summaryrefslogtreecommitdiff
path: root/src/Simplify.hs
diff options
context:
space:
mode:
Diffstat (limited to 'src/Simplify.hs')
-rw-r--r--src/Simplify.hs315
1 files changed, 215 insertions, 100 deletions
diff --git a/src/Simplify.hs b/src/Simplify.hs
index e110206..74b6601 100644
--- a/src/Simplify.hs
+++ b/src/Simplify.hs
@@ -1,7 +1,9 @@
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFunctor #-}
+{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImplicitParams #-}
+{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE QuasiQuotes #-}
@@ -19,13 +21,14 @@ import Control.Monad (ap)
import Data.Bifunctor (first)
import Data.Function (fix)
import Data.Monoid (Any(..))
-import Data.Type.Equality (testEquality)
import Debug.Trace
import AST
import AST.Count
import AST.Pretty
+import AST.Sparse.Types
+import AST.UnMonoid (acPrjCompose)
import Data
import Simplify.TH
@@ -81,22 +84,28 @@ runSM (SM f) = first getAny (f id)
smReconstruct :: Ex env t -> SM tenv tt env t (Ex tenv tt)
smReconstruct core = SM (\ctx -> (Any False, ctx core))
-tellActed :: SM tenv tt env t ()
-tellActed = SM (\_ -> (Any True, ()))
+class Monad m => ActedMonad m where
+ tellActed :: m ()
+ hideActed :: m a -> m a
+ liftActed :: (Any, a) -> m a
+
+instance ActedMonad ((,) Any) where
+ tellActed = (Any True, ())
+ hideActed (_, x) = (Any False, x)
+ liftActed = id
+
+instance ActedMonad (SM tenv tt env t) where
+ tellActed = SM (\_ -> tellActed)
+ hideActed (SM f) = SM (\ctx -> hideActed (f ctx))
+ liftActed pair = SM (\_ -> pair)
-- more convenient in practice
-acted :: SM tenv tt env t a -> SM tenv tt env t a
+acted :: ActedMonad m => m a -> m a
acted m = tellActed >> m
within :: (Ex env' t' -> Ex env t) -> SM tenv tt env' t' a -> SM tenv tt env t a
within subctx (SM f) = SM $ \ctx -> f (ctx . subctx)
-acted' :: (Any, a) -> (Any, a)
-acted' (_, x) = (Any True, x)
-
-liftActed :: (Any, a) -> SM tenv tt env t a
-liftActed pair = SM $ \_ -> pair
-
simplify' :: (?accumInScope :: Bool, ?config :: SimplifyConfig, KnownEnv tenv) => Ex env t -> SM tenv tt env t (Ex env t)
simplify' expr
| scLogging ?config = do
@@ -167,10 +176,10 @@ simplify'Rec = \case
ECase _ (ELet _ rhs body) e1 e2 -> acted $ simplify' (ELet ext rhs (ECase ext body (weakenExpr (WCopy WSink) e1) (weakenExpr (WCopy WSink) e2)))
EIdx0 _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EIdx0 ext body))
EIdx1 _ (ELet _ rhs body) e -> acted $ simplify' (ELet ext rhs (EIdx1 ext body (weakenExpr WSink e)))
- EAccum _ t p e1 (ELet _ rhs body) acc ->
+ EAccum _ t p e1 sp (ELet _ rhs body) acc ->
acted $ simplify' $
ELet ext rhs $
- EAccum ext t p (weakenExpr WSink e1) body (weakenExpr WSink acc)
+ EAccum ext t p (weakenExpr WSink e1) sp body (weakenExpr WSink acc)
