1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module Simplify where
import Data.Function (fix)
import Data.Monoid (Any(..))
import AST
import AST.Count
import Data
simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t
simplifyN 0 = id
simplifyN n = simplifyN (n - 1) . simplify
simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplify = let ?accumInScope = checkAccumInScope @env knownEnv in snd . simplify'
simplifyFix :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplifyFix =
let ?accumInScope = checkAccumInScope @env knownEnv
in fix $ \loop e ->
let (Any act, e') = simplify' e
in if act then loop e' else e'
simplify' :: (?accumInScope :: Bool) => Ex env t -> (Any, Ex env t)
simplify' = \case
-- inlining
ELet _ rhs body
| cheapExpr rhs
-> acted $ simplify' (subst1 rhs body)
| Occ lexOcc runOcc <- occCount IZ body
, ((not ?accumInScope || not (hasAdds rhs)) && lexOcc <= One && runOcc <= One) -- without effects, normal rules apply
|| (lexOcc == One && runOcc == One) -- with effects, linear inlining is still allowed, but weakening is not
-> acted $ simplify' (subst1 rhs body)
-- let splitting
ELet _ (EPair _ a b) body ->
acted $ simplify' $
ELet ext a $
ELet ext (weakenExpr WSink b) $
subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ)
IS i -> EVar ext t (IS (IS i)))
body
-- let rotation
ELet _ (ELet _ rhs a) b ->
acted $ simplify' $
ELet ext rhs $
ELet ext a $
weakenExpr (WCopy WSink) (snd (simplify' b))
-- beta rules for products
EFst _ (EPair _ e e') | not (hasAdds e') -> acted $ simplify' e
ESnd _ (EPair _ e' e) | not (hasAdds e') -> acted $ simplify' e
-- beta rules for coproducts
ECase _ (EInl _ _ e) rhs _ -> acted $ simplify' (ELet ext e rhs)
ECase _ (EInr _ _ e) _ rhs -> acted $ simplify' (ELet ext e rhs)
-- beta rules for maybe
EMaybe _ e1 _ ENothing{} -> acted $ simplify' e1
EMaybe _ _ e1 (EJust _ e2) -> acted $ simplify' $ ELet ext e2 e1
-- let floating to facilitate beta reduction
EFst _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EFst ext body))
ESnd _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (ESnd ext body))
ECase _ (ELet _ rhs body) e1 e2 -> acted $ simplify' (ELet ext rhs (ECase ext body (weakenExpr (WCopy WSink) e1) (weakenExpr (WCopy WSink) e2)))
EIdx0 _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EIdx0 ext body))
EIdx1 _ (ELet _ rhs body) e -> acted $ simplify' (ELet ext rhs (EIdx1 ext body (weakenExpr WSink e)))
-- projection down-commuting
EFst _ (ECase _ e1 (EPair _ e2 _) (EPair _ e3 _)) ->
acted $ simplify' $
ECase ext e1 e2 e3
ESnd _ (ECase _ e1 (EPair _ _ e2) (EPair _ _ e3)) ->
acted $ simplify' $
ECase ext e1 e2 e3
-- TODO: array indexing (index of build, index of fold)
-- TODO: beta rules for maybe
-- TODO: constant folding for operations
-- TODO: properly concatenate accum/onehot
EAccum SZ _ (EOneHot _ i idx val) acc ->
acted $ simplify' $
EAccum i idx val acc
EAccum _ _ (EZero _) _ -> (Any True, ENil ext)
EPlus _ (EZero _) e -> acted $ simplify' e
EPlus _ e (EZero _) -> acted $ simplify' e
EOneHot _ SZ _ e -> acted $ simplify' e
-- equations for plus
EPlus STNil _ _ -> (Any True, ENil ext)
EPlus (STPair t1 t2) (EJust _ (EPair _ a1 b1)) (EJust _ (EPair _ a2 b2)) ->
acted $ simplify' $ EJust ext (EPair ext (EPlus t1 a1 a2) (EPlus t2 b1 b2))
EPlus STPair{} ENothing{} e -> acted $ simplify' e
EPlus STPair{} e ENothing{} -> acted $ simplify' e
EPlus (STEither t1 _) (EJust _ (EInl _ dt2 a1)) (EJust _ (EInl _ _ a2)) ->
acted $ simplify' $ EJust ext (EInl ext dt2 (EPlus t1 a1 a2))
EPlus (STEither _ t2) (EJust _ (EInr _ dt1 b1)) (EJust _ (EInr _ _ b2)) ->
acted $ simplify' $ EJust ext (EInr ext dt1 (EPlus t2 b1 b2))
EPlus STEither{} ENothing{} e -> acted $ simplify' e
EPlus STEither{} e ENothing{} -> acted $ simplify' e
EPlus (STMaybe t) (EJust _ e1) (EJust _ e2) ->
