{-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE StandaloneKindSignatures #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} module Fancy where import Control.Monad (forM_) import Control.Monad.ST import Data.Coerce (coerce) import Data.Kind import Data.Proxy import Data.Type.Equality import Data.Type.Ord import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM import Array (XArray, IxX(..), KnownShapeX(..), StaticShapeX(..), type (++)) import qualified Array as X import Nats type family Replicate n a where Replicate Z a = '[] Replicate (S n) a = a : Replicate n a type family MapJust l where MapJust '[] = '[] MapJust (x : xs) = Just x : MapJust xs lemCompareFalse1 :: (0 < n, 1 > n) => Proxy n -> a lemCompareFalse1 = error "Incoherence" lemKnownReplicate :: forall n. KnownNat n => Proxy n -> Dict KnownShapeX (Replicate n Nothing) lemKnownReplicate _ = X.lemKnownShapeX (go (knownNat @n)) where go :: SNat m -> StaticShapeX (Replicate m Nothing) go SZ = SZX go (SS n) = () :$? go n type Mixed :: [Maybe Nat] -> Type -> Type data family Mixed sh a newtype instance Mixed sh Int = M_Int (XArray sh Int) newtype instance Mixed sh Double = M_Double (XArray sh Double) -- etc. newtype instance Mixed sh () = M_Nil (IxX sh) -- store the shape data instance Mixed sh (a, b) = M_Tup2 (Mixed sh a) (Mixed sh b) data instance Mixed sh (a, b, c) = M_Tup3 (Mixed sh a) (Mixed sh b) (Mixed sh c) data instance Mixed sh (a, b, c, d) = M_Tup4 (Mixed sh a) (Mixed sh b) (Mixed sh c) (Mixed sh d) newtype instance Mixed sh1 (Mixed sh2 a) = M_Nest (Mixed (sh1 ++ sh2) a) type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type data family MixedVecs s sh a newtype instance MixedVecs s sh Int = MV_Int (VU.MVector s Int) newtype instance MixedVecs s sh Double = MV_Double (VU.MVector s Double) -- etc. data instance MixedVecs s sh () = MV_Nil data instance MixedVecs s sh (a, b) = MV_Tup2 (MixedVecs s sh a) (MixedVecs s sh b) data instance MixedVecs s sh (a, b, c) = MV_Tup3 (MixedVecs s sh a) (MixedVecs s sh b) (MixedVecs s sh c) data instance MixedVecs s sh (a, b, c, d) = MV_Tup4 (MixedVecs s sh a) (MixedVecs s sh b) (MixedVecs s sh c) (MixedVecs s sh d) data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest (IxX sh2) (MixedVecs s (sh1 ++ sh2) a) class GMixed a where mshape :: KnownShapeX sh => Mixed sh a -> IxX sh mindex :: Mixed sh a -> IxX sh -> a mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IxX sh -> Mixed sh' a -- | Create an empty array. The given shape must have size zero; this may or may not be checked. memptyArray :: IxX sh -> Mixed sh a -- | Return the size of the individual (SoA) arrays in this value. If @a@ -- does not contain tuples, this coincides with the total number of scalars -- in the given value; if @a@ contains tuples, then it is some multiple of -- this number of scalars. mvecsNumElts :: a -> Int -- | Create uninitialised vectors for this array type, given the shape of -- this vector and an example for the contents. The shape must not have size -- zero; an error may be thrown otherwise. mvecsUnsafeNew :: IxX sh -> a -> ST s (MixedVecs s sh a) -- | Given the shape of this array, an index and a value, write the value at -- that index in the vectors. mvecsWrite :: IxX sh -> IxX sh -> a -> MixedVecs s sh a -> ST s () -- | Given the shape of this array, an index and a value, write the value at -- that index in the vectors. mvecsWritePartial :: KnownShapeX sh' => IxX (sh ++ sh') -> IxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s () -- | Given the shape of this array, finalise the vectors into 'XArray's. mvecsFreeze :: IxX sh -> MixedVecs s sh a -> ST s (Mixed sh a) -- TODO: this use of toVector is suboptimal mvecsWritePartialPrimitive :: forall sh' sh a s. (KnownShapeX sh', VU.Unbox a) => IxX (sh ++ sh') -> IxX sh -> XArray sh' a -> VU.MVector s a -> ST s () mvecsWritePartialPrimitive sh i arr v = do let offset = X.toLinearIdx sh (X.ixAppend i (X.zeroIdx' (X.shape arr))) VU.copy (VUM.slice offset (X.shapeSize (X.shape arr)) v) (X.toVector arr) instance GMixed Int where mshape (M_Int a) = X.shape a mindex (M_Int a) i = X.index a i mindexPartial (M_Int a) i = M_Int (X.indexPartial a i) memptyArray sh = M_Int (X.generate sh (error "memptyArray Int: shape was not empty")) mvecsNumElts _ = 1 mvecsUnsafeNew sh _ = MV_Int <$> VUM.unsafeNew (X.shapeSize sh) mvecsWrite sh i x (MV_Int v) = VUM.write v (X.toLinearIdx sh i) x mvecsWritePartial sh i (M_Int @sh' arr) (MV_Int v) = mvecsWritePartialPrimitive @sh' sh i arr v mvecsFreeze sh (MV_Int v) = M_Int . X.fromVector sh <$> VU.freeze v instance GMixed Double where mshape (M_Double a) = X.shape a mindex (M_Double a) i = X.index a i mindexPartial (M_Double a) i = M_Double (X.indexPartial a i) memptyArray sh = M_Double (X.generate sh (error "memptyArray Double: shape was not empty")) mvecsNumElts _ = 1 mvecsUnsafeNew sh _ = MV_Double <$> VUM.unsafeNew (X.shapeSize sh) mvecsWrite sh i x (MV_Double v) = VUM.write v (X.toLinearIdx sh i) x mvecsWritePartial sh i (M_Double @sh' arr) (MV_Double v) = mvecsWritePartialPrimitive @sh' sh i arr v mvecsFreeze sh (MV_Double v) = M_Double . X.fromVector sh <$> VU.freeze v instance GMixed () where mshape (M_Nil sh) = sh mindex _ _ = () mindexPartial = \(M_Nil sh) i -> M_Nil (X.ixDrop sh i) memptyArray sh = M_Nil sh mvecsNumElts _ = 1 mvecsUnsafeNew _ _ = return MV_Nil mvecsWrite _ _ _ _ = return () mvecsWritePartial _ _ _ _ = return () mvecsFreeze sh _ = return (M_Nil sh) instance (GMixed a, GMixed b) => GMixed (a, b) where mshape (M_Tup2 a _) = mshape a mindex (M_Tup2 a b) i = (mindex a i, mindex b i) mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i) memptyArray sh = M_Tup2 (memptyArray sh) (memptyArray sh) mvecsNumElts (x, y) = mvecsNumElts x * mvecsNumElts y mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y mvecsWrite sh i (x, y) (MV_Tup2 a b) = do mvecsWrite sh i x a mvecsWrite sh i y b mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do mvecsWritePartial sh i x a mvecsWritePartial sh i y b mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b instance (GMixed a, KnownShapeX sh') => GMixed (Mixed sh' a) where -- TODO: this is quadratic in the nesting level mshape :: forall sh. KnownShapeX sh => Mixed sh (Mixed sh' a) -> IxX sh mshape (M_Nest arr) | Dict <- X.lemAppKnownShapeX (knownShapeX @sh) (knownShapeX @sh') = ixAppPrefix (knownShapeX @sh) (mshape arr) where ixAppPrefix :: StaticShapeX sh1 -> IxX (sh1 ++ sh') -> IxX sh1 ixAppPrefix SZX _ = IZX ixAppPrefix (_ :$@ ssh) (i ::@ idx) = i ::@ ixAppPrefix ssh idx ixAppPrefix (_ :$? ssh) (i ::? idx) = i ::? ixAppPrefix ssh idx mindex (M_Nest arr) i = mindexPartial arr i mindexPartial :: forall sh1 sh2. Mixed (sh1 ++ sh2) (Mixed sh' a) -> IxX sh1 -> Mixed sh2 (Mixed sh' a) mindexPartial (M_Nest arr) i | Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') = M_Nest (mindexPartial @a @sh1 @(sh2 ++ sh') arr i) memptyArray sh = M_Nest (memptyArray (X.ixAppend sh (X.zeroIdx (knownShapeX @sh')))) mvecsNumElts arr = let n = X.shapeSize (mshape arr) in if n == 0 then 0 else n * mvecsNumElts (mindex arr (X.zeroIdx (knownShapeX @sh'))) mvecsUnsafeNew sh example | X.shapeSize sh' == 0 = error "mvecsUnsafeNew: empty example" | otherwise = MV_Nest sh' <$> mvecsUnsafeNew (X.ixAppend sh (mshape example)) (mindex example (X.zeroIdx (knownShapeX @sh'))) where sh' = mshape example mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (X.ixAppend sh sh') idx val vecs mvecsWritePartial :: forall sh1 sh2 s. KnownShapeX sh2 => IxX (sh1 ++ sh2) -> IxX sh1 -> Mixed sh2 (Mixed sh' a) -> MixedVecs s (sh1 ++ sh2) (Mixed sh' a) -> ST s () mvecsWritePartial sh12 idx (M_Nest arr) (MV_Nest sh' vecs) | Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh2) (knownShapeX @sh')) , Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') = mvecsWritePartial @a @(sh2 ++ sh') @sh1 (X.ixAppend sh12 sh') idx arr vecs mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest <$> mvecsFreeze (X.ixAppend sh sh') vecs mgenerate :: forall sh a. (KnownShapeX sh, GMixed a) => IxX sh -> (IxX sh -> a) -> Mixed sh a mgenerate sh f | not (checkBounds sh (knownShapeX @sh)) = error $ "mgenerate: Shape " ++ show sh ++ " not valid for shape type " ++ show (knownShapeX @sh) -- We need to be very careful here to ensure that neither 'sh' nor -- 'firstelem' that we pass to 'mvecsUnsafeNew' are empty. | X.shapeSize sh == 0 = memptyArray sh | otherwise = let firstidx = X.zeroIdx' sh firstelem = f (X.zeroIdx' sh) in if mvecsNumElts firstelem == 0 then memptyArray sh else runST $ do vecs <- mvecsUnsafeNew sh firstelem mvecsWrite sh firstidx firstelem vecs forM_ (tail (X.enumShape sh)) $ \idx -> mvecsWrite sh idx (f idx) vecs mvecsFreeze sh vecs where checkBounds :: IxX sh' -> StaticShapeX sh' -> Bool checkBounds IZX SZX = True checkBounds (n ::@ sh') (n' :$@ ssh') = n == fromIntegral (unSNat n') && checkBounds sh' ssh' checkBounds (_ ::? sh') (() :$? ssh') = checkBounds sh' ssh' type Ranked :: Nat -> Type -> Type newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a) type Shaped :: [Nat] -> Type -> Type newtype Shaped sh a = Shaped (Mixed (MapJust sh) a) newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a)) newtype instance Mixed sh (Shaped sh' a) = M_Shaped (Mixed sh (Mixed (MapJust sh') a)) newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a)) newtype instance MixedVecs s sh (Shaped sh' a) = MV_Shaped (MixedVecs s sh (Mixed (MapJust sh') a)) instance (KnownNat n, GMixed a) => GMixed (Ranked n a) where mshape (M_Ranked arr) | Dict <- lemKnownReplicate (Proxy @n) = mshape arr mindex (M_Ranked arr) i | Dict <- lemKnownReplicate (Proxy @n) = Ranked (mindex arr i) mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IxX sh -> Mixed sh' (Ranked n a) mindexPartial (M_Ranked arr) i | Dict <- lemKnownReplicate (Proxy @n) = coerce @(Mixed sh' (Mixed (Replicate n 'Nothing) a)) @(Mixed sh' (Ranked n a)) $ mindexPartial arr i memptyArray :: forall sh. IxX sh -> Mixed sh (Ranked n a) memptyArray i | Dict <- lemKnownReplicate (Proxy @n) = coerce @(Mixed sh (Mixed (Replicate n 'Nothing) a)) @(Mixed sh (Ranked n a)) $ memptyArray i mvecsNumElts (Ranked arr) | Dict <- lemKnownReplicate (Proxy @n) = mvecsNumElts arr mvecsUnsafeNew idx (Ranked