-- let () = e in () ~> e
ELet _ e1 (ENil _) | STNil <- typeOf e1 ->
@@ -194,6 +203,9 @@ simplify'Rec = \case
EIdx _ (EReplicate1Inner _ _ e2) e3 -> acted $ simplify' $ EIdx ext e2 (EFst ext e3)
EIdx _ (EUnit _ e1) _ -> acted $ simplify' $ e1
+ -- TODO: more array shape
+ EShape _ (EBuild _ _ e _) -> acted $ simplify' e
+
-- TODO: more constant folding
EOp _ OIf (EConst _ STBool True) -> acted $ return (EInl ext STNil (ENil ext))
EOp _ OIf (EConst _ STBool False) -> acted $ return (EInr ext STNil (ENil ext))
@@ -222,23 +234,40 @@ simplify'Rec = \case
acted $ simplify' $ EUnit ext (substInline (ENil ext) e)
-- monoid rules
- EAccum _ t p e1 e2 acc -> do
- e1' <- within (\e1' -> EAccum ext t p e1' e2 acc ) $ simplify' e1
- e2' <- within (\e2' -> EAccum ext t p e1' e2' acc ) $ simplify' e2
- acc' <- within (\acc' -> EAccum ext t p e1' e2' acc') $ simplify' acc
- simplifyOneHotTerm (OneHotTerm t p e1' e2')
+ EAccum _ t p e1 sp e2 acc -> do
+ e1' <- within (\e1' -> EAccum ext t p e1' sp e2 acc ) $ simplify' e1
+ e2' <- within (\e2' -> EAccum ext t p e1' sp e2' acc ) $ simplify' e2
+ acc' <- within (\acc' -> EAccum ext t p e1' sp e2' acc') $ simplify' acc
+ simplifyOHT (OneHotTerm SAID t p e1' sp e2')
(acted $ return (ENil ext))
- (\e -> return (EAccum ext t SAPHere (ENil ext) e acc'))
- (\(OneHotTerm t' p' e1'' e2'') -> return (EAccum ext t' p' e1'' e2'' acc'))
+ (\sp' (InContext w wrap e) -> do
+ e' <- within (\e' -> wrap $ EAccum ext t SAPHere (ENil ext) sp' e' (weakenExpr w acc')) $ simplify' e
+ return (wrap $ EAccum ext t SAPHere (ENil ext) sp' e' (weakenExpr w acc')))
+ (\(InContext w wrap (OneHotTerm _ t' p' e1'' sp' e2'')) -> do
+ -- The acted management here is a hideous mess.
+ e1''' <- hideActed $ within (\e1''' -> wrap $ EAccum ext t' p' e1''' sp' e2'' (weakenExpr w acc')) $ simplify' e1''
+ e2''' <- hideActed $ within (\e2''' -> wrap $ EAccum ext t' p' e1''' sp' e2''' (weakenExpr w acc')) $ simplify' e2''
+ return (wrap $ EAccum ext t' p' e1''' sp' e2''' (weakenExpr w acc')))
EPlus _ _ (EZero _ _ _) e -> acted $ simplify' e
EPlus _ _ e (EZero _ _ _) -> acted $ simplify' e
EOneHot _ t p e1 e2 -> do
e1' <- within (\e1' -> EOneHot ext t p e1' e2 ) $ simplify' e1
e2' <- within (\e2' -> EOneHot ext t p e1' e2') $ simplify' e2
- simplifyOneHotTerm (OneHotTerm t p e1' e2')
+ simplifyOHT (OneHotTerm SAIS t p e1' (spDense (acPrjTy p t)) e2')
(acted $ return (EZero ext t (zeroInfoFromOneHot t p e1 e2)))
- (\e -> acted $ return e)
- (\(OneHotTerm t' p' e1'' e2'') -> return (EOneHot ext t' p' e1'' e2''))
+ (\sp' (InContext _ wrap e) ->
+ case isDense t sp' of
+ Just Refl -> do
+ e' <- hideActed $ within wrap $ simplify' e
+ return (wrap e')
