summaryrefslogtreecommitdiff
path: root/src/AST.hs
blob: 3179d92efdd9d5bc22bb89718f823e8a28b780f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
module AST where

import Data.Kind (Type)
import Data.Int


data Nat = Z | S Nat
  deriving (Show, Eq, Ord)

data SNat n where
  SZ :: SNat Z
  SS :: SNat n -> SNat (S n)
deriving instance (Show (SNat n))

data Vec n t where
  VNil :: Vec n t
  (:<) :: t -> Vec n t -> Vec (S n) t
deriving instance Show t => Show (Vec n t)
deriving instance Functor (Vec n)
deriving instance Foldable (Vec n)

data SList f l where
  SNil :: SList f '[]
  SCons :: f a -> SList f l -> SList f (a : l)
deriving instance (forall a. Show (f a)) => Show (SList f l)

data Ty
  = TNil
  | TPair Ty Ty
  | TArr Nat Ty  -- ^ rank, element type
  | TScal ScalTy
  | TEVM [Ty] Ty
  deriving (Show, Eq, Ord)

data ScalTy = TI32 | TI64 | TF32 | TF64 | TBool
  deriving (Show, Eq, Ord)

type STy :: Ty -> Type
data STy t where
  STNil :: STy TNil
  STPair :: STy a -> STy b -> STy (TPair a b)
  STArr :: SNat n -> STy t -> STy (TArr n t)
  STScal :: SScalTy t -> STy (TScal t)
  STEVM :: SList STy env -> STy t -> STy (TEVM env t)
deriving instance Show (STy t)

data SScalTy t where
  STI32 :: SScalTy TI32
  STI64 :: SScalTy TI64
  STF32 :: SScalTy TF32
  STF64 :: SScalTy TF64
  STBool :: SScalTy TBool
deriving instance Show (SScalTy t)

type TIx = TScal TI64

type Idx :: [Ty] -> Ty -> Type
data Idx env t where
  IZ :: Idx (t : env) t
  IS :: Idx env t -> Idx (a : env) t
deriving instance Show (Idx env t)

type family ScalRep t where
  ScalRep TI32 = Int32
  ScalRep TI64 = Int64
  ScalRep TF32 = Float
  ScalRep TF64 = Double
  ScalRep TBool = Bool

type ConsN :: Nat -> a -> [a] -> [a]
type family ConsN n x l where
  ConsN Z x l = l
  ConsN (S n) x l = x : ConsN n x l

type Expr :: (Ty -> Type) -> [Ty] -> Ty -> Type
data Expr x env t where
  -- lambda calculus
  EVar :: x t -> STy t -> Idx env t -> Expr x env t
  ELet :: x t -> Expr x env a -> Expr x (a : env) t -> Expr x env t

  -- base types
  EPair :: x (TPair a b) -> Expr x env a -> Expr x env b -> Expr x env (TPair a b)
  EFst :: x a -> STy b -> Expr x env (TPair a b) -> Expr x env a
  ESnd :: x b -> STy a -> Expr x env (TPair a b) -> Expr x env b

  -- array operations
  EBuild1 :: x (TArr (S Z) t) -> Expr x env TIx -> Expr x (TIx : env) t -> Expr x env (TArr (S Z) t)
  EBuild :: x (TArr n t) -> SNat n -> Vec n (Expr x env TIx) -> Expr x (ConsN n TIx env) t -> Expr x env (TArr n t)
  EFold1 :: x (TArr n t) -> Expr x (t : t : env) t -> Expr x env (TArr (S n) t) -> Expr x env (TArr n t)

  -- expression operations
  EConst :: Show (ScalRep t) => x (TScal t) -> SScalTy t -> ScalRep t -> Expr x env (TScal t)
  EIdx1 :: x (TArr n t) -> Expr x env (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t)
  EIdx :: x t -> Expr x env (TArr n t) -> Vec n (Expr x env TIx) -> Expr x env t
  EOp :: x t -> SOp a t -> Expr x env a -> Expr x env t

