import "lib/github.com/diku-dk/complex/complex" import "lib/github.com/diku-dk/cpprandom/random" module uniform_real = uniform_real_distribution f64 minstd_rand module rand_engine = minstd_rand module c64 = mk_complex f64 type complex = c64.complex let N = 20i32 let PolyN = N + 1 type poly = [PolyN]f64 -- First element of pair steps fastest let iota2 (n: i32) (m: i32): [](i32, i32) = flatten (map (\y -> map (\x -> (x, y)) (iota n)) (iota m)) let evaln_c (p: poly) (nterms: i32) (pt: complex): complex = foldr (\coef accum -> c64.mk_re coef c64.+ pt c64.* accum) (c64.mk_re p[nterms-1]) (take (nterms - 1) p) let eval_c (p: poly) (pt: complex): complex = evaln_c p (length p) pt let evaln_d (p: poly) (nterms: i32) (pt: f64): f64 = foldr (\coef accum -> coef + pt * accum) p[nterms-1] (take (nterms - 1) p) let eval_d (p: poly) (pt: f64): f64 = evaln_d p (length p) pt let derivative (p: poly): *poly = map (\(i, v) -> f64.i32 i * v) (zip (1.. f64.abs (coef / p[PolyN-1])) p) module aberth = { type approx = [N]complex -- bound is 's' in the stop condition formulated at p.189-190 of -- https://link.springer.com/article/10.1007%2FBF02207694 type context = {p: poly, deriv: poly, bound: poly, radius: f64} let gen_coord (r: f64) (rng: *rand_engine.rng): *(rand_engine.rng, f64) = uniform_real.rand (-r, r) rng let gen_coord_c (r: f64) (rng: rand_engine.rng): (rand_engine.rng, complex) = let (rng, x) = gen_coord r rng let (rng, y) = gen_coord r rng in (rng, c64.mk x y) let generate (ctx: context) (rng: *rand_engine.rng): *(rand_engine.rng, approx) = let rngs = rand_engine.split_rng N rng let (rngs, approx) = unzip (map (gen_coord_c ctx.radius) rngs) let rng = rand_engine.join_rng rngs in (rng, approx) let compute_bound_poly (p: poly): *poly = map2 (\coef i -> f64.abs coef * f64.i32 (4 * i + 1)) p (0.. reduce_comm (c64.+) (c64.mk_re 0.0) (map (\j -> if i == j then c64.mk_re 0.0 else c64.mk_re 1.0 c64./ (approx[i] c64.- approx[j])) (0.. quo c64./ (c64.mk_re 1.0 c64.- quo c64.* sum)) quos sums let approx = map2 (c64.-) approx offsets let svals = map (eval_d ctx.bound <-< c64.mag) approx let conditions = map2 (\p s -> c64.mag p <= 1e-9 * s) pvals svals let all_converged = all id conditions in (all_converged, approx) let iterate (ctx: context) (rng: *rand_engine.rng): (rand_engine.rng, *approx) = let (rng, approx) = generate ctx rng let (init_conv, approx) = step ctx approx let (rng, _, _, _, approx) = loop (rng, conv, tries, step_idx, approx) = (rng, init_conv, 1, 1: i32, approx) while !conv do if step_idx + 1 > tries * 100 then let (rng, approx) = generate ctx rng let (conv, approx) = step ctx approx in (rng, conv, tries + 1, 0, approx) else let (conv, approx) = step ctx approx in (rng, conv, tries, step_idx + 1, approx) in (rng, approx) let aberth (p: *poly) (rng: *rand_engine.rng): *(rand_engine.rng, approx) = iterate (initialise p) rng } -- Set the constant coefficient to 1; nextDerbyshire will never change it let init_derbyshire: poly = [1] ++ replicate (PolyN - 1) (-1) let next_derbyshire (p: *poly): *(bool, poly) = let (_, p, looped) = loop (i, p, cont) = (0, p, true) while cont && i < length p do if p[i] == -1 then (i, p with [i] = 1, false) else (i + 1, p with [i] = -1, true) in (looped, p) let derbyshire_at_index (index: i32): *poly = let bitfield = (index << 1) + 1 in tabulate PolyN (\i -> f64.i32 (i32.get_bit i bitfield * 2 - 1)) let calc_index (value: f64) (left: f64) (right: f64) (steps: i32): i32 = t64 ((value - left) / (right - left) * (r64 steps - 1) + 0.5) let point_index (width: i32) (height: i32) (bottom_left: complex) (top_right: complex) (pt: complex) : i32 = -- Range for 'yi' is reversed because image coordinates go down in the y -- direction, while complex coordinates go up in the y direction let xi = calc_index (c64.re pt) (c64.re bottom_left) (c64.re top_right) width let yi = calc_index (c64.im pt) (c64.im top_right) (c64.im bottom_left) height in if 0 <= xi && xi < width && 0 <= yi && yi < height then width * yi + xi else -1 entry main_job (start_index: i32) (num_polys: i32) (width: i32) (height: i32) (left: f64) (top: f64) (right: f64) (bottom: f64) (seed: i32) : []i32 = -- Unnecessary to give each polynomial a different seed let rng = rand_engine.rng_from_seed [seed] let bottom_left = c64.mk left bottom let top_right = c64.mk right top let indices = flatten (map (\idx -> let p = derbyshire_at_index idx let (_, pts) = aberth.aberth p rng in map (point_index width height bottom_left top_right) pts) (start_index ..< start_index + num_polys)) let filtered = filter (\i -> i != -1) indices in reduce_by_index (replicate (width * height) 0) (+) 0 filtered (replicate (length filtered) 1) entry main_all (width: i32) (height: i32) (left: f64) (top: f64) (right: f64) (bottom: f64) (seed: i32) : []i32 = main_job 0 (1 << N) width height left top right bottom seed