+ Nothing -> error "simplifyOneHotTerm sparsified a dense Sparse")
+ (\(InContext _ wrap (OneHotTerm _ t' p' e1'' sp' e2'')) ->
+ case isDense (acPrjTy p' t') sp' of
+ Just Refl -> do
+ e1''' <- hideActed $ within (\e1''' -> wrap $ EOneHot ext t' p' e1''' e2'') $ simplify' e1''
+ e2''' <- hideActed $ within (\e2''' -> wrap $ EOneHot ext t' p' e1''' e2''') $ simplify' e2''
+ return (wrap $ EOneHot ext t' p' e1''' e2''')
+ Nothing -> error "simplifyOneHotTerm sparsified a dense Sparse")
-- type-specific equations for plus
EPlus _ SMTNil e1 e2 | not (hasAdds e1), not (hasAdds e2) ->
@@ -302,8 +331,9 @@ simplify'Rec = \case
e1' <- within (\e1' -> EWith ext t e1' e2) (simplify' e1)
e2' <- within (\e2' -> EWith ext t e1' e2') (let ?accumInScope = True in simplify' e2)
pure (EWith ext t e1' e2')
- EZero _ t e -> [simprec| EZero ext t *e |] -- EZero ext t <$> simplify' e
- EPlus _ t a b -> [simprec| EPlus ext t *a *b |] -- EPlus ext t <$> simplify' a <*> simplify' b
+ EZero _ t e -> [simprec| EZero ext t *e |]
+ EDeepZero _ t e -> [simprec| EDeepZero ext t *e |]
+ EPlus _ t a b -> [simprec| EPlus ext t *a *b |]
EError _ t s -> pure $ EError ext t s
cheapExpr :: Expr x env t -> Bool
@@ -353,8 +383,9 @@ hasAdds = \case
EOp _ _ e -> hasAdds e
EWith _ _ a b -> hasAdds a || hasAdds b
ERecompute _ e -> hasAdds e
- EAccum _ _ _ _ _ _ -> True
+ EAccum _ _ _ _ _ _ _ -> True
EZero _ _ e -> hasAdds e
+ EDeepZero _ _ e -> hasAdds e
EPlus _ _ a b -> hasAdds a || hasAdds b
EOneHot _ _ _ a b -> hasAdds a || hasAdds b
EError _ _ _ -> False
@@ -373,51 +404,161 @@ checkAccumInScope = \case SNil -> False
check (STScal _) = False
check STAccum{} = True
-data OneHotTerm env p a b where
- OneHotTerm :: SMTy a -> SAcPrj p a b -> Ex env (AcIdx p a) -> Ex env b -> OneHotTerm env p a b
-deriving instance Show (OneHotTerm env p a b)
-
-simplifyOneHotTerm :: OneHotTerm env p a b
- -> SM tenv tt env t r -- ^ Zero case (onehot is actually zero)
- -> (Ex env a -> SM tenv tt env t r) -- ^ Trivial case (no zeros in onehot)
- -> (forall p' b'. OneHotTerm env p' a b' -> SM tenv tt env t r)
- -> SM tenv tt env t r
-simplifyOneHotTerm (OneHotTerm t1 prj1 idx1 val1) kzero ktriv k = do
- val1' <- liftActed $ recogniseMonoid (acPrjTy prj1 t1) val1
- case val1' of
- EZero{} -> kzero
- EOneHot _ t2 prj2 idx2 val2
- | Just Refl <- testEquality (acPrjTy prj1 t1) t2 -> do
- tellActed -- record, whatever happens later, that we've modified something
- concatOneHots t1 prj1 idx1 prj2 idx2 $ \prj12 idx12 ->
- simplifyOneHotTerm (OneHotTerm t1 prj12 idx12 val2) kzero ktriv k
- _ -> case prj1 of
- SAPHere -> ktriv val1
- _ -> k (OneHotTerm t1 prj1 idx1 val1)
+data OneHotTerm dense env a where
