blob: aeab1b734e94b4dc992edbf9f9f6877656e59b32 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE EmptyCase #-}
module AST (module AST, module AST.Weaken) where
import Data.Functor.Const
import Data.Kind (Type)
import Data.Int
import AST.Weaken
import Data
data Ty
= TNil
| TPair Ty Ty
| TEither Ty Ty
| TArr Nat Ty -- ^ rank, element type
| TScal ScalTy
| TEVM [Ty] Ty
deriving (Show, Eq, Ord)
data ScalTy = TI32 | TI64 | TF32 | TF64 | TBool
deriving (Show, Eq, Ord)
type STy :: Ty -> Type
data STy t where
STNil :: STy TNil
STPair :: STy a -> STy b -> STy (TPair a b)
STEither :: STy a -> STy b -> STy (TEither a b)
STArr :: SNat n -> STy t -> STy (TArr n t)
STScal :: SScalTy t -> STy (TScal t)
STEVM :: SList STy env -> STy t -> STy (TEVM env t)
deriving instance Show (STy t)
data SScalTy t where
STI32 :: SScalTy TI32
STI64 :: SScalTy TI64
STF32 :: SScalTy TF32
STF64 :: SScalTy TF64
STBool :: SScalTy TBool
deriving instance Show (SScalTy t)
type TIx = TScal TI64
type family ScalRep t where
ScalRep TI32 = Int32
ScalRep TI64 = Int64
ScalRep TF32 = Float
ScalRep TF64 = Double
ScalRep TBool = Bool
type ConsN :: Nat -> a -> [a] -> [a]
type family ConsN n x l where
ConsN Z x l = l
ConsN (S n) x l = x : ConsN n x l
-- General assumption: head of the list (whatever way it is associated) is the
-- inner variable / inner array dimension. In pretty printing, the inner
-- variable / inner dimension is printed on the _right_.
type Expr :: (Ty -> Type) -> [Ty] -> Ty -> Type
data Expr x env t where
-- lambda calculus
EVar :: x t -> STy t -> Idx env t -> Expr x env t
ELet :: x t -> Expr x env a -> Expr x (a : env) t -> Expr x env t
-- base types
EPair :: x (TPair a b) -> Expr x env a -> Expr x env b -> Expr x env (TPair a b)
EFst :: x a -> Expr x env (TPair a b) -> Expr x env a
ESnd :: x b -> Expr x env (TPair a b) -> Expr x env b
ENil :: x TNil -> Expr x env TNil
EInl :: x (TEither a b) -> STy b -> Expr x env a -> Expr x env (TEither a b)
EInr :: x (TEither a b) -> STy a -> Expr x env b -> Expr x env (TEither a b)
ECase :: x c -> Expr x env (TEither a b) -> Expr x (a : env) c -> Expr x (b : env) c -> Expr x env c
-- array operations
EBuild1 :: x (TArr (S Z) t) -> Expr x env TIx -> Expr x (TIx : env) t -> Expr x env (TArr (S Z) t)
EBuild :: x (TArr n t) -> Vec n (Expr x env TIx) -> Expr x (ConsN n TIx env) t -> Expr x env (TArr n t)
EFold1 :: x (TArr n t) -> Expr x (t : t : env) t -> Expr x env (TArr (S n) t) -> Expr x env (TArr n t)
-- expression operations
EConst :: Show (ScalRep t) => x (TScal t) -> SScalTy t -> ScalRep t -> Expr x env (TScal t)
EIdx1 :: x (TArr n t) -> Expr x env (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t)
EIdx :: x t -> Expr x env (TArr n t) -> Vec n (Expr x env TIx) -> Expr x env t
EOp :: x t -> SOp a t -> Expr x env a -> Expr x env t
-- EVM operations
EMOne :: SList STy venv -> Idx venv t -> Expr x env t -> Expr x env (TEVM venv TNil)
EMScope :: Expr x env (TEVM (t : venv) a) -> Expr x env (TEVM venv (TPair a t))
EMReturn :: SList STy venv -> Expr x env t -> Expr x env (TEVM venv t)
EMBind :: Expr x env (TEVM venv a) -> Expr x (a : env) (TEVM venv b) -> Expr x env (TEVM venv b)
-- partiality
EError :: STy a -> String -> Expr x env a
deriving instance (forall ty. Show (x ty)) => Show (Expr x env t)
type Ex = Expr (Const ())
ext :: Const () a
ext = Const ()
type SOp :: Ty -> Ty -> Type
data SOp a t where
OAdd :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
OMul :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
ONeg :: SScalTy a -> SOp (TScal a) (TScal a)
