1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
module AST (module AST, module AST.Weaken) where
import Data.Functor.Const
import Data.Kind (Type)
import Data.Int
import Data.Type.Equality
import Array
import AST.Env
import AST.Weaken
import Data
data Ty
= TNil
| TPair Ty Ty
| TEither Ty Ty
| TArr Nat Ty -- ^ rank, element type
| TScal ScalTy
| TAccum Ty
deriving (Show, Eq, Ord)
data ScalTy = TI32 | TI64 | TF32 | TF64 | TBool
deriving (Show, Eq, Ord)
type STy :: Ty -> Type
data STy t where
STNil :: STy TNil
STPair :: STy a -> STy b -> STy (TPair a b)
STEither :: STy a -> STy b -> STy (TEither a b)
STArr :: SNat n -> STy t -> STy (TArr n t)
STScal :: SScalTy t -> STy (TScal t)
STAccum :: STy t -> STy (TAccum t)
deriving instance Show (STy t)
instance TestEquality STy where
testEquality STNil STNil = Just Refl
testEquality (STPair a b) (STPair a' b') | Just Refl <- testEquality a a', Just Refl <- testEquality b b' = Just Refl
testEquality (STEither a b) (STEither a' b') | Just Refl <- testEquality a a', Just Refl <- testEquality b b' = Just Refl
testEquality (STArr a b) (STArr a' b') | Just Refl <- testEquality a a', Just Refl <- testEquality b b' = Just Refl
testEquality (STScal a) (STScal a') | Just Refl <- testEquality a a' = Just Refl
testEquality (STAccum a) (STAccum a') | Just Refl <- testEquality a a' = Just Refl
testEquality _ _ = Nothing
data SScalTy t where
STI32 :: SScalTy TI32
STI64 :: SScalTy TI64
STF32 :: SScalTy TF32
STF64 :: SScalTy TF64
STBool :: SScalTy TBool
deriving instance Show (SScalTy t)
instance TestEquality SScalTy where
testEquality STI32 STI32 = Just Refl
testEquality STI64 STI64 = Just Refl
testEquality STF32 STF32 = Just Refl
testEquality STF64 STF64 = Just Refl
testEquality STBool STBool = Just Refl
testEquality _ _ = Nothing
scalRepIsShow :: SScalTy t -> Dict (Show (ScalRep t))
scalRepIsShow STI32 = Dict
scalRepIsShow STI64 = Dict
scalRepIsShow STF32 = Dict
scalRepIsShow STF64 = Dict
scalRepIsShow STBool = Dict
type TIx = TScal TI64
tIx :: STy TIx
tIx = STScal STI64
type family ScalRep t where
ScalRep TI32 = Int32
ScalRep TI64 = Int64
ScalRep TF32 = Float
ScalRep TF64 = Double
ScalRep TBool = Bool
type family ScalIsNumeric t where
ScalIsNumeric TI32 = True
ScalIsNumeric TI64 = True
ScalIsNumeric TF32 = True
ScalIsNumeric TF64 = True
ScalIsNumeric TBool = False
-- | This index is flipped around from the usual direction: the smallest index
-- is at the _heart_ of the nesting, not at the outside. The outermost layer
-- indexes into the _outer_ dimension of the type @t@. This makes indices into
-- compound structures work properly with coproducts.
type family AcIdx t i where
AcIdx t Z = TNil
AcIdx (TPair a b) (S i) = TEither (AcIdx a i) (AcIdx b i)
AcIdx (TEither a b) (S i) = TEither (AcIdx a i) (AcIdx b i)
AcIdx (TArr Z t) (S i) = AcIdx t i
AcIdx (TArr (S n) t) (S i) = TPair TIx (AcIdx (TArr n t) i)
type family AcVal t i where
AcVal t Z = t
AcVal (TPair a b) (S i) = TEither (AcVal a i) (AcVal b i)
AcVal (TEither a b) (S i) = TEither (AcVal a i) (AcVal b i)
AcVal (TArr Z t) (S i) = AcVal t i
AcVal (TArr (S n) t) (S i) = AcVal (TArr n t) i
-- General assumption: head of the list (whatever way it is associated) is the
-- inner variable / inner array dimension. In pretty printing, the inner
-- variable / inner dimension is printed on the _right_.
