFromShape (mshape arr)))))

  mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2

  mshapeTreeEmpty _ (sh, t) = shxSize sh == 0 && mshapeTreeEmpty (Proxy @a) t

  mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"

  mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (shxAppend sh sh') idx val vecs

  mvecsWritePartial :: forall sh1 sh2 s.
                       IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
                    -> MixedVecs s (sh1 ++ sh2) (Mixed sh' a)
                    -> ST s ()
  mvecsWritePartial sh12 idx (M_Nest _ arr) (MV_Nest sh' vecs)
    | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
    = mvecsWritePartial (shxAppend sh12 sh') idx arr vecs

  mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest sh <$> mvecsFreeze (shxAppend sh sh') vecs

instance (KnownShX sh', KnownElt a) => KnownElt (Mixed sh' a) where
  memptyArrayUnsafe sh = M_Nest sh (memptyArrayUnsafe (shxAppend sh (shxCompleteZeros (knownShX @sh'))))

  mvecsUnsafeNew sh example
    | shxSize sh' == 0 = mvecsNewEmpty (Proxy @(Mixed sh' a))
    | otherwise = MV_Nest sh' <$> mvecsUnsafeNew (shxAppend sh sh') (mindex example (ixxZero (ssxFromShape sh')))
    where
      sh' = mshape example

  mvecsNewEmpty _ = MV_Nest (shxCompleteZeros (knownShX @sh')) <$> mvecsNewEmpty (Proxy @a)


memptyArray :: KnownElt a => IShX sh -> Mixed (Just 0 : sh) a
memptyArray sh = memptyArrayUnsafe (SKnown SNat :$% sh)

mrank :: Elt a => Mixed sh a -> SNat (Rank sh)
mrank = shxRank . mshape

-- | The total number of elements in the array.
msize :: Elt a => Mixed sh a -> Int
msize = shxSize . mshape

-- | Create an array given a size and a function that computes the element at a
-- given index.
--
-- __WARNING__: It is required that every @a@ returned by the argument to
-- 'mgenerate' has the same shape. For example, the following will throw a
-- runtime error:
--
-- > foo :: Mixed [Nothing] (Mixed [Nothing] Double)
-- > foo = mgenerate (10 :.: ZIR) $ \(i :.: ZIR) ->
-- >         mgenerate (i :.: ZIR) $ \(j :.: ZIR) ->
-- >           ...
--
-- because the size of the inner 'mgenerate' is not always the same (it depends
-- on @i@). Nested arrays in @ox-arrays@ are always stored fully flattened, so
-- the entire hierarchy (after distributing out tuples) must be a rectangular
-- array. The type of 'mgenerate' allows this requirement to be broken very
-- easily, hence the runtime check.
mgenerate :: forall sh a. KnownElt a => IShX sh -> (IIxX sh -> a) -> Mixed sh a
mgenerate sh f = case shxEnum sh of
  [] -> memptyArrayUnsafe sh
  firstidx : restidxs ->
    let firstelem = f (ixxZero' sh)
        shapetree = mshapeTree firstelem
    in if mshapeTreeEmpty (Proxy @a) shapetree
         then memptyArrayUnsafe sh
         else runST $ do
                vecs <- mvecsUnsafeNew sh firstelem
                mvecsWrite sh firstidx firstelem vecs
                -- TODO: This is likely fine if @a@ is big, but if @a@ is a
                -- scalar this array copying inefficient. Should improve this.
                forM_ restidxs $ \idx -> do
                  let val = f idx
                  when (not (mshapeTreeEq (Proxy @a) (mshapeTree val) shapetree)) $
                    error "Data.Array.Nested mgenerate: generated values do not have equal shapes"
                  mvecsWrite sh idx val vecs
                mvecsFreeze sh vecs

msumOuter1P :: forall sh n a. (Storable a, NumElt a)
            => Mixed (n : sh) (Primitive a) -> Mixed sh (Primitive a)
msumOuter1P (M_Primitive (n :$% sh) arr) =
  let nssh = fromSMayNat (\_ -> SUnknown ()) SKnown n :!% ZKX
  in M_Primitive sh (X.sumOuter nssh (ssxFromShape sh) arr)

msumOuter1 :: forall sh n a. (NumElt a, PrimElt a)
           => Mixed (n : sh) a -> Mixed sh a
msumOuter1 = fromPrimitive . msumOuter1P @sh @n @a . toPrimitive