+ OneHotTerm :: SAIDense dense -> SMTy a -> SAcPrj p a b -> Ex env (AcIdx dense p a) -> Sparse b c -> Ex env c -> OneHotTerm dense env a
+deriving instance Show (OneHotTerm dense env a)
+
+data InContext f env (a :: Ty) where
+ InContext :: env :> env' -> (forall t. Ex env' t -> Ex env t) -> f env' a -> InContext f env a
+
+simplifyOHT_recogniseMonoid :: ActedMonad m => OneHotTerm dense env a -> m (OneHotTerm dense env a)
+simplifyOHT_recogniseMonoid (OneHotTerm dense t prj idx sp val) = do
+ val' <- liftActed $ recogniseMonoid (applySparse sp (acPrjTy prj t)) val
+ return $ OneHotTerm dense t prj idx sp val'
+
+simplifyOHT_unsparse :: ActedMonad m => OneHotTerm dense env a -> m (InContext (OneHotTerm dense) env a)
+simplifyOHT_unsparse (OneHotTerm SAID t prj1 idx1 sp1 val1) =
+ unsparseOneHotD sp1 val1 $ \w wrap prj2 idx2 sp2 val2 ->
+ acPrjCompose SAID prj1 (weakenExpr w idx1) prj2 idx2 $ \prj' idx' ->
+ return $ InContext w wrap (OneHotTerm SAID t prj' idx' sp2 val2)
+simplifyOHT_unsparse oht@(OneHotTerm SAIS _ _ _ _ _) = return $ InContext WId id oht
+
+simplifyOHT_concat :: ActedMonad m => OneHotTerm dense env a -> m (OneHotTerm dense env a)
+simplifyOHT_concat (OneHotTerm @dense @_ @_ @_ @env dense t1 prj1 idx1 sp (EOneHot @_ @c @p2 _ t2 prj2 idx2 val))
+ | Just Refl <- isDense (acPrjTy prj1 t1) sp =
+ let idx2' :: Ex env (AcIdx dense p2 c)
+ idx2' = case dense of
+ SAID -> reduceAcIdx t2 prj2 idx2
+ SAIS -> idx2
+ in acPrjCompose dense prj1 idx1 prj2 idx2' $ \prj' idx' ->
+ acted $ return $ OneHotTerm dense t1 prj' idx' (spDense (acPrjTy prj' t1)) val
+simplifyOHT_concat oht = return oht
+
+-- -- Property not expressed in types: if the Sparse in the input OneHotTerm is
+-- -- dense, then the Sparse in the output will also be dense. This property is
+-- -- used when simplifying EOneHot, which cannot represent sparsity.
+simplifyOHT :: ActedMonad m => OneHotTerm dense env a
+ -> m r -- ^ Zero case (onehot is actually zero)
+ -> (forall b. Sparse a b -> InContext Ex env b -> m r) -- ^ Trivial case (no zeros in onehot)
+ -> (InContext (OneHotTerm dense) env a -> m r) -- ^ Simplified
+ -> m r
+simplifyOHT oht kzero ktriv k = do
+ -- traceM $ "sOHT: input " ++ show oht
+ oht1 <- simplifyOHT_recogniseMonoid oht
+ -- traceM $ "sOHT: recog " ++ show oht1
+ InContext w1 wrap1 oht2 <- simplifyOHT_unsparse oht1
+ -- traceM $ "sOHT: unspa " ++ show oht2
+ oht3 <- simplifyOHT_concat oht2
+ -- traceM $ "sOHT: conca " ++ show oht3
+ -- traceM ""
+ case oht3 of
+ OneHotTerm _ _ _ _ _ EZero{} -> kzero
+ OneHotTerm _ _ SAPHere _ sp val -> ktriv sp (InContext w1 wrap1 val)
+ _ -> k (InContext w1 wrap1 oht3)
+
+-- Sets the acted flag whenever a non-trivial projection is returned or the
+-- output Sparse is different from the input Sparse.