acted $ simplify' $ EJust ext (EPlus t e1 e2)
EPlus STMaybe{} ENothing{} e -> acted $ simplify' e
EPlus STMaybe{} e ENothing{} -> acted $ simplify' e
-- fallback recursion
EVar _ t i -> pure $ EVar ext t i
ELet _ a b -> ELet ext <$> simplify' a <*> simplify' b
EPair _ a b -> EPair ext <$> simplify' a <*> simplify' b
EFst _ e -> EFst ext <$> simplify' e
ESnd _ e -> ESnd ext <$> simplify' e
ENil _ -> pure $ ENil ext
EInl _ t e -> EInl ext t <$> simplify' e
EInr _ t e -> EInr ext t <$> simplify' e
ECase _ e a b -> ECase ext <$> simplify' e <*> simplify' a <*> simplify' b
ENothing _ t -> pure $ ENothing ext t
EJust _ e -> EJust ext <$> simplify' e
EMaybe _ a b e -> EMaybe ext <$> simplify' a <*> simplify' b <*> simplify' e
EConstArr _ n t v -> pure $ EConstArr ext n t v
EBuild _ n a b -> EBuild ext n <$> simplify' a <*> simplify' b
EFold1Inner _ a b c -> EFold1Inner ext <$> simplify' a <*> simplify' b <*> simplify' c
ESum1Inner _ e -> ESum1Inner ext <$> simplify' e
EUnit _ e -> EUnit ext <$> simplify' e
EReplicate1Inner _ a b -> EReplicate1Inner ext <$> simplify' a <*> simplify' b
EMaximum1Inner _ e -> EMaximum1Inner ext <$> simplify' e
EMinimum1Inner _ e -> EMinimum1Inner ext <$> simplify' e
EConst _ t v -> pure $ EConst ext t v
EIdx0 _ e -> EIdx0 ext <$> simplify' e
EIdx1 _ a b -> EIdx1 ext <$> simplify' a <*> simplify' b
EIdx _ a b -> EIdx ext <$> simplify' a <*> simplify' b
EShape _ e -> EShape ext <$> simplify' e
EOp _ op e -> EOp ext op <$> simplify' e
ECustom _ s t p a b c e1 e2 ->
ECustom ext s t p
<$> (let ?accumInScope = False in simplify' a)
<*> (let ?accumInScope = False in simplify' b)
<*> (let ?accumInScope = False in simplify' c)
<*> simplify' e1 <*> simplify' e2
EWith e1 e2 -> EWith <$> simplify' e1 <*> (let ?accumInScope = True in simplify' e2)
EAccum i e1 e2 e3 -> EAccum i <$> simplify' e1 <*> simplify' e2 <*> simplify' e3
EZero t -> pure $ EZero t
EPlus t a b -> EPlus t <$> simplify' a <*> simplify' b
EOneHot t i a b -> EOneHot t i <$> simplify' a <*> simplify' b
EError t s -> pure $ EError t s
acted :: (Any, a) -> (Any, a)
acted (_, x) = (Any True, x)
cheapExpr :: Expr x env t -> Bool
cheapExpr = \case
EVar{} -> True
ENil{} -> True
EConst{} -> True
_ -> False
-- | This can be made more precise by tracking (and not counting) adds on
-- locally eliminated accumulators.
hasAdds :: Expr x env t -> Bool
hasAdds = \case
EVar _ _ _ -> False
ELet _ rhs body -> hasAdds rhs || hasAdds body
EPair _ a b -> hasAdds a || hasAdds b
EFst _ e -> hasAdds e
ESnd _ e -> hasAdds e
ENil _ -> False
EInl _ _ e -> hasAdds e
EInr _ _ e -> hasAdds e
ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b
ENothing _ _ -> False
EJust _ e -> hasAdds e
EMaybe _ a b e -> hasAdds a || hasAdds b || hasAdds e
EConstArr _ _ _ _ -> False
EBuild _ _ a b -> hasAdds a || hasAdds b
EFold1Inner _ a b c -> hasAdds a || hasAdds b || hasAdds c
ESum1Inner _ e -> hasAdds e
EUnit _ e -> hasAdds e
EReplicate1Inner _ a b -> hasAdds a || hasAdds b
EMaximum1Inner _ e -> hasAdds e
EMinimum1Inner _ e -> hasAdds e
ECustom _ _ _ _ a b c d e -> hasAdds a || hasAdds b || hasAdds c || hasAdds d || hasAdds e
EConst _ _ _ -> False
EIdx0 _ e -> hasAdds e
EIdx1 _ a b -> hasAdds a || hasAdds b
EIdx _ a b -> hasAdds a || hasAdds b
EShape _ e -> hasAdds e
EOp _ _ e -> hasAdds e
EWith a b -> hasAdds a || hasAdds b
EAccum _ _ _ _ -> True
EZero _ -> False
EPlus _ a b -> hasAdds a || hasAdds b
EOneHot _ _ a b -> hasAdds a || hasAdds b
EError _ _ -> False
checkAccumInScope :: SList STy env -> Bool
checkAccumInScope = \case SNil -> False
SCons t env -> check t || checkAccumInScope env
where
check :: STy t -> Bool
check STNil = False
check (STPair s t) = check s || check t
check (STEither s t) = check s || check t
check (STMaybe t) = check t
check (STArr _ t) = check t
check (STScal _) = False
check STAccum{} = True
|