aboutsummaryrefslogtreecommitdiff
path: root/src/Interpreter.hs
diff options
context:
space:
mode:
authorTom Smeding <tom@tomsmeding.com>2025-11-10 21:49:45 +0100
committerTom Smeding <tom@tomsmeding.com>2025-11-10 21:50:25 +0100
commit174af2ba568de66e0d890825b8bda930b8e7bb96 (patch)
tree5a20f52662e87ff7cf6a6bef5db0713aa6c7884e /src/Interpreter.hs
parent92bca235e3aaa287286b6af082d3fce585825a35 (diff)
Move module hierarchy under CHAD.
Diffstat (limited to 'src/Interpreter.hs')
-rw-r--r--src/Interpreter.hs471
1 files changed, 0 insertions, 471 deletions
diff --git a/src/Interpreter.hs b/src/Interpreter.hs
deleted file mode 100644
index e1c81cd..0000000
--- a/src/Interpreter.hs
+++ /dev/null
@@ -1,471 +0,0 @@
-{-# LANGUAGE BangPatterns #-}
-{-# LANGUAGE DataKinds #-}
-{-# LANGUAGE DerivingStrategies #-}
-{-# LANGUAGE FlexibleContexts #-}
-{-# LANGUAGE GADTs #-}
-{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-{-# LANGUAGE ImplicitParams #-}
-{-# LANGUAGE KindSignatures #-}
-{-# LANGUAGE LambdaCase #-}
-{-# LANGUAGE MultiWayIf #-}
-{-# LANGUAGE PatternSynonyms #-}
-{-# LANGUAGE RankNTypes #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-{-# LANGUAGE TupleSections #-}
-{-# LANGUAGE TypeApplications #-}
-{-# LANGUAGE TypeOperators #-}
-module Interpreter (
- interpret,
- interpretOpen,
- Value(..),
-) where
-
-import Control.Monad (foldM, join, when, forM_)
-import Control.Monad.Trans.Class (lift)
-import Control.Monad.Trans.State.Strict (runStateT, get, put)
-import Data.Bifunctor (bimap)
-import Data.Bitraversable (bitraverse)
-import Data.Char (isSpace)
-import Data.Functor.Identity
-import qualified Data.Functor.Product as Product
-import Data.Int (Int64)
-import Data.IORef
-import Data.Tuple (swap)
-import System.IO (hPutStrLn, stderr)
-import System.IO.Unsafe (unsafePerformIO)
-
-import Debug.Trace
-
-import Array
-import AST
-import AST.Pretty
-import AST.Sparse.Types
-import Data
-import Interpreter.Rep
-
-
-newtype AcM s a = AcM { unAcM :: IO a }
- deriving newtype (Functor, Applicative, Monad)
-
-runAcM :: (forall s. AcM s a) -> a
-runAcM (AcM m) = unsafePerformIO m
-
-acmDebugLog :: String -> AcM s ()
-acmDebugLog s = AcM (hPutStrLn stderr s)
-
-data V t = V (STy t) (Rep t)
-
-interpret :: Ex '[] t -> Rep t
-interpret = interpretOpen False SNil SNil
-
--- | Bool: whether to trace execution with debug prints (very verbose)
-interpretOpen :: Bool -> SList STy env -> SList Value env -> Ex env t -> Rep t
-interpretOpen prints env venv e =
- runAcM $
- let ?depth = 0
- ?prints = prints
- in interpret' (slistMap (\(Product.Pair t (Value v)) -> V t v) (slistZip env venv)) e
-
-interpret' :: forall env t s. (?prints :: Bool, ?depth :: Int)
- => SList V env -> Ex env t -> AcM s (Rep t)
-interpret' env e = do
- let tenv = slistMap (\(V t _) -> t) env
- let dep = ?depth
- let lenlimit = max 20 (100 - dep)
- let replace a b = map (\c -> if c == a then b else c)
- let trunc s | length s > lenlimit = take (lenlimit - 3) (replace '\n' ' ' s) ++ "..."