+unsparseOneHotD :: ActedMonad m => Sparse a a' -> Ex env a'
+ -> (forall p b c env'. env :> env' -> (forall s. Ex env' s -> Ex env s)
+ -> SAcPrj p a b -> Ex env' (AcIdxD p a) -> Sparse b c -> Ex env' c -> m r) -> m r
+unsparseOneHotD topsp topval k = case (topsp, topval) of
+ -- eliminate always-Just sparse onehot
+ (SpSparse s, EOneHot _ (SMTMaybe t) (SAPJust prj) idx val) ->
+ acted $ unsparseOneHotD s (EOneHot ext t prj idx val) k
+
+ -- expand the top levels of a onehot for a sparse type into a onehot for the
+ -- corresponding non-sparse type
+ (SpPair s1 _, EOneHot _ (SMTPair t1 _) (SAPFst prj) idx val) ->
+ unsparseOneHotD s1 (EOneHot ext t1 prj (efst idx) val) $ \w wrap spprj idx' s1' e' ->
+ acted $ k w wrap (SAPFst spprj) idx' s1' e'
+ (SpPair _ s2, EOneHot _ (SMTPair _ t2) (SAPSnd prj) idx val) ->
+ unsparseOneHotD s2 (EOneHot ext t2 prj (esnd idx) val) $ \w wrap spprj idx' s1' e' ->
+ acted $ k w wrap (SAPSnd spprj) idx' s1' e'
+ (SpLEither s1 _, EOneHot _ (SMTLEither t1 _) (SAPLeft prj) idx val) ->
+ unsparseOneHotD s1 (EOneHot ext t1 prj idx val) $ \w wrap spprj idx' s1' e' ->
+ acted $ k w wrap (SAPLeft spprj) idx' s1' e'
+ (SpLEither _ s2, EOneHot _ (SMTLEither _ t2) (SAPRight prj) idx val) ->
+ unsparseOneHotD s2 (EOneHot ext t2 prj idx val) $ \w wrap spprj idx' s1' e' ->
+ acted $ k w wrap (SAPRight spprj) idx' s1' e'
+ (SpMaybe s1, EOneHot _ (SMTMaybe t1) (SAPJust prj) idx val) ->
+ unsparseOneHotD s1 (EOneHot ext t1 prj idx val) $ \w wrap spprj idx' s1' e' ->
+ acted $ k w wrap (SAPJust spprj) idx' s1' e'
+ (SpArr s1, EOneHot _ (SMTArr _ t1) (SAPArrIdx prj) idx val)
+ | Dict <- styKnown (typeOf idx) ->
+ unsparseOneHotD s1 (EOneHot ext t1 prj (esnd (evar IZ)) (weakenExpr WSink val)) $ \w wrap spprj idx' s1' e' ->
+ acted $ k (w .> WSink) (elet idx . wrap) (SAPArrIdx spprj) (EPair ext (efst (efst (evar (w @> IZ)))) idx') s1' e'
+
+ -- anything else we don't know how to improve
+ _ -> k WId id SAPHere (ENil ext) topsp topval
+
+{-
+unsparseOneHotS :: ActedMonad m
+ => Sparse a a' -> Ex env a'
+ -> (forall b. Sparse a b -> Ex env b -> m r) -> m r
+unsparseOneHotS topsp topval k = case (topsp, topval) of
+ -- order is relevant to make sure we set the acted flag correctly
+ (SpAbsent, v@ENil{}) -> k SpAbsent v
+ (SpAbsent, v@EZero{}) -> k SpAbsent v
+ (SpAbsent, _) -> acted $ k SpAbsent (EZero ext SMTNil (ENil ext))
+ (_, EZero{}) -> acted $ k SpAbsent (EZero ext SMTNil (ENil ext))
+ (sp, _) | isAbsent sp -> acted $ k SpAbsent (EZero ext SMTNil (ENil ext))
+
+ -- the unsparsifying
+ (SpSparse s, EOneHot _ (SMTMaybe t) (SAPJust prj) idx val) ->
+ acted $ unsparseOneHotS s (EOneHot ext t prj idx val) k
+
+ -- recursion
+ -- TODO: coproducts could safely become projections as they do not need
+ -- zeroinfo. But that would only work if the coproduct is at the top, because
+ -- as soon as we hit a product, we need zeroinfo to make it a projection and
+ -- we don't have that.
