#include #include #include #include #include "numalgo.h" #include "primes.h" using namespace std; vector smallprimes; bool smallprimes_inited=false; void fillsmallprimes(){ // cerr<<"Filling small primes..."<roothighbound)continue; for(int j=i*i;j<=highbound;j+=2*i){ composite[j/2-1]=true; } } //for(int p : smallprimes)cerr< genprimepair(Rng &rng,int nbits){ // for x = nbits/2: // (2^x)^2 = 2^(2x) // (2^x + 2^(x-2))^2 = 2^(2x) + 2^(2x-1) + 2^(2x-4) // ergo: (2^x + lambda*2^(x-2))^2 \in [2^(2x), 2^(2x+1)), for lambda \in [0,1] // To make sure the primes "differ in length by a few digits" [RSA78], we use x1=x-2 in the first // prime and x2-x+2 in the second int x1=nbits/2-2,x2=(nbits+1)/2+2; assert(x1+x2==nbits); return make_pair( randprime(rng,Bigint::one<biglow); static const int maxrangesize=100001; Bigint diff(bighigh-biglow); Bigint low,high; //inclusive if(diff<=maxrangesize){ low=biglow; high=bighigh; // cerr<<"low=biglow="< maybeprimes; maybeprimes.reserve(nleft); // cerr<<"Left ("<>=1; if(expmod(Bigint::two,d,n)==nm1)return true; } if(expmod(Bigint::two,d,n)==1)return true; return false; } bool strongLucasPrime(const Bigint &n){ //https://en.wikipedia.org/wiki/Lucas_pseudoprime#Implementing_a_Lucas_probable_prime_test //TODO: use d and s already calculated in strongPseudoPrime2 if(n<2)return false; if(n==2)return true; if(n.even())return false; int D; if ((D= 5),jacobiSymbol(Bigint(D),n)==-1); else if((D= -7),jacobiSymbol(Bigint(D),n)==-1); else if((D= 9),jacobiSymbol(Bigint(D),n)==-1); else if((D=-11),jacobiSymbol(Bigint(D),n)==-1); else { Bigint root(isqrt(n)); if(root*root==n)return false; //perfect square for(int i=6;;i++){ D=2*i+1; if(i%2==1)D=-D; if(jacobiSymbol(Bigint(D),n)==-1)break; } } //now we have a D // cerr<<"D="<>=1; s++; } #else Bigint d(n); d+=1; #endif // cerr<<"d="< dbits=d.bits(); assert(dbits.size()>0); assert(dbits[dbits.size()-1]==true); Bigint U(1),V(P); Bigint Qk(iQ); for(int i=dbits.size()-2;i>=0;i--){ U*=V; V*=V; V-=Qk<<1; Qk*=Qk; if(dbits[i]){ Bigint unext(U*P); unext+=V; if(unext.odd())unext+=n; assert(unext.even()); unext>>=1; Bigint vnext(U*D); vnext+=V*P; if(vnext.odd())vnext+=n; assert(vnext.even()); vnext>>=1; U=unext.divmod(n).second; V=vnext.divmod(n).second; Qk=(Qk*iQ).divmod(n).second; } else { U=U.divmod(n).second; V=V.divmod(n).second; Qk=Qk.divmod(n).second; } } if(U==0)return true; #if 1 if(V==0)return true; //r=0 check for(int r=1;r