- | otherwise = replace '\n' ' ' s
- when ?prints $ acmDebugLog $ replicate dep ' ' ++ "ev: " ++ trunc (ppExpr tenv e)
- res <- let ?depth = dep + 1 in interpret'Rec env e
- when ?prints $ acmDebugLog $ replicate dep ' ' ++ "<- " ++ showValue 0 (typeOf e) res ""
- return res
-
-interpret'Rec :: forall env t s. (?prints :: Bool, ?depth :: Int) => SList V env -> Ex env t -> AcM s (Rep t)
-interpret'Rec env = \case
- EVar _ _ i -> case slistIdx env i of V _ x -> return x
- ELet _ a b -> do
- x <- interpret' env a
- let ?depth = ?depth - 1 in interpret' (V (typeOf a) x `SCons` env) b
- expr | False && trace ("<i> " ++ takeWhile (not . isSpace) (show expr)) False -> undefined
- EPair _ a b -> (,) <$> interpret' env a <*> interpret' env b
- EFst _ e -> fst <$> interpret' env e
- ESnd _ e -> snd <$> interpret' env e
- ENil _ -> return ()
- EInl _ _ e -> Left <$> interpret' env e
- EInr _ _ e -> Right <$> interpret' env e
- ECase _ e a b ->
- let STEither t1 t2 = typeOf e
- in interpret' env e >>= \case
- Left x -> interpret' (V t1 x `SCons` env) a
- Right y -> interpret' (V t2 y `SCons` env) b
- ENothing _ _ -> return Nothing
- EJust _ e -> Just <$> interpret' env e
- EMaybe _ a b e ->
- let STMaybe t1 = typeOf e
- in maybe (interpret' env a) (\x -> interpret' (V t1 x `SCons` env) b) =<< interpret' env e
- ELNil _ _ _ -> return Nothing
- ELInl _ _ e -> Just . Left <$> interpret' env e
- ELInr _ _ e -> Just . Right <$> interpret' env e
- ELCase _ e a b c ->
- let STLEither t1 t2 = typeOf e
- in interpret' env e >>= \case
- Nothing -> interpret' env a
- Just (Left x) -> interpret' (V t1 x `SCons` env) b
- Just (Right y) -> interpret' (V t2 y `SCons` env) c
- EConstArr _ _ _ v -> return v
- EBuild _ dim a b -> do
- sh <- unTupRepIdx ShNil ShCons dim <$> interpret' env a
- arrayGenerateM sh (\idx -> interpret' (V (tTup (sreplicate dim tIx)) (tupRepIdx ixUncons dim idx) `SCons` env) b)
- EMap _ a b -> do
- let STArr _ t = typeOf b
- arrayMapM (\x -> interpret' (V t x `SCons` env) a) =<< interpret' env b
- EFold1Inner _ _ a b c -> do
- let t = typeOf b
- let f = \x -> interpret' (V (STPair t t) x `SCons` env) a
- x0 <- interpret' env b
- arr <- interpret' env c
- let sh `ShCons` n = arrayShape arr
- arrayGenerateM sh $ \idx -> foldM (curry f) x0 [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]]
- ESum1Inner _ e -> do
- arr <- interpret' env e
- let STArr _ (STScal t) = typeOf e
- sh `ShCons` n = arrayShape arr
- numericIsNum t $ return $ arrayGenerate sh $ \idx -> sum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]]
- EUnit _ e -> arrayGenerateLinM ShNil (\_ -> interpret' env e)
- EReplicate1Inner _ a b -> do
- n <- fromIntegral @Int64 @Int <$> interpret' env a
- arr <- interpret' env b
- let sh = arrayShape arr
- return $ arrayGenerate (sh `ShCons` n) (\(idx `IxCons` _) -> arrayIndex arr idx)
- EMaximum1Inner _ e -> do
- arr <- interpret' env e
- let STArr _ (STScal t) = typeOf e
- sh `ShCons` n = arrayShape arr
- numericIsNum t $ return $
- arrayGenerate sh (\idx -> maximum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]])
- EMinimum1Inner _ e -> do
- arr <- interpret' env e
- let STArr _ (STScal t) = typeOf e
- sh `ShCons` n = arrayShape arr
- numericIsNum t $ return $
