1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module Simplify (
simplifyN, simplifyFix,
SimplifyConfig(..), defaultSimplifyConfig, simplifyWith, simplifyFixWith,
) where
import Control.Monad (ap)
import Data.Bifunctor (first)
import Data.Function (fix)
import Data.Monoid (Any(..))
import Debug.Trace
import AST
import AST.Count
import AST.Pretty
import AST.Sparse.Types
import AST.UnMonoid (acPrjCompose)
import Data
import Simplify.TH
data SimplifyConfig = SimplifyConfig
{ scLogging :: Bool
}
defaultSimplifyConfig :: SimplifyConfig
defaultSimplifyConfig = SimplifyConfig False
simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t
simplifyN 0 = id
simplifyN n = simplifyN (n - 1) . simplify
simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplify =
let ?accumInScope = checkAccumInScope @env knownEnv
?config = defaultSimplifyConfig
in snd . runSM . simplify'
simplifyWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t
simplifyWith config =
let ?accumInScope = checkAccumInScope @env knownEnv
?config = config
in snd . runSM . simplify'
simplifyFix :: forall env t. KnownEnv env => Ex env t -> Ex env t
simplifyFix = simplifyFixWith defaultSimplifyConfig
simplifyFixWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t
simplifyFixWith config =
let ?accumInScope = checkAccumInScope @env knownEnv
?config = config
in fix $ \loop e ->
let (act, e') = runSM (simplify' e)
in if act then loop e' else e'
-- | simplify monad
newtype SM tenv tt env t a = SM ((Ex env t -> Ex tenv tt) -> (Any, a))
deriving (Functor)
instance Applicative (SM tenv tt env t) where
pure x = SM (\_ -> (Any False, x))
(<*>) = ap
instance Monad (SM tenv tt env t) where
SM f >>= g = SM $ \ctx -> f ctx >>= \x -> let SM h = g x in h ctx
runSM :: SM env t env t a -> (Bool, a)
runSM (SM f) = first getAny (f id)
smReconstruct :: Ex env t -> SM tenv tt env t (Ex tenv tt)
smReconstruct core = SM (\ctx -> (Any False, ctx core))
class Monad m => ActedMonad m where
tellActed :: m ()
hideActed :: m a -> m a
liftActed :: (Any, a) -> m a
instance ActedMonad ((,) Any) where
tellActed = (Any True, ())
hideActed (_, x) = (Any False, x)
liftActed = id
instance ActedMonad (SM tenv tt env t) where
tellActed = SM (\_ -> tellActed)
hideActed (SM f) = SM (\ctx -> hideActed (f ctx))
liftActed pair = SM (\_ -> pair)
-- more convenient in practice
acted :: ActedMonad m => m a -> m a
acted m = tellActed >> m
within :: (Ex env' t' -> Ex env t) -> SM tenv tt env' t' a -> SM tenv tt env t a
within subctx (SM f) = SM $ \ctx -> f (ctx . subctx)
simplify' :: (?accumInScope :: Bool, ?config :: SimplifyConfig, KnownEnv tenv) => Ex env t -> SM tenv tt env t (Ex env t)
simplify' expr
| scLogging ?config = do
res <- simplify'Rec expr
full <- smReconstruct res
let printed = ppExpr knownEnv full
replace a bs = concatMap (\x -> if x == a then bs else [x])
str | '\n' `elem` printed = "--- simplify step:\n " ++ replace '\n' "\n " printed
| otherwise = "--- simplify step: " ++ printed
traceM str
return res
| otherwise = simplify'Rec expr
simplify'Rec :: (?accumInScope :: Bool, ?config :: SimplifyConfig, KnownEnv tenv) => Ex env t -> SM tenv tt env t (Ex env t)
simplify'Rec = \case
-- inlining
ELet _ rhs body
| cheapExpr rhs
-> acted $ simplify' (substInline rhs body)
| Occ lexOcc runOcc <- occCount IZ body
, ((not ?accumInScope || not (hasAdds rhs)) && lexOcc <= One && runOcc <= One) -- without effects, normal rules apply