type Expr :: (Ty -> Type) -> [Ty] -> Ty -> Type
data Expr x env t where
-- lambda calculus
EVar :: x t -> STy t -> Idx env t -> Expr x env t
ELet :: x t -> Expr x env a -> Expr x (a : env) t -> Expr x env t
-- base types
EPair :: x (TPair a b) -> Expr x env a -> Expr x env b -> Expr x env (TPair a b)
EFst :: x a -> Expr x env (TPair a b) -> Expr x env a
ESnd :: x b -> Expr x env (TPair a b) -> Expr x env b
ENil :: x TNil -> Expr x env TNil
EInl :: x (TEither a b) -> STy b -> Expr x env a -> Expr x env (TEither a b)
EInr :: x (TEither a b) -> STy a -> Expr x env b -> Expr x env (TEither a b)
ECase :: x c -> Expr x env (TEither a b) -> Expr x (a : env) c -> Expr x (b : env) c -> Expr x env c
-- array operations
EConstArr :: Show (ScalRep t) => x (TArr n (TScal t)) -> SNat n -> SScalTy t -> Array n (ScalRep t) -> Expr x env (TArr n (TScal t))
EBuild1 :: x (TArr (S Z) t) -> Expr x env TIx -> Expr x (TIx : env) t -> Expr x env (TArr (S Z) t)
EBuild :: x (TArr n t) -> SNat n -> Expr x env (Tup (Replicate n TIx)) -> Expr x (Tup (Replicate n TIx) : env) t -> Expr x env (TArr n t)
EFold1Inner :: x (TArr n t) -> Expr x (t : t : env) t -> Expr x env (TArr (S n) t) -> Expr x env (TArr n t)
ESum1Inner :: ScalIsNumeric t ~ True => x (TArr n (TScal t)) -> Expr x env (TArr (S n) (TScal t)) -> Expr x env (TArr n (TScal t))
EUnit :: x (TArr Z t) -> Expr x env t -> Expr x env (TArr Z t)
EReplicate1Inner :: x (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t) -> Expr x env (TArr (S n) t)
-- expression operations
EConst :: Show (ScalRep t) => x (TScal t) -> SScalTy t -> ScalRep t -> Expr x env (TScal t)
EIdx0 :: x t -> Expr x env (TArr Z t) -> Expr x env t
EIdx1 :: x (TArr n t) -> Expr x env (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t)
EIdx :: x t -> SNat n -> Expr x env (TArr n t) -> Expr x env (Tup (Replicate n TIx)) -> Expr x env t
EShape :: x (Tup (Replicate n TIx)) -> Expr x env (TArr n t) -> Expr x env (Tup (Replicate n TIx))
EOp :: x t -> SOp a t -> Expr x env a -> Expr x env t
-- accumulation effect
EWith :: Expr x env t -> Expr x (TAccum t : env) a -> Expr x env (TPair a t)
EAccum :: SNat i -> Expr x env (AcIdx t i) -> Expr x env (AcVal t i) -> Expr x env (TAccum t) -> Expr x env TNil
-- EAccum1 :: Expr x env TIx -> Expr x env t -> Expr x env (TAccum (S Z) t) -> Expr x env TNil
-- partiality
EError :: STy a -> String -> Expr x env a
deriving instance (forall ty. Show (x ty)) => Show (Expr x env t)
type Ex = Expr (Const ())
ext :: Const () a
ext = Const ()
type family Tup env where
Tup '[] = TNil
Tup (t : ts) = TPair (Tup ts) t
mkTup :: f TNil -> (forall a b. f a -> f b -> f (TPair a b))
-> SList f list -> f (Tup list)
mkTup nil _ SNil = nil
mkTup nil pair (e `SCons` es) = pair (mkTup nil pair es) e
tTup :: SList STy env -> STy (Tup env)
tTup = mkTup STNil STPair
eTup :: SList (Ex env) list -> Ex env (Tup list)
eTup = mkTup (ENil ext) (EPair ext)
type family InvTup core env where
InvTup core '[] = core
InvTup core (t : ts) = InvTup (TPair core t) ts
type SOp :: Ty -> Ty -> Type
data SOp a t where
OAdd :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
OMul :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
ONeg :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