- arrayGenerate sh (\idx -> minimum [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n-1]])
- EReshape _ dim esh e -> do
- sh <- unTupRepIdx ShNil ShCons dim <$> interpret' env esh
- arr <- interpret' env e
- return $ arrayReshape sh arr
- EZip _ a b -> do
- arr1 <- interpret' env a
- arr2 <- interpret' env b
- let sh = arrayShape arr1
- when (sh /= arrayShape arr2) $
- error "Interpreter: mismatched shapes in EZip"
- return $ arrayGenerateLin sh (\i -> (arr1 `arrayIndexLinear` i, arr2 `arrayIndexLinear` i))
- EFold1InnerD1 _ _ a b c -> do
- let t = typeOf b
- let f = \x -> interpret' (V (STPair t t) x `SCons` env) a
- x0 <- interpret' env b
- arr <- interpret' env c
- let sh `ShCons` n = arrayShape arr
- -- TODO: this is very inefficient, even for an interpreter; with mutable
- -- arrays this can be a lot better with no lists
- res <- arrayGenerateM sh $ \idx -> do
- (y, stores) <- mapAccumLM (curry f) x0 [arrayIndex arr (idx `IxCons` i) | i <- [0 .. n - 1]]
- return (y, arrayFromList (ShNil `ShCons` n) stores)
- return (arrayMap fst res
- ,arrayGenerate (sh `ShCons` n) $ \(idx `IxCons` i) ->
- arrayIndexLinear (snd (arrayIndex res idx)) i)
- EFold1InnerD2 _ _ ef ebog ed -> do
- let STArr _ tB = typeOf ebog
- STArr _ t2 = typeOf ed
- let f = \tape ctg -> interpret' (V t2 ctg `SCons` V tB tape `SCons` env) ef
- bog <- interpret' env ebog
- arrctg <- interpret' env ed
- let sh `ShCons` n = arrayShape bog
- when (sh /= arrayShape arrctg) $ error "Interpreter: mismatched shapes in EFold1InnerD2"
- res <- arrayGenerateM sh $ \idx -> do
- let loop i !ctg !inpctgs | i < 0 = return (ctg, inpctgs)
- loop i !ctg !inpctgs = do
- let b = arrayIndex bog (idx `IxCons` i)
- (ctg1, ctg2) <- f b ctg
- loop (i - 1) ctg1 (ctg2 : inpctgs)
- (x0ctg, inpctg) <- loop (n - 1) (arrayIndex arrctg idx) []
- return (x0ctg, arrayFromList (ShNil `ShCons` n) inpctg)
- return (arrayMap fst res
- ,arrayGenerate (sh `ShCons` n) $ \(idx `IxCons` i) ->
- arrayIndexLinear (snd (arrayIndex res idx)) i)
- EConst _ _ v -> return v
- EIdx0 _ e -> (`arrayIndexLinear` 0) <$> interpret' env e
- EIdx1 _ a b -> arrayIndex1 <$> interpret' env a <*> (fromIntegral @Int64 @Int <$> interpret' env b)
- EIdx _ a b ->
- let STArr n _ = typeOf a
- in arrayIndex <$> interpret' env a <*> (unTupRepIdx IxNil IxCons n <$> interpret' env b)
- EShape _ e | STArr n _ <- typeOf e -> tupRepIdx shUncons n . arrayShape <$> interpret' env e
- EOp _ op e -> interpretOp op <$> interpret' env e
- ECustom _ t1 t2 _ pr _ _ e1 e2 -> do
- e1' <- interpret' env e1
- e2' <- interpret' env e2
- interpret' (V t2 e2' `SCons` V t1 e1' `SCons` SNil) pr
- ERecompute _ e -> interpret' env e
- EWith _ t e1 e2 -> do
- initval <- interpret' env e1
- withAccum t (typeOf e2) initval $ \accum ->
- interpret' (V (STAccum t) accum `SCons` env) e2
- EAccum _ t p e1 sp e2 e3 -> do
- idx <- interpret' env e1
- val <- interpret' env e2
- accum <- interpret' env e3
- accumAddSparseD t p accum idx sp val
- EZero _ t ezi -> do
- zi <- interpret' env ezi
- return $ zeroM t zi
- EDeepZero _ t ezi -> do
- zi <- interpret' env ezi
- return $ deepZeroM t zi
- EPlus _ t a b -> do
- a' <- interpret' env a
- b' <- interpret' env b
- return $ addM t a' b'
- EOneHot _ t p a b -> do
- a' <- interpret' env a
- b' <- interpret' env b
- return $ onehotM p t a' b'