|| (lexOcc == One && runOcc == One) -- with effects, linear inlining is still allowed, but weakening is not
-> acted $ simplify' (substInline rhs body)
-- let splitting / let peeling
ELet _ (EPair _ a b) body ->
acted $ simplify' $
ELet ext a $
ELet ext (weakenExpr WSink b) $
subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ)
IS i -> EVar ext t (IS (IS i)))
body
ELet _ (EJust _ a) body ->
acted $ simplify' $ ELet ext a $ subst0 (EJust ext (EVar ext (typeOf a) IZ)) body
ELet _ (EInl _ t2 a) body ->
acted $ simplify' $ ELet ext a $ subst0 (EInl ext t2 (EVar ext (typeOf a) IZ)) body
ELet _ (EInr _ t1 a) body ->
acted $ simplify' $ ELet ext a $ subst0 (EInr ext t1 (EVar ext (typeOf a) IZ)) body
-- let rotation
ELet _ (ELet _ rhs a) b -> do
b' <- within (ELet ext (ELet ext rhs a)) $ simplify' b
acted $ simplify' $
ELet ext rhs $
ELet ext a $
weakenExpr (WCopy WSink) b'
-- beta rules for products
EFst _ (EPair _ e e')
| not (hasAdds e') -> acted $ simplify' e
| otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e)
ESnd _ (EPair _ e' e)
| not (hasAdds e') -> acted $ simplify' e
| otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e)
-- beta rules for coproducts
ECase _ (EInl _ _ e) rhs _ -> acted $ simplify' (ELet ext e rhs)
ECase _ (EInr _ _ e) _ rhs -> acted $ simplify' (ELet ext e rhs)
-- beta rules for maybe
EMaybe _ e1 _ ENothing{} -> acted $ simplify' e1
EMaybe _ _ e1 (EJust _ e2) -> acted $ simplify' $ ELet ext e2 e1
-- let floating
EFst _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EFst ext body))
ESnd _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (ESnd ext body))
ECase _ (ELet _ rhs body) e1 e2 -> acted $ simplify' (ELet ext rhs (ECase ext body (weakenExpr (WCopy WSink) e1) (weakenExpr (WCopy WSink) e2)))
EIdx0 _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EIdx0 ext body))
EIdx1 _ (ELet _ rhs body) e -> acted $ simplify' (ELet ext rhs (EIdx1 ext body (weakenExpr WSink e)))
EAccum _ t p e1 sp (ELet _ rhs body) acc ->
acted $ simplify' $
ELet ext rhs $
EAccum ext t p (weakenExpr WSink e1) sp body (weakenExpr WSink acc)
-- let () = e in () ~> e
ELet _ e1 (ENil _) | STNil <- typeOf e1 ->
acted $ simplify' e1
-- projection down-commuting
EFst _ (ECase _ e1 e2 e3) ->
acted $ simplify' $
ECase ext e1 (EFst ext e2) (EFst ext e3)
ESnd _ (ECase _ e1 e2 e3) ->
acted $ simplify' $
ECase ext e1 (ESnd ext e2) (ESnd ext e3)
EFst _ (EMaybe _ e1 e2 e3) ->
acted $ simplify' $
EMaybe ext (EFst ext e1) (EFst ext e2) e3
ESnd _ (EMaybe _ e1 e2 e3) ->
acted $ simplify' $
EMaybe ext (ESnd ext e1) (ESnd ext e2) e3
-- TODO: more array indexing
EIdx _ (EReplicate1Inner _ _ e2) e3 -> acted $ simplify' $ EIdx ext e2 (EFst ext e3)
EIdx _ (EUnit _ e1) _ -> acted $ simplify' $ e1
-- TODO: more array shape
EShape _ (EBuild _ _ e _) -> acted $ simplify' e
-- TODO: more constant folding
EOp _ OIf (EConst _ STBool True) -> acted $ return (EInl ext STNil (ENil ext))
EOp _ OIf (EConst _ STBool False) -> acted $ return (EInr ext STNil (ENil ext))
-- inline cheap array constructors
ELet _ (EReplicate1Inner _ e1 e2) e3 ->
acted $ simplify' $
ELet ext (EPair ext e1 e2) $
let v = EVar ext (STPair tIx (typeOf e2)) IZ
in subst0 (EReplicate1Inner ext (EFst ext v) (ESnd ext v)) e3
-- -- TODO: This is a bad idea and anyway only helps in practice if (!) is
-- -- cheap, which it can't be because (!) is not cheap if you do AD after.
-- -- Should do proper SoA representation.
