diff options
| author | Tom Smeding <tom@tomsmeding.com> | 2025-11-26 22:00:39 +0100 |
|---|---|---|
| committer | Tom Smeding <tom@tomsmeding.com> | 2025-11-26 22:00:39 +0100 |
| commit | d5ea985f9d252af55ea0a5c3f00374a41b562369 (patch) | |
| tree | a0663aac094b02c60935b6e651e4dd38fac99959 /src/CHAD/Fusion.hs | |
| parent | d74a7b212f06fbfad1b7f578cb127613acfb3311 (diff) | |
WIP stuff
Diffstat (limited to 'src/CHAD/Fusion.hs')
| -rw-r--r-- | src/CHAD/Fusion.hs | 82 |
1 files changed, 9 insertions, 73 deletions
diff --git a/src/CHAD/Fusion.hs b/src/CHAD/Fusion.hs index 3358d30..f863944 100644 --- a/src/CHAD/Fusion.hs +++ b/src/CHAD/Fusion.hs @@ -11,26 +11,24 @@ {-# LANGUAGE TypeOperators #-} module CHAD.Fusion where -import Data.Dependent.Map (DMap) -- import Data.Dependent.Map qualified as DMap -import Data.Functor.Const -import Data.Kind (Type) import Data.Some -import Numeric.Natural import CHAD.AST import CHAD.AST.Bindings import CHAD.AST.Count import CHAD.AST.Env import CHAD.Data +import CHAD.Fusion.AST import CHAD.Lemmas -- TODO: --- A bunch of data types are defined here that should be able to express a --- graph of loop nests. A graph is a straight-line program whose statements --- are, in this case, loop nests. A loop nest corresponds to what fusion --- normally calls a "cluster", but is here represented as, well, a loop nest. +-- A bunch of data types are defined here (in CHAD.Fusion.AST) that should be +-- able to express a graph of loop nests. A graph is a straight-line program +-- whose statements are, in this case, loop nests. A loop nest corresponds to +-- what fusion normally calls a "cluster", but is here represented as, well, a +-- loop nest. -- -- No unzipping is done here, as I don't think it is necessary: I haven't been -- able to think of programs that get more fusion opportunities when unzipped @@ -57,72 +55,10 @@ import CHAD.Lemmas -- and compile that to an actual C loop nest. -- 6. Extend to other cool operations like EFold1InnerD1 +-- :m *CHAD.Fusion CHAD.AST.Pretty CHAD.Language +-- pprintExpr $ fromNamed $ body $ build (SS (SS SZ)) (pair (pair nil 3) 4) (#idx :-> snd_ #idx + snd_ (fst_ #idx)) +-- putStrLn $ case fromNamed $ body $ build (SS (SS SZ)) (pair (pair nil 3) 4) (#idx :-> snd_ #idx + snd_ (fst_ #idx)) of EBuild _ n esh ebody -> let env = knownEnv in buildLoopNest env n esh ebody $ \sub nest -> show sub ++ "\n" ++ ppLoopNest (subList env sub) nest -type FEx = Expr FGraph (Const ()) - -type FGraph :: (Ty -> Type) -> [Ty] -> Ty -> Type -data FGraph x env t where - FGraph :: DMap NodeId (Node env) -> Tuple NodeId t -> FGraph (Const ()) env t - -data Node env t where - FFreeVar :: STy t -> Idx env t -> Node env t - FLoop :: SList NodeId args - -> SList STy outs - -> LoopNest args outs - -> Tuple (Idx outs) t - -> Node env t - -data NodeId t = NodeId Natural (STy t) - deriving (Show) - -data Tuple f t where - TupNil :: Tuple f TNil - TupPair :: Tuple f a -> Tuple f b -> Tuple f (TPair a b) - TupSingle :: f t -> Tuple f t -deriving instance (forall a. Show (f a)) => Show (Tuple f t) - -data LoopNest args outs where - Inner :: Bindings Ex args bs - -> SList (Idx (Append bs args)) outs - -> LoopNest args outs - -- this should be able to express a simple nesting of builds and sums. - Layer :: Bindings Ex args bs1 - -> Idx bs1 TIx -- ^ loop width (number of (parallel) iterations) - -> LoopNest (TIx : Append bs1 args) loopouts - -> Partition BuildUp RedSum loopouts mapouts sumouts - -> Bindings Ex (Append sumouts (Append bs1 args)) bs2 - -> SList (Idx (Append bs2 (Append bs1 args))) outs - -> LoopNest args (Append outs mapouts) -deriving instance Show (LoopNest args outs) - -type Partition :: (Ty -> Ty -> Type) -> (Ty -> Ty -> Type) -> [Ty] -> [Ty] -> [Ty] -> Type -data Partition f1 f2 ts ts1 ts2 where - PNil :: Partition f1 f2 '[] '[] '[] - Part1 :: f1 t t1 -> Partition f1 f2 ts ts1 ts2 -> Partition f1 f2 (t : ts) (t1 : ts1) ts2 - Part2 :: f2 t t2 -> Partition f1 f2 ts ts1 ts2 -> Partition f1 f2 (t : ts) ts1 (t2 : ts2) -deriving instance (forall t t1. Show (f1 t t1), forall t t2. Show (f2 t t2)) => Show (Partition f1 f2 ts ts1 ts2) - -data BuildUp t t' where - BuildUp :: SNat n -> STy t -> BuildUp (TArr n t) (TArr (S n) t) -deriving instance Show (BuildUp t t') - -data RedSum t t' where - RedSum :: SMTy t -> RedSum t t -deriving instance Show (RedSum t t') - --- type family Unzip t where --- Unzip (TPair a b) = TPair (Unzip a) (Unzip b) --- Unzip (TArr n t) = UnzipA n t - --- type family UnzipA n t where --- UnzipA n (TPair a b) = TPair (UnzipA n a) (UnzipA n b) --- UnzipA n t = TArr n t - --- data Zipping ut t where --- ZId :: Zipping t t --- ZPair :: Zipping ua a -> Zipping ub b -> Zipping (TPair ua ub) (TPair a b) --- ZZip :: Zipping ua (TArr n a) -> Zipping ub (TArr n b) -> Zipping (TPair ua ub) (TArr n (TPair a b)) --- deriving instance Show (Zipping ut t) prependBinding :: forall args outs t. Ex args t -> LoopNest (t : args) outs -> LoopNest args outs prependBinding e (Inner (bs :: Bindings Ex (t : args) bs) outs) |