OLt :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
OLe :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
OEq :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
ONot :: SOp (TScal TBool) (TScal TBool)
OIf :: SOp (TScal TBool) (TEither TNil TNil)
deriving instance Show (SOp a t)
opt2 :: SOp a t -> STy t
opt2 = \case
OAdd t -> STScal t
OMul t -> STScal t
ONeg t -> STScal t
OLt _ -> STScal STBool
OLe _ -> STScal STBool
OEq _ -> STScal STBool
ONot -> STScal STBool
OIf -> STEither STNil STNil
typeOf :: Expr x env t -> STy t
typeOf = \case
EVar _ t _ -> t
ELet _ _ e -> typeOf e
EPair _ a b -> STPair (typeOf a) (typeOf b)
EFst _ e | STPair t _ <- typeOf e -> t
ESnd _ e | STPair _ t <- typeOf e -> t
ENil _ -> STNil
EInl _ t2 e -> STEither (typeOf e) t2
EInr _ t1 e -> STEither t1 (typeOf e)
ECase _ _ a _ -> typeOf a
EBuild1 _ _ e -> STArr (SS SZ) (typeOf e)
EBuild _ es e -> STArr (vecLength es) (typeOf e)
EFold1 _ _ e | STArr (SS n) t <- typeOf e -> STArr n t
EConst _ t _ -> STScal t
EIdx1 _ e _ | STArr (SS n) t <- typeOf e -> STArr n t
EIdx _ e _ | STArr _ t <- typeOf e -> t
EOp _ op _ -> opt2 op
EMOne t _ _ -> STEVM t STNil
EMScope e | STEVM (SCons t env) a <- typeOf e -> STEVM env (STPair a t)
EMReturn env e -> STEVM env (typeOf e)
EMBind _ e -> typeOf e
EError t _ -> t
unSNat :: SNat n -> Nat
unSNat SZ = Z
unSNat (SS n) = S (unSNat n)
unSTy :: STy t -> Ty
unSTy = \case
STNil -> TNil
STPair a b -> TPair (unSTy a) (unSTy b)
STEither a b -> TEither (unSTy a) (unSTy b)
STArr n t -> TArr (unSNat n) (unSTy t)
STScal t -> TScal (unSScalTy t)
STEVM l t -> TEVM (unSList l) (unSTy t)
unSList :: SList STy env -> [Ty]
unSList SNil = []
unSList (SCons t l) = unSTy t : unSList l
unSScalTy :: SScalTy t -> ScalTy
unSScalTy = \case
STI32 -> TI32
STI64 -> TI64
STF32 -> TF32
STF64 -> TF64
STBool -> TBool
weakenExpr :: env :> env' -> Expr x env t -> Expr x env' t
weakenExpr w = \case
EVar x t i -> EVar x t (w @> i)
ELet x rhs body -> ELet x (weakenExpr w rhs) (weakenExpr (WCopy w) body)
EPair x e1 e2 -> EPair x (weakenExpr w e1) (weakenExpr w e2)
EFst x e -> EFst x (weakenExpr w e)
ESnd x e -> ESnd x (weakenExpr w e)
ENil x -> ENil x
EInl x t e -> EInl x t (weakenExpr w e)
EInr x t e -> EInr x t (weakenExpr w e)
ECase x e1 e2 e3 -> ECase x (weakenExpr w e1) (weakenExpr (WCopy w) e2) (weakenExpr (WCopy w) e3)
EBuild1 x e1 e2 -> EBuild1 x (weakenExpr w e1) (weakenExpr (WCopy w) e2)
EBuild x es e -> EBuild x (weakenExpr w <$> es) (weakenExpr (wcopyN (vecLength es) w) e)
EFold1 x e1 e2 -> EFold1 x (weakenExpr (WCopy (WCopy w)) e1) (weakenExpr w e2)
EConst x t v -> EConst x t v
EIdx1 x e1 e2 -> EIdx1 x (weakenExpr w e1) (weakenExpr w e2)
EIdx x e1 es -> EIdx x (weakenExpr w e1) (weakenExpr w <$> es)
EOp x op e -> EOp x op (weakenExpr w e)
EMOne t i e -> EMOne t i (weakenExpr w e)
EMScope e -> EMScope (weakenExpr w e)
EMReturn t e -> EMReturn t (weakenExpr w e)
EMBind e1 e2 -> EMBind (weakenExpr w e1) (weakenExpr (WCopy w) e2)
EError t s -> EError t s
wsinkN :: SNat n -> env :> ConsN n TIx env
wsinkN SZ = WId
wsinkN (SS n) = WSink .> wsinkN n
wcopyN :: SNat n -> env :> env' -> ConsN n TIx env :> ConsN n TIx env'
wcopyN SZ w = w
wcopyN (SS n) w = WCopy (wcopyN n w)
wpopN :: SNat n -> ConsN n TIx env :> env' -> env :> env'
wpopN SZ w = w
wpopN (SS n) w = wpopN n (WPop w)
slistIdx :: SList f list -> Idx list t -> f t
slistIdx (SCons x _) IZ = x
slistIdx (SCons _ list) (IS i) = slistIdx list i
slistIdx SNil i = case i of {}
idx2int :: Idx env t -> Int
idx2int IZ = 0
idx2int (IS n) = 1 + idx2int n
|