msumAllPrim :: (PrimElt a, NumElt a) => Mixed sh a -> a
msumAllPrim (toPrimitive -> M_Primitive sh arr) = X.sumFull (ssxFromShape sh) arr

mappend :: forall n m sh a. Elt a
        => Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (AddMaybe n m : sh) a
mappend arr1 arr2 = mlift2 (snm :!% ssh) f arr1 arr2
  where
    sn :$% sh = mshape arr1
    sm :$% _ = mshape arr2
    ssh = ssxFromShape sh
    snm :: SMayNat () SNat (AddMaybe n m)
    snm = case (sn, sm) of
            (SUnknown{}, _) -> SUnknown ()
            (SKnown{}, SUnknown{}) -> SUnknown ()
            (SKnown n, SKnown m) -> SKnown (snatPlus n m)

    f :: forall sh' b. Storable b
      => StaticShX sh' -> XArray (n : sh ++ sh') b -> XArray (m : sh ++ sh') b -> XArray (AddMaybe n m : sh ++ sh') b
    f ssh' = X.append (ssxAppend ssh ssh')

mfromVectorP :: forall sh a. Storable a => IShX sh -> VS.Vector a -> Mixed sh (Primitive a)
mfromVectorP sh v = M_Primitive sh (X.fromVector sh v)

mfromVector :: forall sh a. PrimElt a => IShX sh -> VS.Vector a -> Mixed sh a
mfromVector sh v = fromPrimitive (mfromVectorP sh v)

mtoVectorP :: Storable a => Mixed sh (Primitive a) -> VS.Vector a
mtoVectorP (M_Primitive _ v) = X.toVector v

mtoVector :: PrimElt a => Mixed sh a -> VS.Vector a
mtoVector arr = mtoVectorP (toPrimitive arr)

mfromList1 :: Elt a => NonEmpty a -> Mixed '[Nothing] a
mfromList1 = mfromListOuter . fmap mscalar  -- TODO: optimise?

mfromList1Prim :: PrimElt a => [a] -> Mixed '[Nothing] a
mfromList1Prim l =
  let ssh = SUnknown () :!% ZKX
      xarr = X.fromList1 ssh l
  in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr

mtoList1 :: Elt a => Mixed '[n] a -> [a]
mtoList1 = map munScalar . mtoListOuter

mfromListPrim :: PrimElt a => [a] -> Mixed '[Nothing] a
mfromListPrim l =
  let ssh = SUnknown () :!% ZKX
      xarr = X.fromList1 ssh l
  in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr

mfromListPrimLinear :: PrimElt a => IShX sh -> [a] -> Mixed sh a
mfromListPrimLinear sh l =
  let M_Primitive _ xarr = toPrimitive (mfromListPrim l)
  in fromPrimitive $ M_Primitive sh (X.reshape (SUnknown () :!% ZKX) sh xarr)

-- This forall is there so that a simple type application can constrain the
-- shape, in case the user wants to use OverloadedLists for the shape.
mfromListLinear :: forall sh a. Elt a => IShX sh -> NonEmpty a -> Mixed sh a
mfromListLinear sh l = mreshape sh (mfromList1 l)

mtoListLinear :: Elt a => Mixed sh a -> [a]
mtoListLinear arr = map (mindex arr) (shxEnum (mshape arr))  -- TODO: optimise

munScalar :: Elt a => Mixed '[] a -> a
munScalar arr = mindex arr ZIX

mnest :: forall sh sh' a. Elt a => StaticShX sh -> Mixed (sh ++ sh') a -> Mixed sh (Mixed sh' a)
mnest ssh arr = M_Nest (fst (shxSplitApp (Proxy @sh') ssh (mshape arr))) arr

munNest :: Mixed sh (Mixed sh' a) -> Mixed (sh ++ sh') a
munNest (M_Nest _ arr) = arr

mzip :: Mixed sh a -> Mixed sh b -> Mixed sh (a, b)
mzip = M_Tup2

munzip :: Mixed sh (a, b) -> (Mixed sh a, Mixed sh b)
munzip (M_Tup2 a b) = (a, b)

mrerankP :: forall sh1 sh2 sh a b. (Storable a, Storable b)
         => StaticShX sh -> IShX sh2
         -> (Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive b))
         -> Mixed (sh ++ sh1) (Primitive a) -> Mixed (sh ++ sh2) (Primitive b)
mrerankP ssh sh2 f (M_Primitive sh arr) =
  let sh1 = shxDropSSX sh ssh
  in M_Primitive (shxAppend (shxTakeSSX (Proxy @sh1) sh ssh) sh2)
                 (X.rerank ssh (ssxFromShape sh1) (ssxFromShape sh2)
                           (\a -> let M_Primitive _ r = f (M_Primitive sh1 a) in r)
                           arr)

