blob: a5f90b36ac7408fc29ae47d7830ffa9ca35f22ab (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module Simplify where
import Data.Monoid
import AST
import AST.Count
import Data
simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t
simplifyN 0 = id
simplifyN n = simplifyN (n - 1) . simplify
simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplify = let ?accumInScope = checkAccumInScope @env knownEnv in simplify'
simplify' :: (?accumInScope :: Bool) => Ex env t -> Ex env t
simplify' = \case
-- inlining
ELet _ rhs body
| not ?accumInScope || not (hasAdds rhs) -- cannot discard effectful computations
, Occ lexOcc runOcc <- occCount IZ body
, lexOcc <= One -- prevent code size blowup
, runOcc <= One -- prevent runtime increase
-> simplify' (subst1 rhs body)
| cheapExpr rhs
-> simplify' (subst1 rhs body)
-- let splitting
ELet _ (EPair _ a b) body ->
simplify' $
ELet ext a $
ELet ext (weakenExpr WSink b) $
subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ)
IS i -> EVar ext t (IS (IS i)))
body
-- let rotation
ELet _ (ELet _ rhs a) b ->
ELet ext (simplify' rhs) $
ELet ext (simplify' a) $
weakenExpr (WCopy WSink) (simplify' b)
-- beta rules for products
EFst _ (EPair _ e _) -> simplify' e
ESnd _ (EPair _ _ e) -> simplify' e
-- beta rules for coproducts
ECase _ (EInl _ _ e) rhs _ -> simplify' (ELet ext e rhs)
ECase _ (EInr _ _ e) _ rhs -> simplify' (ELet ext e rhs)
-- TODO: array indexing (index of build, index of fold)
-- TODO: constant folding for operations
EVar _ t i -> EVar ext t i
ELet _ a b -> ELet ext (simplify' a) (simplify' b)
EPair _ a b -> EPair ext (simplify' a) (simplify' b)
EFst _ e -> EFst ext (simplify' e)
ESnd _ e -> ESnd ext (simplify' e)
ENil _ -> ENil ext
EInl _ t e -> EInl ext t (simplify' e)
EInr _ t e -> EInr ext t (simplify' e)
ECase _ e a b -> ECase ext (simplify' e) (simplify' a) (simplify' b)
EBuild1 _ a b -> EBuild1 ext (simplify' a) (simplify' b)
EBuild _ es e -> EBuild ext (fmap simplify' es) (simplify' e)
EFold1 _ a b -> EFold1 ext (simplify' a) (simplify' b)
EConst _ t v -> EConst ext t v
EIdx1 _ a b -> EIdx1 ext (simplify' a) (simplify' b)
EIdx _ e es -> EIdx ext (simplify' e) (fmap simplify' es)
EOp _ op e -> EOp ext op (simplify' e)
EWith e1 e2 -> EWith (simplify' e1) (let ?accumInScope = True in simplify' e2)
EAccum e1 e2 e3 -> EAccum (simplify' e1) (simplify' e2) (simplify' e3)
EError t s -> EError t s
cheapExpr :: Expr x env t -> Bool
cheapExpr = \case
EVar{} -> True
ENil{} -> True
EConst{} -> True
_ -> False
subst1 :: Expr x env a -> Expr x (a : env) t -> Expr x env t
subst1 repl = subst $ \x t -> \case IZ -> repl
IS i -> EVar x t i
subst :: (forall a. x a -> STy a -> Idx env a -> Expr x env' a)
-> Expr x env t -> Expr x env' t
subst f = subst' (\x t w i -> weakenExpr w (f x t i)) WId
subst' :: (forall a env2. x a -> STy a -> env' :> env2 -> Idx env a -> Expr x env2 a)
-> env' :> envOut
-> Expr x env t
-> Expr x envOut t
subst' f w = \case
EVar x t i -> f x t w i
ELet x rhs body -> ELet x (subst' f w rhs) (subst' (sinkF f) (WCopy w) body)
EPair x a b -> EPair x (subst' f w a) (subst' f w b)
EFst x e -> EFst x (subst' f w e)
ESnd x e -> ESnd x (subst' f w e)
ENil x -> ENil x
EInl x t e -> EInl x t (subst' f w e)
EInr x t e -> EInr x t (subst' f w e)
ECase x e a b -> ECase x (subst' f w e) (subst' (sinkF f) (WCopy w) a) (subst' (sinkF f) (WCopy w) b)
EBuild1 x a b -> EBuild1 x (subst' f w a) (subst' (sinkF f) (WCopy w) b)
EBuild x es e -> EBuild x (fmap (subst' f w) es) (subst' (sinkFN (vecLength es) f) (wcopyN (vecLength es) w) e)
EFold1 x a b -> EFold1 x (subst' (sinkF (sinkF f)) (WCopy (WCopy w)) a) (subst' f w b)
EConst x t v -> EConst x t v
EIdx1 x a b -> EIdx1 x (subst' f w a) (subst' f w b)
EIdx x e es -> EIdx x (subst' f w e) (fmap (subst' f w) es)
EOp x op e -> EOp x op (subst' f w e)
EWith e1 e2 -> EWith (subst' f w e1) (subst' (sinkF f) (WCopy w) e2)
EAccum e1 e2 e3 -> EAccum (subst' f w e1) (subst' f w e2) (subst' f w e3)
EError t s -> EError t s
where
sinkF :: (forall a. x a -> STy a -> (env' :> env2) -> Idx env a -> Expr x env2 a)
-> x t -> STy t -> ((b : env') :> env2) -> Idx (b : env) t -> Expr x env2 t
sinkF f' x' t w' = \case
IZ -> EVar x' t (w' @> IZ)
IS i -> f' x' t (WPop w') i
sinkFN :: SNat n
-> (forall a. x a -> STy a -> (env' :> env2) -> Idx env a -> Expr x env2 a)
-> x t -> STy t -> (ConsN n TIx env' :> env2) -> Idx (ConsN n TIx env) t -> Expr x env2 t
sinkFN SZ f' x t w' i = f' x t w' i
sinkFN (SS _) _ x t w' IZ = EVar x t (w' @> IZ)
sinkFN (SS n) f' x t w' (IS i) = sinkFN n f' x t (WPop w') i
-- | This can be made more precise by tracking (and not counting) adds on
-- locally eliminated accumulators.
hasAdds :: Expr x env t -> Bool
hasAdds = \case
EVar _ _ _ -> False
ELet _ rhs body -> hasAdds rhs || hasAdds body
EPair _ a b -> hasAdds a || hasAdds b
EFst _ e -> hasAdds e
ESnd _ e -> hasAdds e
ENil _ -> False
EInl _ _ e -> hasAdds e
EInr _ _ e -> hasAdds e
ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b
EBuild1 _ a b -> hasAdds a || hasAdds b
EBuild _ es e -> getAny (foldMap (Any . hasAdds) es) || hasAdds e
EFold1 _ a b -> hasAdds a || hasAdds b
EConst _ _ _ -> False
EIdx1 _ a b -> hasAdds a || hasAdds b
EIdx _ e es -> hasAdds e || getAny (foldMap (Any . hasAdds) es)
EOp _ _ e -> hasAdds e
EWith a b -> hasAdds a || hasAdds b
EAccum _ _ _ -> True
EError _ _ -> False
checkAccumInScope :: SList STy env -> Bool
checkAccumInScope = \case SNil -> False
SCons t env -> check t || checkAccumInScope env
where
check :: STy t -> Bool
check STNil = False
check (STPair s t) = check s || check t
check (STEither s t) = check s || check t
check (STArr _ t) = check t
check (STScal _) = False
check STAccum{} = True
|