- EError _ _ s -> error $ "Interpreter: Program threw error: " ++ s
-
-interpretOp :: SOp a t -> Rep a -> Rep t
-interpretOp op arg = case op of
- OAdd st -> numericIsNum st $ uncurry (+) arg
- OMul st -> numericIsNum st $ uncurry (*) arg
- ONeg st -> numericIsNum st $ negate arg
- OLt st -> numericIsNum st $ uncurry (<) arg
- OLe st -> numericIsNum st $ uncurry (<=) arg
- OEq st -> styIsEq st $ uncurry (==) arg
- ONot -> not arg
- OAnd -> uncurry (&&) arg
- OOr -> uncurry (||) arg
- OIf -> if arg then Left () else Right ()
- ORound64 -> round arg
- OToFl64 -> fromIntegral arg
- ORecip st -> floatingIsFractional st $ recip arg
- OExp st -> floatingIsFractional st $ exp arg
- OLog st -> floatingIsFractional st $ log arg
- OIDiv st -> integralIsIntegral st $ uncurry quot arg
- OMod st -> integralIsIntegral st $ uncurry rem arg
- where
- styIsEq :: SScalTy t -> (Eq (Rep (TScal t)) => r) -> r
- styIsEq STI32 = id
- styIsEq STI64 = id
- styIsEq STF32 = id
- styIsEq STF64 = id
- styIsEq STBool = id
-
-zeroM :: SMTy t -> Rep (ZeroInfo t) -> Rep t
-zeroM typ zi = case typ of
- SMTNil -> ()
- SMTPair t1 t2 -> (zeroM t1 (fst zi), zeroM t2 (snd zi))
- SMTLEither _ _ -> Nothing
- SMTMaybe _ -> Nothing
- SMTArr _ t -> arrayMap (zeroM t) zi
- SMTScal sty -> case sty of
- STI32 -> 0
- STI64 -> 0
- STF32 -> 0.0
- STF64 -> 0.0
-
-deepZeroM :: SMTy t -> Rep (DeepZeroInfo t) -> Rep t
-deepZeroM typ zi = case typ of
- SMTNil -> ()
- SMTPair t1 t2 -> (deepZeroM t1 (fst zi), deepZeroM t2 (snd zi))
- SMTLEither t1 t2 -> fmap (bimap (deepZeroM t1) (deepZeroM t2)) zi
- SMTMaybe t -> fmap (deepZeroM t) zi
- SMTArr _ t -> arrayMap (deepZeroM t) zi
- SMTScal sty -> case sty of
- STI32 -> 0
- STI64 -> 0
- STF32 -> 0.0
- STF64 -> 0.0
-
-addM :: SMTy t -> Rep t -> Rep t -> Rep t
-addM typ a b = case typ of
- SMTNil -> ()
- SMTPair t1 t2 -> (addM t1 (fst a) (fst b), addM t2 (snd a) (snd b))
- SMTLEither t1 t2 -> case (a, b) of
- (Nothing, _) -> b
- (_, Nothing) -> a
- (Just (Left x), Just (Left y)) -> Just (Left (addM t1 x y))
- (Just (Right x), Just (Right y)) -> Just (Right (addM t2 x y))
- _ -> error "Plus of inconsistent LEithers"
- SMTMaybe t -> case (a, b) of
- (Nothing, _) -> b
- (_, Nothing) -> a
- (Just x, Just y) -> Just (addM t x y)
- SMTArr _ t ->
- let sh1 = arrayShape a
- sh2 = arrayShape b
- in if | shapeSize sh1 == 0 -> b
- | shapeSize sh2 == 0 -> a
- | sh1 == sh2 -> arrayGenerateLin sh1 (\i -> addM t (arrayIndexLinear a i) (arrayIndexLinear b i))
- | otherwise -> error "Plus of inconsistently shaped arrays"
- SMTScal sty -> numericIsNum sty $ a + b
-
-onehotM :: SAcPrj p a b -> SMTy a -> Rep (AcIdxS p a) -> Rep b -> Rep a
-onehotM SAPHere _ _ val = val
-onehotM (SAPFst prj) (SMTPair a b) idx val = (onehotM prj a (fst idx) val, zeroM b (snd idx))
-onehotM (SAPSnd prj) (SMTPair a b) idx val = (zeroM a (fst idx), onehotM prj b (snd idx) val)
-onehotM (SAPLeft prj) (SMTLEither a _) idx val = Just (Left (onehotM prj a idx val))
-onehotM (SAPRight prj) (SMTLEither _ b) idx val = Just (Right (onehotM prj b idx val))
-onehotM (SAPJust prj) (SMTMaybe a) idx val = Just (onehotM prj a idx val)
-onehotM (SAPArrIdx prj) (SMTArr n a) idx val =
- runIdentity $ onehotArray (\idx' -> Identity (onehotM prj a idx' val)) (\zi -> Identity (zeroM a zi)) n prj idx
-