-- | See the caveats at @X.rerank@.
mrerank :: forall sh1 sh2 sh a b. (PrimElt a, PrimElt b)
        => StaticShX sh -> IShX sh2
        -> (Mixed sh1 a -> Mixed sh2 b)
        -> Mixed (sh ++ sh1) a -> Mixed (sh ++ sh2) b
mrerank ssh sh2 f (toPrimitive -> arr) =
  fromPrimitive $ mrerankP ssh sh2 (toPrimitive . f . fromPrimitive) arr

mreplicate :: forall sh sh' a. Elt a
           => IShX sh -> Mixed sh' a -> Mixed (sh ++ sh') a
mreplicate sh arr =
  let ssh' = ssxFromShape (mshape arr)
  in mlift (ssxAppend (ssxFromShape sh) ssh')
           (\(sshT :: StaticShX shT) ->
              case lemAppAssoc (Proxy @sh) (Proxy @sh') (Proxy @shT) of
                Refl -> X.replicate sh (ssxAppend ssh' sshT))
           arr

mreplicateScalP :: forall sh a. Storable a => IShX sh -> a -> Mixed sh (Primitive a)
mreplicateScalP sh x = M_Primitive sh (X.replicateScal sh x)

mreplicateScal :: forall sh a. PrimElt a
               => IShX sh -> a -> Mixed sh a
mreplicateScal sh x = fromPrimitive (mreplicateScalP sh x)

mslice :: Elt a => SNat i -> SNat n -> Mixed (Just (i + n + k) : sh) a -> Mixed (Just n : sh) a
mslice i n arr =
  let _ :$% sh = mshape arr
  in mlift (SKnown n :!% ssxFromShape sh) (\_ -> X.slice i n) arr

msliceU :: Elt a => Int -> Int -> Mixed (Nothing : sh) a -> Mixed (Nothing : sh) a
msliceU i n arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.sliceU i n) arr

mrev1 :: Elt a => Mixed (n : sh) a -> Mixed (n : sh) a
mrev1 arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.rev1) arr

mreshape :: forall sh sh' a. Elt a => IShX sh' -> Mixed sh a -> Mixed sh' a
mreshape sh' arr =
  mlift (ssxFromShape sh')
        (\sshIn -> X.reshapePartial (ssxFromShape (mshape arr)) sshIn sh')
        arr

mflatten :: Elt a => Mixed sh a -> Mixed '[Flatten sh] a
mflatten arr = mreshape (shxFlatten (mshape arr) :$% ZSX) arr

miota :: (Enum a, PrimElt a) => SNat n -> Mixed '[Just n] a
miota sn = fromPrimitive $ M_Primitive (SKnown sn :$% ZSX) (X.iota sn)

-- | Throws if the array is empty.
mminIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh
mminIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) =
  ixxFromList (ssxFromShape sh) (numEltMinIndex (shxRank sh) arr)

-- | Throws if the array is empty.
mmaxIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh
mmaxIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) =
  ixxFromList (ssxFromShape sh) (numEltMaxIndex (shxRank sh) arr)

mdot1Inner :: forall sh n a. (PrimElt a, NumElt a)
           => Proxy n -> Mixed (sh ++ '[n]) a -> Mixed (sh ++ '[n]) a -> Mixed sh a
mdot1Inner _ (toPrimitive -> M_Primitive sh1 (XArray a)) (toPrimitive -> M_Primitive sh2 (XArray b))
  | Refl <- lemInitApp (Proxy @sh) (Proxy @n)
  , Refl <- lemLastApp (Proxy @sh) (Proxy @n)
  = case sh1 of
      _ :$% _
        | sh1 == sh2
        , Refl <- lemRankApp (ssxInit (ssxFromShape sh1)) (ssxLast (ssxFromShape sh1) :!% ZKX) ->
            fromPrimitive $ M_Primitive (shxInit sh1) (XArray (numEltDotprodInner (shxRank (shxInit sh1)) a b))
        | otherwise -> error "mdot1Inner: Unequal shapes"
      ZSX -> error "unreachable"