-- ELet _ (EBuild _ n e1 e2) e3 | cheapExpr e2 ->
-- acted $ simplify' $
-- ELet ext e1 $
-- subst0 (EBuild ext n (EVar ext (tTup (sreplicate n tIx)) IZ) (weakenExpr (WCopy WSink) e2)) e3
-- eta rule for unit
e | STNil <- typeOf e, not ?accumInScope || not (hasAdds e) ->
case e of
ENil _ -> return e
_ -> acted $ return (ENil ext)
EBuild _ SZ _ e ->
acted $ simplify' $ EUnit ext (substInline (ENil ext) e)
-- monoid rules
EAccum _ t p e1 sp e2 acc -> do
e1' <- within (\e1' -> EAccum ext t p e1' sp e2 acc ) $ simplify' e1
e2' <- within (\e2' -> EAccum ext t p e1' sp e2' acc ) $ simplify' e2
acc' <- within (\acc' -> EAccum ext t p e1' sp e2' acc') $ simplify' acc
simplifyOHT (OneHotTerm SAID t p e1' sp e2')
(acted $ return (ENil ext))
(\sp' (InContext w wrap e) -> do
e' <- within (\e' -> wrap $ EAccum ext t SAPHere (ENil ext) sp' e' (weakenExpr w acc')) $ simplify' e
return (wrap $ EAccum ext t SAPHere (ENil ext) sp' e' (weakenExpr w acc')))
(\(InContext w wrap (OneHotTerm _ t' p' e1'' sp' e2'')) -> do
-- The acted management here is a hideous mess.
e1''' <- hideActed $ within (\e1''' -> wrap $ EAccum ext t' p' e1''' sp' e2'' (weakenExpr w acc')) $ simplify' e1''
e2''' <- hideActed $ within (\e2''' -> wrap $ EAccum ext t' p' e1''' sp' e2''' (weakenExpr w acc')) $ simplify' e2''
return (wrap $ EAccum ext t' p' e1''' sp' e2''' (weakenExpr w acc')))
EPlus _ _ (EZero _ _ _) e -> acted $ simplify' e
EPlus _ _ e (EZero _ _ _) -> acted $ simplify' e
EOneHot _ t p e1 e2 -> do
e1' <- within (\e1' -> EOneHot ext t p e1' e2 ) $ simplify' e1
e2' <- within (\e2' -> EOneHot ext t p e1' e2') $ simplify' e2
simplifyOHT (OneHotTerm SAIS t p e1' (spDense (acPrjTy p t)) e2')
(acted $ return (EZero ext t (zeroInfoFromOneHot t p e1 e2)))
(\sp' (InContext _ wrap e) ->
case isDense t sp' of
Just Refl -> do
e' <- hideActed $ within wrap $ simplify' e
return (wrap e')
Nothing -> error "simplifyOneHotTerm sparsified a dense Sparse")
(\(InContext _ wrap (OneHotTerm _ t' p' e1'' sp' e2'')) ->
case isDense (acPrjTy p' t') sp' of
Just Refl -> do
e1''' <- hideActed $ within (\e1''' -> wrap $ EOneHot ext t' p' e1''' e2'') $ simplify' e1''
e2''' <- hideActed $ within (\e2''' -> wrap $ EOneHot ext t' p' e1''' e2''') $ simplify' e2''
return (wrap $ EOneHot ext t' p' e1''' e2''')
Nothing -> error "simplifyOneHotTerm sparsified a dense Sparse")
-- type-specific equations for plus
EPlus _ SMTNil e1 e2 | not (hasAdds e1), not (hasAdds e2) ->
acted $ return (ENil ext)
EPlus _ (SMTPair t1 t2) (EPair _ a1 b1) (EPair _ a2 b2) ->
acted $ simplify' $ EPair ext (EPlus ext t1 a1 a2) (EPlus ext t2 b1 b2)
EPlus _ (SMTLEither t1 _) (ELInl _ dt2 a1) (ELInl _ _ a2) ->
acted $ simplify' $ ELInl ext dt2 (EPlus ext t1 a1 a2)
EPlus _ (SMTLEither _ t2) (ELInr _ dt1 b1) (ELInr _ _ b2) ->
acted $ simplify' $ ELInr ext dt1 (EPlus ext t2 b1 b2)
EPlus _ SMTLEither{} ELNil{} e -> acted $ simplify' e