+ (SpSparse s, e) -> k (SpSparse s) e
+ (SpPair s1 _, EOneHot _ (SMTPair t1 _) (SAPFst prj) idx val) ->
+ unsparseOneHotS s1 (EOneHot ext t1 prj (efst idx) val) $ \s1' e' ->
+ acted $ k (SpPair s1' SpAbsent) (EPair ext e' (ENil ext))
+ (SpPair _ s2, EOneHot _ (SMTPair _ t2) (SAPSnd prj) idx val) ->
+ unsparseOneHotS s2 (EOneHot ext t2 prj (esnd idx) val) $ \s2' e' ->
+ acted $ k (SpPair SpAbsent s2') (EPair ext (ENil ext) e')
+ (SpLEither s1 s2, EOneHot _ (SMTLEither t1 _) (SAPLeft prj) idx val) ->
+ unsparseOneHotS s1 (EOneHot ext t1 prj idx val) $ \s1' e' -> do
+ case s2 of SpAbsent -> pure () ; _ -> tellActed
+ k (SpLEither s1' SpAbsent) (ELInl ext STNil e')
+ (SpLEither s1 s2, EOneHot _ (SMTLEither _ t2) (SAPRight prj) idx val) ->
+ unsparseOneHotS s2 (EOneHot ext t2 prj idx val) $ \s2' e' -> do
+ case s1 of SpAbsent -> pure () ; _ -> tellActed
+ acted $ k (SpLEither SpAbsent s2') (ELInr ext STNil e')
+ (SpMaybe s1, EOneHot _ (SMTMaybe t1) (SAPJust prj) idx val) ->
+ unsparseOneHotS s1 (EOneHot ext t1 prj idx val) $ \s1' e' ->
+ k (SpMaybe s1') (EJust ext e')
+ (SpArr s1, EOneHot _ (SMTArr n t1) (SAPArrIdx prj) idx val) ->
+ unsparseOneHotS s1 (EOneHot ext t1 prj (esnd (evar IZ)) (weakenExpr WSink val)) $ \s1' e' ->
+ k (SpArr s1') (elet idx $ EOneHot ext (SMTArr n (applySparse s1' _)) (SAPArrIdx SAPHere) (EPair ext (efst (evar IZ)) (ENil ext)) e')
+ _ -> _
+-}
-- | Recognises 'EZero' and 'EOneHot'.
recogniseMonoid :: SMTy t -> Ex env t -> (Any, Ex env t)
recogniseMonoid _ e@EOneHot{} = return e
-recogniseMonoid SMTNil (ENil _) = acted' $ return $ EZero ext SMTNil (ENil ext)
+recogniseMonoid SMTNil (ENil _) = acted $ return $ EZero ext SMTNil (ENil ext)
recogniseMonoid typ@(SMTPair t1 t2) (EPair _ a b) =
((,) <$> recogniseMonoid t1 a <*> recogniseMonoid t2 b) >>= \case
- (EZero _ _ ezi1, EZero _ _ ezi2) -> acted' $ return $ EZero ext typ (EPair ext ezi1 ezi2)
- (a', EZero _ _ ezi2) -> acted' $ EOneHot ext typ (SAPFst SAPHere) (EPair ext (ENil ext) ezi2) <$> recogniseMonoid t1 a'
- (EZero _ _ ezi1, b') -> acted' $ EOneHot ext typ (SAPSnd SAPHere) (EPair ext ezi1 (ENil ext)) <$> recogniseMonoid t2 b'
+ (EZero _ _ ezi1, EZero _ _ ezi2) -> acted $ return $ EZero ext typ (EPair ext ezi1 ezi2)
+ (a', EZero _ _ ezi2) -> acted $ EOneHot ext typ (SAPFst SAPHere) (EPair ext (ENil ext) ezi2) <$> recogniseMonoid t1 a'
+ (EZero _ _ ezi1, b') -> acted $ EOneHot ext typ (SAPSnd SAPHere) (EPair ext ezi1 (ENil ext)) <$> recogniseMonoid t2 b'
(a', b') -> return $ EPair ext a' b'