-withAccum :: SMTy t -> STy a -> Rep t -> (RepAc t -> AcM s (Rep a)) -> AcM s (Rep a, Rep t)
-withAccum t _ initval f = AcM $ do
- accum <- newAcDense t initval
- out <- unAcM $ f accum
- val <- readAc t accum
- return (out, val)
-
-newAcDense :: SMTy a -> Rep a -> IO (RepAc a)
-newAcDense typ val = case typ of
- SMTNil -> return ()
- SMTPair t1 t2 -> bitraverse (newAcDense t1) (newAcDense t2) val
- SMTLEither t1 t2 -> newIORef =<< traverse (bitraverse (newAcDense t1) (newAcDense t2)) val
- SMTMaybe t1 -> newIORef =<< traverse (newAcDense t1) val
- SMTArr _ t1 -> arrayMapM (newAcDense t1) val
- SMTScal _ -> newIORef val
-
-onehotArray :: Monad m
- => (Rep (AcIdxS p a) -> m v) -- ^ the "one"
- -> (Rep (ZeroInfo a) -> m v) -- ^ the "zero"
- -> SNat n -> SAcPrj p a b -> Rep (AcIdxS (APArrIdx p) (TArr n a)) -> m (Array n v)
-onehotArray mkone mkzero n _ ((arrindex', ziarr), idx) =
- let arrindex = unTupRepIdx IxNil IxCons n arrindex'
- arrsh = arrayShape ziarr
- !linindex = toLinearIndex arrsh arrindex
- in arrayGenerateLinM arrsh (\i -> if i == linindex then mkone idx else mkzero (ziarr `arrayIndexLinear` i))
-
-readAc :: SMTy t -> RepAc t -> IO (Rep t)
-readAc typ val = case typ of
- SMTNil -> return ()
- SMTPair t1 t2 -> bitraverse (readAc t1) (readAc t2) val
- SMTLEither t1 t2 -> traverse (bitraverse (readAc t1) (readAc t2)) =<< readIORef val
- SMTMaybe t -> traverse (readAc t) =<< readIORef val
- SMTArr _ t -> traverse (readAc t) val
- SMTScal _ -> readIORef val
-
-accumAddSparseD :: SMTy a -> SAcPrj p a b -> RepAc a -> Rep (AcIdxD p a) -> Sparse b c -> Rep c -> AcM s ()
-accumAddSparseD typ prj ref idx sp val = case (typ, prj) of
- (_, SAPHere) -> accumAddDense typ ref sp val
-
- (SMTPair t1 _, SAPFst prj') -> accumAddSparseD t1 prj' (fst ref) idx sp val
- (SMTPair _ t2, SAPSnd prj') -> accumAddSparseD t2 prj' (snd ref) idx sp val
-
- (SMTLEither t1 _, SAPLeft prj') ->
- realiseMaybeSparse ref (error "Accumulating Left into LNil (EWith requires EDeepZero)")
- (\case Left ac1 -> accumAddSparseD t1 prj' ac1 idx sp val
- Right{} -> error "Mismatched Either in accumAddSparseD (r +l)")
- (SMTLEither _ t2, SAPRight prj') ->
- realiseMaybeSparse ref (error "Accumulating Right into LNil (EWith requires EDeepZero)")
- (\case Right ac2 -> accumAddSparseD t2 prj' ac2 idx sp val
- Left{} -> error "Mismatched Either in accumAddSparseD (l +r)")
-
- (SMTMaybe t1, SAPJust prj') ->
- realiseMaybeSparse ref (error "Accumulating Just into Nothing (EWith requires EDeepZero)")
- (\ac -> accumAddSparseD t1 prj' ac idx sp val)
-
- (SMTArr n t1, SAPArrIdx prj') ->
- let (arrindex', idx') = idx
- arrindex = unTupRepIdx IxNil IxCons n arrindex'
- arrsh = arrayShape ref
- linindex = toLinearIndex arrsh arrindex
- in accumAddSparseD t1 prj' (arrayIndexLinear ref linindex) idx' sp val
-
-accumAddDense :: SMTy a -> RepAc a -> Sparse a b -> Rep b -> AcM s ()
-accumAddDense typ ref sp val = case (typ, sp) of
- (_, _) | isAbsent sp -> return ()
- (_, SpAbsent) -> return ()
- (_, SpSparse s) ->
- case val of
- Nothing -> return ()
- Just val' -> accumAddDense typ ref s val'
- (SMTPair t1 t2, SpPair s1 s2) -> do
- accumAddDense t1 (fst ref) s1 (fst val)
- accumAddDense t2 (snd ref) s2 (snd val)
- (SMTLEither t1 t2, SpLEither s1 s2) ->
- case val of