arr) | Dict <- lemKnownReplicate (Proxy @n) = MV_Ranked <$> mvecsUnsafeNew idx arr mvecsWrite :: forall sh s. IxX sh -> IxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s () mvecsWrite sh idx (Ranked arr) vecs | Dict <- lemKnownReplicate (Proxy @n) = mvecsWrite sh idx arr (coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a)) vecs) mvecsWritePartial :: forall sh sh' s. KnownShapeX sh' => IxX (sh ++ sh') -> IxX sh -> Mixed sh' (Ranked n a) -> MixedVecs s (sh ++ sh') (Ranked n a) -> ST s () mvecsWritePartial sh idx arr vecs | Dict <- lemKnownReplicate (Proxy @n) = mvecsWritePartial sh idx (coerce @(Mixed sh' (Ranked n a)) @(Mixed sh' (Mixed (Replicate n Nothing) a)) arr) (coerce @(MixedVecs s (sh ++ sh') (Ranked n a)) @(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a)) vecs) mvecsFreeze :: forall sh s. IxX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a)) mvecsFreeze sh vecs | Dict <- lemKnownReplicate (Proxy @n) = coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) <$> mvecsFreeze sh (coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a)) vecs) data SShape sh where ShNil :: SShape '[] ShCons :: SNat n -> SShape sh -> SShape (n : sh) deriving instance Show (SShape sh) class KnownShape sh where knownShape :: SShape sh instance KnownShape '[] where knownShape = ShNil instance (KnownNat n, KnownShape sh) => KnownShape (n : sh) where knownShape = ShCons knownNat knownShape -- instance (KnownShape sh, GMixed a) => GMixed (Shaped sh a) where type IxR :: Nat -> Type data IxR n where IZR :: IxR Z (:::) :: Int -> IxR n -> IxR (S n) type IxS :: [Nat] -> Type data IxS sh where IZS :: IxS '[] (::$) :: Int -> IxS sh -> IxS (n : sh) ixCvtXR :: IxX sh -> IxR (X.Rank sh) ixCvtXR IZX = IZR ixCvtXR (n ::@ sh) = n ::: ixCvtXR sh ixCvtXR (n ::? sh) = n ::: ixCvtXR sh ixCvtRX :: IxR n -> IxX (Replicate n Nothing) ixCvtRX IZR = IZX ixCvtRX (n ::: sh) = n ::? ixCvtRX sh lemRankReplicate :: forall n. KnownNat n => Proxy n -> X.Rank (Replicate n (Nothing @Nat)) :~: n lemRankReplicate _ = go (knownNat @n) where go :: SNat m -> X.Rank (Replicate m (Nothing @Nat)) :~: m go SZ = Refl go (SS n) | Refl <- go n = Refl lemReplicatePlusApp :: forall n m a. KnownNat n => Proxy n -> Proxy m -> Proxy a -> Replicate (n + m) a :~: Replicate n a ++ Replicate m a lemReplicatePlusApp _ _ _ = go (knownNat @n) where go :: SNat n' -> Replicate (n' + m) a :~: Replicate n' a ++ Replicate m a go SZ = Refl go (SS n) | Refl <- go n = Refl rshape :: forall n a. (KnownNat n, GMixed a) => Ranked n a -> IxR n rshape (Ranked arr) | Dict <- lemKnownReplicate (Proxy @n) , Refl <- lemRankReplicate (Proxy @n) = ixCvtXR (mshape arr) rindex :: GMixed a => Ranked n a -> IxR n -> a rindex (Ranked arr) idx = mindex arr (ixCvtRX idx) rewriteMixed :: sh1 :~: sh2 -> Mixed sh1 a -> Mixed sh2 a rewriteMixed Refl x = x rindexPartial :: forall n m a. (KnownNat n, GMixed a) => Ranked (n + m) a -> IxR n -> Ranked m a rindexPartial (Ranked arr) idx | Refl <- lemReplicatePlusApp (Proxy @n) (Proxy @m) (Proxy @Nothing) = Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing) (rewriteMixed (lemReplicatePlusApp (Proxy @n) (Proxy @m) (Proxy @Nothing)) arr) (ixCvtRX idx)) rgenerate :: forall n a. (KnownNat n, GMixed a) => IxR n -> (IxR n -> a) -> Ranked n a rgenerate sh f | Dict <- lemKnownReplicate (Proxy @n) , Refl <- lemRankReplicate (Proxy @n) = Ranked (mgenerate (ixCvtRX sh) (f . ixCvtXR))