EPlus _ SMTLEither{} e ELNil{} -> acted $ simplify' e
EPlus _ (SMTMaybe t) (EJust _ e1) (EJust _ e2) ->
acted $ simplify' $ EJust ext (EPlus ext t e1 e2)
EPlus _ SMTMaybe{} ENothing{} e -> acted $ simplify' e
EPlus _ SMTMaybe{} e ENothing{} -> acted $ simplify' e
-- fallback recursion
EVar _ t i -> pure $ EVar ext t i
ELet _ a b -> [simprec| ELet ext *a *b |]
EPair _ a b -> [simprec| EPair ext *a *b |]
EFst _ e -> [simprec| EFst ext *e |]
ESnd _ e -> [simprec| ESnd ext *e |]
ENil _ -> pure $ ENil ext
EInl _ t e -> [simprec| EInl ext t *e |]
EInr _ t e -> [simprec| EInr ext t *e |]
ECase _ e a b -> [simprec| ECase ext *e *a *b |]
ENothing _ t -> pure $ ENothing ext t
EJust _ e -> [simprec| EJust ext *e |]
EMaybe _ a b e -> [simprec| EMaybe ext *a *b *e |]
ELNil _ t1 t2 -> pure $ ELNil ext t1 t2
ELInl _ t e -> [simprec| ELInl ext t *e |]
ELInr _ t e -> [simprec| ELInr ext t *e |]
ELCase _ e a b c -> [simprec| ELCase ext *e *a *b *c |]
EConstArr _ n t v -> pure $ EConstArr ext n t v
EBuild _ n a b -> [simprec| EBuild ext n *a *b |]
EFold1Inner _ cm a b c -> [simprec| EFold1Inner ext cm *a *b *c |]
ESum1Inner _ e -> [simprec| ESum1Inner ext *e |]
EUnit _ e -> [simprec| EUnit ext *e |]
EReplicate1Inner _ a b -> [simprec| EReplicate1Inner ext *a *b |]
EMaximum1Inner _ e -> [simprec| EMaximum1Inner ext *e |]
EMinimum1Inner _ e -> [simprec| EMinimum1Inner ext *e |]
EConst _ t v -> pure $ EConst ext t v
EIdx0 _ e -> [simprec| EIdx0 ext *e |]
EIdx1 _ a b -> [simprec| EIdx1 ext *a *b |]
EIdx _ a b -> [simprec| EIdx ext *a *b |]
EShape _ e -> [simprec| EShape ext *e |]
EOp _ op e -> [simprec| EOp ext op *e |]
ECustom _ s t p a b c e1 e2 -> do
a' <- within (\a' -> ECustom ext s t p a' b c e1 e2) (let ?accumInScope = False in simplify' a)
b' <- within (\b' -> ECustom ext s t p a' b' c e1 e2) (let ?accumInScope = False in simplify' b)
c' <- within (\c' -> ECustom ext s t p a' b' c' e1 e2) (let ?accumInScope = False in simplify' c)
e1' <- within (\e1' -> ECustom ext s t p a' b' c' e1' e2) (simplify' e1)
e2' <- within (\e2' -> ECustom ext s t p a' b' c' e1' e2') (simplify' e2)
pure (ECustom ext s t p a' b' c' e1' e2')
ERecompute _ e -> [simprec| ERecompute ext *e |]
EWith _ t e1 e2 -> do
e1' <- within (\e1' -> EWith ext t e1' e2) (simplify' e1)
e2' <- within (\e2' -> EWith ext t e1' e2') (let ?accumInScope = True in simplify' e2)
pure (EWith ext t e1' e2')
EZero _ t e -> [simprec| EZero ext t *e |]
EDeepZero _ t e -> [simprec| EDeepZero ext t *e |]
EPlus _ t a b -> [simprec| EPlus ext t *a *b |]
EError _ t s -> pure $ EError ext t s
cheapExpr :: Expr x env t -> Bool
cheapExpr = \case
EVar{} -> True
ENil{} -> True
EConst{} -> True
EFst _ e -> cheapExpr e
ESnd _ e -> cheapExpr e
EUnit _ e -> cheapExpr e
_ -> False
-- | This can be made more precise by tracking (and not counting) adds on
-- locally eliminated accumulators.