  -- EVM operations
  EMOne :: SList STy venv -> Idx venv t -> Expr x env t -> Expr x env (TEVM venv TNil)
  EMScope :: Expr x env (TEVM (t : venv) a) -> Expr x env (TEVM venv (TPair a t))
  EMReturn :: SList STy venv -> Expr x env t -> Expr x env (TEVM venv t)
  EMBind :: Expr x env (TEVM venv a) -> Expr x (a : env) (TEVM venv b) -> Expr x env (TEVM venv b)
deriving instance (forall ty. Show (x ty)) => Show (Expr x env t)

type SOp :: Ty -> Ty -> Type
data SOp a t where
  OAdd :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
  OMul :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
  ONeg :: SScalTy a -> SOp (TScal a) (TScal a)
  OLt :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
  OLe :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
  OEq :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
  ONot :: SOp (TScal TBool) (TScal TBool)
deriving instance Show (SOp a t)

opt2 :: SOp a t -> STy t
opt2 = \case
  OAdd t -> STScal t
  OMul t -> STScal t
  ONeg t -> STScal t
  OLt _ -> STScal STBool
  OLe _ -> STScal STBool
  OEq _ -> STScal STBool
  ONot -> STScal STBool

typeOf :: Expr x env t -> STy t
typeOf = \case
  EVar _ t _ -> t
  ELet _ _ e -> typeOf e
  EBuild1 _ _ e -> STArr (SS SZ) (typeOf e)
  EBuild _ n _ e -> STArr n (typeOf e)
  EFold1 _ _ e | STArr (SS n) t <- typeOf e -> STArr n t

  -- expression operations
  EConst _ t _ -> STScal t
  EIdx1 _ e _ | STArr (SS n) t <- typeOf e -> STArr n t
  EIdx _ e _ | STArr _ t <- typeOf e -> t
  EOp _ op _ -> opt2 op

  EMOne t _ _ -> STEVM t STNil

unSNat :: SNat n -> Nat
unSNat SZ = Z
unSNat (SS n) = S (unSNat n)

unSTy :: STy t -> Ty
unSTy = \case
  STNil -> TNil
  STPair a b -> TPair (unSTy a) (unSTy b)
  STArr n t -> TArr (unSNat n) (unSTy t)
  STScal t -> TScal (unSScalTy t)
  STEVM l t -> TEVM (unSList l) (unSTy t)

unSList :: SList STy env -> [Ty]
unSList SNil = []
unSList (SCons t l) = unSTy t : unSList l

unSScalTy :: SScalTy t -> ScalTy
unSScalTy = \case
  STI32 -> TI32
  STI64 -> TI64
  STF32 -> TF32
  STF64 -> TF64
  STBool -> TBool

fromNat :: Nat -> Int
fromNat Z = 0
fromNat (S n) = succ (fromNat n)

data env :> env' where
  WId :: env :> env
  WSink :: env :> (t : env)
  WCopy :: env :> env' -> (t : env) :> (t : env')
  WPop :: (t : env) :> env' -> env :> env'
  WThen :: env1 :> env2 -> env2 :> env3 -> env1 :> env3
deriving instance Show (env :> env')

(.>) :: env2 :> env3 -> env1 :> env2 -> env1 :> env3
(.>) = flip WThen

infixr @>
(@>) :: env :> env' -> Idx env t -> Idx env' t
WId @> i = i
WSink @> i = IS i
WCopy _ @> IZ = IZ
WCopy w @> (IS i) = IS (w @> i)
WPop w @> i = w @> IS i
WThen w1 w2 @> i = w2 @> w1 @> i

weakenExpr :: env :> env' -> Expr x env t -> Expr x env' t
weakenExpr w = \case
  EVar x t i -> EVar x t (w @> i)
  ELet x rhs body -> ELet x (weakenExpr w rhs) (weakenExpr (WCopy w) body)
  EBuild1 x e1 e2 -> EBuild1 x (weakenExpr w e1) (weakenExpr (WCopy w) e2)
  EBuild x n es e -> EBuild x n (weakenVec w es) (weakenExpr (wcopyN n w) e)
  EFold1 x e1 e2 -> EFold1 x (weakenExpr (WCopy (WCopy w)) e1) (weakenExpr w e2)
  EConst x t v -> EConst x t v
  EIdx1 x e1 e2 -> EIdx1 x (weakenExpr w e1) (weakenExpr w e2)
  EIdx x e1 es -> EIdx x (weakenExpr w e1) (weakenVec w es)
  EOp x op e -> EOp x op (weakenExpr w e)
  EMOne t i e -> EMOne t i (weakenExpr w e)

wcopyN :: SNat n -> env :> env' -> ConsN n TIx env :> ConsN n TIx env'
wcopyN SZ w = w
wcopyN (SS n) w = WCopy (wcopyN n w)

weakenVec :: (env :> env') -> Vec n (Expr x env TIx) -> Vec n (Expr x env' TIx)
weakenVec _ VNil = VNil
weakenVec w (e :< v) = weakenExpr w e :< weakenVec w v