recogniseMonoid typ@(SMTLEither t1 t2) expr =
case expr of
- ELNil{} -> acted' $ return $ EZero ext typ (ENil ext)
- ELInl _ _ e -> acted' $ EOneHot ext typ (SAPLeft SAPHere) (ENil ext) <$> recogniseMonoid t1 e
- ELInr _ _ e -> acted' $ EOneHot ext typ (SAPRight SAPHere) (ENil ext) <$> recogniseMonoid t2 e
+ ELNil{} -> acted $ return $ EZero ext typ (ENil ext)
+ ELInl _ _ e -> acted $ EOneHot ext typ (SAPLeft SAPHere) (ENil ext) <$> recogniseMonoid t1 e
+ ELInr _ _ e -> acted $ EOneHot ext typ (SAPRight SAPHere) (ENil ext) <$> recogniseMonoid t2 e
_ -> return expr
recogniseMonoid typ@(SMTMaybe t1) expr =
case expr of
- ENothing{} -> acted' $ return $ EZero ext typ (ENil ext)
- EJust _ e -> acted' $ EOneHot ext typ (SAPJust SAPHere) (ENil ext) <$> recogniseMonoid t1 e
+ ENothing{} -> acted $ return $ EZero ext typ (ENil ext)
+ EJust _ e -> acted $ EOneHot ext typ (SAPJust SAPHere) (ENil ext) <$> recogniseMonoid t1 e
_ -> return expr
recogniseMonoid typ@(SMTArr SZ t) (EUnit _ e) =
- acted' $ do
+ acted $ do
e' <- recogniseMonoid t e
return $
ELet ext e' $
@@ -426,59 +567,33 @@ recogniseMonoid typ@(SMTArr SZ t) (EUnit _ e) =
(ENil ext))
(EVar ext (fromSMTy t) IZ)
recogniseMonoid typ@(SMTScal sty) e@(EConst _ _ x) = case (sty, x) of
- (STI32, 0) -> acted' $ return $ EZero ext typ (ENil ext)
- (STI64, 0) -> acted' $ return $ EZero ext typ (ENil ext)
- (STF32, 0) -> acted' $ return $ EZero ext typ (ENil ext)
- (STF64, 0) -> acted' $ return $ EZero ext typ (ENil ext)
+ (STI32, 0) -> acted $ return $ EZero ext typ (ENil ext)
+ (STI64, 0) -> acted $ return $ EZero ext typ (ENil ext)
+ (STF32, 0) -> acted $ return $ EZero ext typ (ENil ext)
+ (STF64, 0) -> acted $ return $ EZero ext typ (ENil ext)
_ -> return e
recogniseMonoid _ e = return e
-concatOneHots :: SMTy a
- -> SAcPrj p1 a b -> Ex env (AcIdx p1 a)
- -> SAcPrj p2 b c -> Ex env (AcIdx p2 b)
- -> (forall p12. SAcPrj p12 a c -> Ex env (AcIdx p12 a) -> r) -> r
-concatOneHots t1 prj1 idx1 prj2 idx2 k = case (t1, prj1) of
- (_, SAPHere) -> k prj2 idx2
-
- (SMTPair a _, SAPFst prj1') ->
- concatOneHots a prj1' (EFst ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 ->
- k (SAPFst prj12) (ELet ext idx1 $ EPair ext idx12 (ESnd ext (EVar ext (typeOf idx1) IZ)))
- (SMTPair _ b, SAPSnd prj1') ->
- concatOneHots b prj1' (ESnd ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 ->
- k (SAPSnd prj12) (ELet ext idx1 $ EPair ext (EFst ext (EVar ext (typeOf idx1) IZ)) idx12)
-
- (SMTLEither a _, SAPLeft prj1') ->
- concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPLeft prj12) idx12
- (SMTLEither _ b, SAPRight prj1') ->
- concatOneHots b prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPRight prj12) idx12
-
- (SMTMaybe a, SAPJust prj1') ->
- concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPJust prj12) idx12
-
- (SMTArr _ a, SAPArrIdx prj1') ->
- concatOneHots a prj1' (ESnd ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 ->
- k (SAPArrIdx prj12) (ELet ext idx1 $ EPair ext (EFst ext (EVar ext (typeOf idx1) IZ)) idx12)
-
-zeroInfoFromOneHot :: SMTy t -> SAcPrj p t a -> Ex env (AcIdx p t) -> Ex env a -> Ex env (ZeroInfo t)
+reduceAcIdx :: SMTy a -> SAcPrj p a b -> Ex env (AcIdxS p a) -> Ex env (AcIdxD p a)
+reduceAcIdx topty topprj e = case (topty, topprj) of
+ (_, SAPHere) -> ENil ext
+ (SMTPair t1 _, SAPFst p) -> reduceAcIdx t1 p (efst e)
+ (SMTPair _ t2, SAPSnd p) -> reduceAcIdx t2 p (esnd e)
+ (SMTLEither t1 _ , SAPLeft p) -> reduceAcIdx t1 p e
+ (SMTLEither _ t2, SAPRight p) -> reduceAcIdx t2 p e
+ (SMTMaybe t1, SAPJust p) -> reduceAcIdx t1 p e
+ (SMTArr _ t, SAPArrIdx p) ->
+ eunPair e $ \_ e1 e2 ->
+ EPair ext (efst e1) (reduceAcIdx t p e2)
+
+zeroInfoFromOneHot :: SMTy t -> SAcPrj p t a -> Ex env (AcIdxS p t) -> Ex env a -> Ex env (ZeroInfo t)
zeroInfoFromOneHot = \ty prj eidx e -> ELet ext eidx $ go ty prj (EVar ext (typeOf eidx) IZ) (weakenExpr WSink e)
where
-- invariant: AcIdx expression is duplicable
- go :: SMTy t -> SAcPrj p t a -> Ex env (AcIdx p t) -> Ex env a -> Ex env (ZeroInfo t)
+ go :: SMTy t -> SAcPrj p t a -> Ex env (AcIdxS p t) -> Ex env a -> Ex env (ZeroInfo t)
go t SAPHere _ e = makeZeroInfo t e
go (SMTPair t1 _) (SAPFst prj) eidx e = EPair ext (go t1 prj (EFst ext eidx) e) (ESnd ext eidx)
go (SMTPair _ t2) (SAPSnd prj) eidx e = EPair ext (EFst ext eidx) (go t2 prj (ESnd ext eidx) e)
go SMTLEither{} _ _ _ = ENil ext
go SMTMaybe{} _ _ _ = ENil ext
go SMTArr{} SAPArrIdx{} eidx _ = ESnd ext (EFst ext eidx)
-
-makeZeroInfo :: SMTy t -> Ex env t -> Ex env (ZeroInfo t)
-makeZeroInfo = \ty reference -> ELet ext reference $ go ty (EVar ext (fromSMTy ty) IZ)
- where
- -- invariant: expression argument is duplicable
- go :: SMTy t -> Ex env t -> Ex env (ZeroInfo t)
- go SMTNil _ = ENil ext
- go (SMTPair t1 t2) e = EPair ext (go t1 (EFst ext e)) (go t2 (ESnd ext e))
- go SMTLEither{} _ = ENil ext
- go SMTMaybe{} _ = ENil ext
- go (SMTArr _ t) e = emap (go t (EVar ext (fromSMTy t) IZ)) e
- go SMTScal{} _ = ENil ext