hasAdds :: Expr x env t -> Bool
hasAdds = \case
EVar _ _ _ -> False
ELet _ rhs body -> hasAdds rhs || hasAdds body
EPair _ a b -> hasAdds a || hasAdds b
EFst _ e -> hasAdds e
ESnd _ e -> hasAdds e
ENil _ -> False
EInl _ _ e -> hasAdds e
EInr _ _ e -> hasAdds e
ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b
ENothing _ _ -> False
EJust _ e -> hasAdds e
EMaybe _ a b e -> hasAdds a || hasAdds b || hasAdds e
ELNil _ _ _ -> False
ELInl _ _ e -> hasAdds e
ELInr _ _ e -> hasAdds e
ELCase _ e a b c -> hasAdds e || hasAdds a || hasAdds b || hasAdds c
EConstArr _ _ _ _ -> False
EBuild _ _ a b -> hasAdds a || hasAdds b
EFold1Inner _ _ a b c -> hasAdds a || hasAdds b || hasAdds c
ESum1Inner _ e -> hasAdds e
EUnit _ e -> hasAdds e
EReplicate1Inner _ a b -> hasAdds a || hasAdds b
EMaximum1Inner _ e -> hasAdds e
EMinimum1Inner _ e -> hasAdds e
ECustom _ _ _ _ a b c d e -> hasAdds a || hasAdds b || hasAdds c || hasAdds d || hasAdds e
EConst _ _ _ -> False
EIdx0 _ e -> hasAdds e
EIdx1 _ a b -> hasAdds a || hasAdds b
EIdx _ a b -> hasAdds a || hasAdds b
EShape _ e -> hasAdds e
EOp _ _ e -> hasAdds e
EWith _ _ a b -> hasAdds a || hasAdds b
ERecompute _ e -> hasAdds e
EAccum _ _ _ _ _ _ _ -> True
EZero _ _ e -> hasAdds e
EDeepZero _ _ e -> hasAdds e
EPlus _ _ a b -> hasAdds a || hasAdds b
EOneHot _ _ _ a b -> hasAdds a || hasAdds b
EError _ _ _ -> False
checkAccumInScope :: SList STy env -> Bool
checkAccumInScope = \case SNil -> False
SCons t env -> check t || checkAccumInScope env
where
check :: STy t -> Bool
check STNil = False
check (STPair s t) = check s || check t
check (STEither s t) = check s || check t
check (STLEither s t) = check s || check t
check (STMaybe t) = check t
check (STArr _ t) = check t
check (STScal _) = False
check STAccum{} = True
data OneHotTerm dense env a where
OneHotTerm :: SAIDense dense -> SMTy a -> SAcPrj p a b -> Ex env (AcIdx dense p a) -> Sparse b c -> Ex env c -> OneHotTerm dense env a
deriving instance Show (OneHotTerm dense env a)
data InContext f env (a :: Ty) where
InContext :: env :> env' -> (forall t. Ex env' t -> Ex env t) -> f env' a -> InContext f env a
simplifyOHT_recogniseMonoid :: ActedMonad m => OneHotTerm dense env a -> m (OneHotTerm dense env a)
simplifyOHT_recogniseMonoid (OneHotTerm dense t prj idx sp val) = do
val' <- liftActed $ recogniseMonoid (applySparse sp (acPrjTy prj t)) val
return $ OneHotTerm dense t prj idx sp val'
simplifyOHT_unsparse :: ActedMonad m => OneHotTerm dense env a -> m (InContext (OneHotTerm dense) env a)
simplifyOHT_unsparse (OneHotTerm SAID t prj1 idx1 sp1 val1) =
unsparseOneHotD sp1 val1 $ \w wrap prj2 idx2 sp2 val2 ->
acPrjCompose SAID prj1 (weakenExpr w idx1) prj2 idx2 $ \prj' idx' ->
return $ InContext w wrap (OneHotTerm SAID t prj' idx' sp2 val2)
simplifyOHT_unsparse oht@(OneHotTerm SAIS _ _ _ _ _) = return $ InContext WId id oht
simplifyOHT_concat :: ActedMonad m => OneHotTerm dense env a -> m (OneHotTerm dense env a)
simplifyOHT_concat (OneHotTerm @dense @_ @_ @_ @env dense t1 prj1 idx1 sp (EOneHot @_ @c @p2 _ t2 prj2 idx2 val))
| Just Refl <- isDense (acPrjTy prj1 t1) sp =
let idx2' :: Ex env (AcIdx dense p2 c)
idx2' = case dense of
SAID -> reduceAcIdx t2 prj2 idx2
SAIS -> idx2
in acPrjCompose dense prj1 idx1 prj2 idx2' $ \prj' idx' ->
acted $ return $ OneHotTerm dense t1 prj' idx' (spDense (acPrjTy prj' t1)) val
simplifyOHT_concat oht = return oht
-- -- Property not expressed in types: if the Sparse in the input OneHotTerm is
-- -- dense, then the Sparse in the output will also be dense. This property is
-- -- used when simplifying EOneHot, which cannot represent sparsity.