- Nothing -> return ()
- Just (Left val1) ->
- realiseMaybeSparse ref (error "Accumulating Left into LNil (EWith requires EDeepZero)")
- (\case Left ac1 -> accumAddDense t1 ac1 s1 val1
- Right{} -> error "Mismatched Either in accumAddSparse (r +l)")
- Just (Right val2) ->
- realiseMaybeSparse ref (error "Accumulating Right into LNil (EWith requires EDeepZero)")
- (\case Right ac2 -> accumAddDense t2 ac2 s2 val2
- Left{} -> error "Mismatched Either in accumAddSparse (l +r)")
- (SMTMaybe t, SpMaybe s) ->
- case val of
- Nothing -> return ()
- Just val' ->
- realiseMaybeSparse ref (error "Accumulating Just into Nothing (EAccum requires EDeepZero)")
- (\ac -> accumAddDense t ac s val')
- (SMTArr _ t1, SpArr s) ->
- forM_ [0 .. arraySize ref - 1] $ \i ->
- accumAddDense t1 (arrayIndexLinear ref i) s (arrayIndexLinear val i)
- (SMTScal sty, SpScal) -> numericIsNum sty $ AcM $ atomicModifyIORef' ref (\x -> (x + val, ()))
-
--- TODO: makeval is always 'error' now. Simplify?
-realiseMaybeSparse :: IORef (Maybe a) -> IO a -> (a -> AcM s ()) -> AcM s ()
-realiseMaybeSparse ref makeval modifyval =
- -- Try modifying what's already in ref. The 'join' makes the snd
- -- of the function's return value a _continuation_ that is run after
- -- the critical section ends.
- AcM $ join $ atomicModifyIORef' ref $ \ac -> case ac of
- -- Oops, ref's contents was still sparse. Have to initialise
- -- it first, then try again.
- Nothing -> (ac, do val <- makeval
- join $ atomicModifyIORef' ref $ \ac' -> case ac' of
- Nothing -> (Just val, return ())
- Just val' -> (ac', unAcM $ modifyval val'))
- -- Yep, ref already had a value in there, so we can just add
- -- val' to it recursively.
- Just val -> (ac, unAcM $ modifyval val)
-
-
-numericIsNum :: ScalIsNumeric st ~ True => SScalTy st -> ((Num (ScalRep st), Ord (ScalRep st)) => r) -> r
-numericIsNum STI32 = id
-numericIsNum STI64 = id
-numericIsNum STF32 = id
-numericIsNum STF64 = id
-
-floatingIsFractional :: ScalIsFloating st ~ True => SScalTy st -> ((Floating (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsFloating st ~ True) => r) -> r
-floatingIsFractional STF32 = id
-floatingIsFractional STF64 = id
-
-integralIsIntegral :: ScalIsIntegral st ~ True => SScalTy st -> ((Integral (ScalRep st), Ord (ScalRep st), ScalIsNumeric st ~ True, ScalIsIntegral st ~ True) => r) -> r
-integralIsIntegral STI32 = id
-integralIsIntegral STI64 = id
-
-unTupRepIdx :: f Z -> (forall m. f m -> Int -> f (S m))
- -> SNat n -> Rep (Tup (Replicate n TIx)) -> f n
-unTupRepIdx nil _ SZ _ = nil
-unTupRepIdx nil cons (SS n) (idx, i) = unTupRepIdx nil cons n idx `cons` fromIntegral @Int64 @Int i
-
-tupRepIdx :: (forall m. f (S m) -> (f m, Int))
- -> SNat n -> f n -> Rep (Tup (Replicate n TIx))
-tupRepIdx _ SZ _ = ()
-tupRepIdx uncons (SS n) tup =
- let (tup', i) = uncons tup
- in ((,) $! tupRepIdx uncons n tup') $! fromIntegral @Int @Int64 i
-
-ixUncons :: Index (S n) -> (Index n, Int)
-ixUncons (IxCons idx i) = (idx, i)
-
-shUncons :: Shape (S n) -> (Shape n, Int)
-shUncons (ShCons idx i) = (idx, i)
-
-mapAccumLM :: (Traversable t, Monad m) => (s -> a -> m (s, b)) -> s -> t a -> m (s, t b)
-mapAccumLM f s0 = fmap swap . flip runStateT s0 . traverse f'
- where f' x = do
- s <- get
- (s', y) <- lift $ f s x
- put s'
- return y