-- | This has a temporary, suboptimal implementation in terms of 'mflatten'.
-- Prefer 'mdot1Inner' if applicable.
mdot :: (PrimElt a, NumElt a) => Mixed sh a -> Mixed sh a -> a
mdot a b =
  munScalar $
    mdot1Inner Proxy (fromPrimitive (mflatten (toPrimitive a)))
                     (fromPrimitive (mflatten (toPrimitive b)))

mtoXArrayPrimP :: Mixed sh (Primitive a) -> (IShX sh, XArray sh a)
mtoXArrayPrimP (M_Primitive sh arr) = (sh, arr)

mtoXArrayPrim :: PrimElt a => Mixed sh a -> (IShX sh, XArray sh a)
mtoXArrayPrim = mtoXArrayPrimP . toPrimitive

mfromXArrayPrimP :: StaticShX sh -> XArray sh a -> Mixed sh (Primitive a)
mfromXArrayPrimP ssh arr = M_Primitive (X.shape ssh arr) arr

mfromXArrayPrim :: PrimElt a => StaticShX sh -> XArray sh a -> Mixed sh a
mfromXArrayPrim = (fromPrimitive .) . mfromXArrayPrimP

mliftPrim :: (PrimElt a, PrimElt b)
          => (a -> b)
          -> Mixed sh a -> Mixed sh b
mliftPrim f (toPrimitive -> M_Primitive sh (X.XArray arr)) = fromPrimitive $ M_Primitive sh (X.XArray (S.mapA f arr))

mliftPrim2 :: (PrimElt a, PrimElt b, PrimElt c)
           => (a -> b -> c)
           -> Mixed sh a -> Mixed sh b -> Mixed sh c
mliftPrim2 f (toPrimitive -> M_Primitive sh (X.XArray arr1)) (toPrimitive -> M_Primitive _ (X.XArray arr2)) =
  fromPrimitive $ M_Primitive sh (X.XArray (S.zipWithA f arr1 arr2))

mcast :: forall sh1 sh2 a. (Rank sh1 ~ Rank sh2, Elt a)
      => StaticShX sh2 -> Mixed sh1 a -> Mixed sh2 a
mcast ssh2 arr
  | Refl <- lemAppNil @sh1
  , Refl <- lemAppNil @sh2
  = mcastPartial (ssxFromShape (mshape arr)) ssh2 (Proxy @'[]) arr

-- TODO: This should be `type data` but a bug in GHC 9.10 means that that throws linker errors
data SafeMCastSpec
  = MCastId
  | MCastApp [Maybe Nat] [Maybe Nat] [Maybe Nat] [Maybe Nat] SafeMCastSpec SafeMCastSpec
  | MCastForget

type SafeMCast :: SafeMCastSpec -> [Maybe Nat] -> [Maybe Nat] -> Constraint
type family SafeMCast spec sh1 sh2 where
  SafeMCast MCastId sh sh = ()
  SafeMCast (MCastApp sh1A sh1B sh2A sh2B specA specB) sh1 sh2 = (sh1 ~ sh1A ++ sh1B, sh2 ~ sh2A ++ sh2B, SafeMCast specA sh1A sh2A, SafeMCast specB sh1B sh2B)
  SafeMCast MCastForget sh1 sh2 = sh2 ~ Replicate (Rank sh1) Nothing

-- | This is an O(1) operation: the 'SafeMCast' constraint ensures that
-- type-level shape information can only be forgotten, not introduced, and thus
-- that no runtime shape checks are required. The @spec@ describes to
-- 'SafeMCast' how exactly you intend @sh2@ to be a weakening of @sh1@.
--
-- To see how to construct the spec, read the equations of 'SafeMCast' closely.
mcastSafe :: forall spec sh1 sh2 a proxy. SafeMCast spec sh1 sh2 => proxy spec -> Mixed sh1 a -> Mixed sh2 a
mcastSafe _ = unsafeCoerce @(Mixed sh1 a) @(Mixed sh2 a)