OLt :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
OLe :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
OEq :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
ONot :: SOp (TScal TBool) (TScal TBool)
OIf :: SOp (TScal TBool) (TEither TNil TNil)
deriving instance Show (SOp a t)
opt2 :: SOp a t -> STy t
opt2 = \case
OAdd t -> STScal t
OMul t -> STScal t
ONeg t -> STScal t
OLt _ -> STScal STBool
OLe _ -> STScal STBool
OEq _ -> STScal STBool
ONot -> STScal STBool
OIf -> STEither STNil STNil
typeOf :: Expr x env t -> STy t
typeOf = \case
EVar _ t _ -> t
ELet _ _ e -> typeOf e
EPair _ a b -> STPair (typeOf a) (typeOf b)
EFst _ e | STPair t _ <- typeOf e -> t
ESnd _ e | STPair _ t <- typeOf e -> t
ENil _ -> STNil
EInl _ t2 e -> STEither (typeOf e) t2
EInr _ t1 e -> STEither t1 (typeOf e)
ECase _ _ a _ -> typeOf a
EConstArr _ n t _ -> STArr n (STScal t)
EBuild1 _ _ e -> STArr (SS SZ) (typeOf e)
EBuild _ n _ e -> STArr n (typeOf e)
EFold1Inner _ _ e | STArr (SS n) t <- typeOf e -> STArr n t
ESum1Inner _ e | STArr (SS n) t <- typeOf e -> STArr n t
EUnit _ e -> STArr SZ (typeOf e)
EReplicate1Inner _ _ e | STArr n t <- typeOf e -> STArr (SS n) t
EConst _ t _ -> STScal t
EIdx0 _ e | STArr _ t <- typeOf e -> t
EIdx1 _ e _ | STArr (SS n) t <- typeOf e -> STArr n t
EIdx _ _ e _ | STArr _ t <- typeOf e -> t
EShape _ e | STArr n _ <- typeOf e -> tTup (sreplicate n tIx)
EOp _ op _ -> opt2 op
EWith e1 e2 -> STPair (typeOf e2) (typeOf e1)
EAccum _ _ _ _ -> STNil
EError t _ -> t
unSNat :: SNat n -> Nat
unSNat SZ = Z
unSNat (SS n) = S (unSNat n)
unSTy :: STy t -> Ty
unSTy = \case
STNil -> TNil
STPair a b -> TPair (unSTy a) (unSTy b)
STEither a b -> TEither (unSTy a) (unSTy b)
STArr n t -> TArr (unSNat n) (unSTy t)
STScal t -> TScal (unSScalTy t)
STAccum t -> TAccum (unSTy t)
unSList :: SList STy env -> [Ty]
unSList SNil = []
unSList (SCons t l) = unSTy t : unSList l
unSScalTy :: SScalTy t -> ScalTy
unSScalTy = \case
STI32 -> TI32
STI64 -> TI64
STF32 -> TF32
STF64 -> TF64
STBool -> TBool
subst1 :: Expr x env a -> Expr x (a : env) t -> Expr x env t
subst1 repl = subst $ \x t -> \case IZ -> repl
IS i -> EVar x t i
subst :: (forall a. x a -> STy a -> Idx env a -> Expr x env' a)
-> Expr x env t -> Expr x env' t
subst f = subst' (\x t w i -> weakenExpr w (f x t i)) WId
subst' :: (forall a env2. x a -> STy a -> env' :> env2 -> Idx env a -> Expr x env2 a)
-> env' :> envOut
-> Expr x env t
-> Expr x envOut t
subst' f w = \case
EVar x t i -> f x t w i
ELet x rhs body -> ELet x (subst' f w rhs) (subst' (sinkF f) (WCopy w) body)
EPair x a b -> EPair x (subst' f w a) (subst' f w b)
EFst x e -> EFst x (subst' f w e)
ESnd x e -> ESnd x (subst' f w e)
ENil x -> ENil x
EInl x t e -> EInl x t (subst' f w e)
EInr x t e -> EInr x t (subst' f w e)
ECase x e a b -> ECase x (subst' f w e) (subst' (sinkF f) (WCopy w) a) (subst' (sinkF f) (WCopy w) b)
EConstArr x n t a -> EConstArr x n t a
EBuild1 x a b -> EBuild1 x (subst' f w a) (subst' (sinkF f) (WCopy w) b)
EBuild x n a b -> EBuild x n (subst' f w a) (subst' (sinkF f) (WCopy w) b)
EFold1Inner x a b -> EFold1Inner x (subst' (sinkF (sinkF f)) (WCopy (WCopy w)) a) (subst' f w b)
ESum1Inner x e -> ESum1Inner x (subst' f w e)
EUnit x e -> EUnit x (subst' f w e)
EReplicate1Inner x a b -> EReplicate1Inner x (subst' f w a) (subst' f w b)
EConst x t v -> EConst x t v
EIdx0 x e -> EIdx0 x (subst' f w e)
EIdx1 x a b -> EIdx1 x (subst' f w a) (subst' f w b)
EIdx x n e es -> EIdx x n (subst' f w e) (subst' f w es)
EShape x e -> EShape x (subst' f w e)
EOp x op e -> EOp x op (subst' f w e)
EWith e1 e2 -> EWith (subst' f w e1) (subst' (sinkF f) (WCopy w) e2)
EAccum i e1 e2 e3 -> EAccum i (subst' f w e1) (subst' f w e2) (subst' f w e3)
EError t s -> EError t s
where
sinkF :: (forall a. x a -> STy a -> (env' :> env2) -> Idx env a -> Expr x env2 a)
-> x t -> STy t -> ((b : env') :> env2) -> Idx (b : env) t -> Expr x env2 t
sinkF f' x' t w' = \case
IZ -> EVar x' t (w' @> IZ)
IS i -> f' x' t (WPop w') i
weakenExpr :: env :> env' -> Expr x env t -> Expr x env' t
weakenExpr = subst' (\x t w' i -> EVar x t (w' @> i))
wUndoSubenv :: Subenv env env' -> env' :> env
wUndoSubenv SETop = WId
wUndoSubenv (SEYes sub) = WCopy (wUndoSubenv sub)
wUndoSubenv (SENo sub) = WSink .> wUndoSubenv sub
slistIdx :: SList f list -> Idx list t -> f t
slistIdx (SCons x _) IZ = x
slistIdx (SCons _ list) (IS i) = slistIdx list i
slistIdx SNil i = case i of {}
idx2int :: Idx env t -> Int
idx2int IZ = 0
idx2int (IS n) = 1 + idx2int n
class KnownScalTy t where knownScalTy :: SScalTy t
instance KnownScalTy TI32 where knownScalTy = STI32
instance KnownScalTy TI64 where knownScalTy = STI64
instance KnownScalTy TF32 where knownScalTy = STF32
instance KnownScalTy TF64 where knownScalTy = STF64
instance KnownScalTy TBool where knownScalTy = STBool
class KnownTy t where knownTy :: STy t
instance KnownTy TNil where knownTy = STNil
instance (KnownTy s, KnownTy t) => KnownTy (TPair s t) where knownTy = STPair knownTy knownTy
instance (KnownTy s, KnownTy t) => KnownTy (TEither s t) where knownTy = STEither knownTy knownTy
instance (KnownNat n, KnownTy t) => KnownTy (TArr n t) where knownTy = STArr knownNat knownTy
instance KnownScalTy t => KnownTy (TScal t) where knownTy = STScal knownScalTy
instance KnownTy t => KnownTy (TAccum t) where knownTy = STAccum knownTy
class KnownEnv env where knownEnv :: SList STy env
instance KnownEnv '[] where knownEnv = SNil
instance (KnownTy t, KnownEnv env) => KnownEnv (t : env) where knownEnv = SCons knownTy knownEnv
styKnown :: STy t -> Dict (KnownTy t)
styKnown STNil = Dict
styKnown (STPair a b) | Dict <- styKnown a, Dict <- styKnown b = Dict
styKnown (STEither a b) | Dict <- styKnown a, Dict <- styKnown b = Dict
styKnown (STArr n t) | Dict <- snatKnown n, Dict <- styKnown t = Dict
styKnown (STScal t) | Dict <- sscaltyKnown t = Dict
styKnown (STAccum t) | Dict <- styKnown t = Dict
sscaltyKnown :: SScalTy t -> Dict (KnownScalTy t)
sscaltyKnown STI32 = Dict
sscaltyKnown STI64 = Dict
sscaltyKnown STF32 = Dict
sscaltyKnown STF64 = Dict
sscaltyKnown STBool = Dict
ebuildUp1 :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env TIx -> Ex (TIx : env) (TArr n t) -> Ex env (TArr (S n) t)
ebuildUp1 n sh size f =
EBuild ext (SS n) (EPair ext sh size) $
let arg = EVar ext (tTup (sreplicate (SS n) tIx)) IZ
in EIdx ext n (ELet ext (ESnd ext arg) (weakenExpr (WCopy WSink) f))
(EFst ext arg)
|