simplifyOHT :: ActedMonad m => OneHotTerm dense env a
-> m r -- ^ Zero case (onehot is actually zero)
-> (forall b. Sparse a b -> InContext Ex env b -> m r) -- ^ Trivial case (no zeros in onehot)
-> (InContext (OneHotTerm dense) env a -> m r) -- ^ Simplified
-> m r
simplifyOHT oht kzero ktriv k = do
-- traceM $ "sOHT: input " ++ show oht
oht1 <- simplifyOHT_recogniseMonoid oht
-- traceM $ "sOHT: recog " ++ show oht1
InContext w1 wrap1 oht2 <- simplifyOHT_unsparse oht1
-- traceM $ "sOHT: unspa " ++ show oht2
oht3 <- simplifyOHT_concat oht2
-- traceM $ "sOHT: conca " ++ show oht3
-- traceM ""
case oht3 of
OneHotTerm _ _ _ _ _ EZero{} -> kzero
OneHotTerm _ _ SAPHere _ sp val -> ktriv sp (InContext w1 wrap1 val)
_ -> k (InContext w1 wrap1 oht3)
-- Sets the acted flag whenever a non-trivial projection is returned or the
-- output Sparse is different from the input Sparse.
unsparseOneHotD :: ActedMonad m => Sparse a a' -> Ex env a'
-> (forall p b c env'. env :> env' -> (forall s. Ex env' s -> Ex env s)
-> SAcPrj p a b -> Ex env' (AcIdxD p a) -> Sparse b c -> Ex env' c -> m r) -> m r
unsparseOneHotD topsp topval k = case (topsp, topval) of
-- eliminate always-Just sparse onehot
(SpSparse s, EOneHot _ (SMTMaybe t) (SAPJust prj) idx val) ->
acted $ unsparseOneHotD s (EOneHot ext t prj idx val) k
-- expand the top levels of a onehot for a sparse type into a onehot for the
-- corresponding non-sparse type
(SpPair s1 _, EOneHot _ (SMTPair t1 _) (SAPFst prj) idx val) ->
unsparseOneHotD s1 (EOneHot ext t1 prj (efst idx) val) $ \w wrap spprj idx' s1' e' ->
acted $ k w wrap (SAPFst spprj) idx' s1' e'
(SpPair _ s2, EOneHot _ (SMTPair _ t2) (SAPSnd prj) idx val) ->
unsparseOneHotD s2 (EOneHot ext t2 prj (esnd idx) val) $ \w wrap spprj idx' s1' e' ->
acted $ k w wrap (SAPSnd spprj) idx' s1' e'
(SpLEither s1 _, EOneHot _ (SMTLEither t1 _) (SAPLeft prj) idx val) ->
unsparseOneHotD s1 (EOneHot ext t1 prj idx val) $ \w wrap spprj idx' s1' e' ->
acted $ k w wrap (SAPLeft spprj) idx' s1' e'
(SpLEither _ s2, EOneHot _ (SMTLEither _ t2) (SAPRight prj) idx val) ->
unsparseOneHotD s2 (EOneHot ext t2 prj idx val) $ \w wrap spprj idx' s1' e' ->
acted $ k w wrap (SAPRight spprj) idx' s1' e'
(SpMaybe s1, EOneHot _ (SMTMaybe t1) (SAPJust prj) idx val) ->
unsparseOneHotD s1 (EOneHot ext t1 prj idx val) $ \w wrap spprj idx' s1' e' ->
acted $ k w wrap (SAPJust spprj) idx' s1' e'
(SpArr s1, EOneHot _ (SMTArr _ t1) (SAPArrIdx prj) idx val)
| Dict <- styKnown (typeOf idx) ->
unsparseOneHotD s1 (EOneHot ext t1 prj (esnd (evar IZ)) (weakenExpr WSink val)) $ \w wrap spprj idx' s1' e' ->
acted $ k (w .> WSink) (elet idx . wrap) (SAPArrIdx spprj) (EPair ext (efst (efst (evar (w @> IZ)))) idx') s1' e'
-- anything else we don't know how to improve
_ -> k WId id SAPHere (ENil ext) topsp topval
{-
unsparseOneHotS :: ActedMonad m
=> Sparse a a' -> Ex env a'
-> (forall b. Sparse a b -> Ex env b -> m r) -> m r
unsparseOneHotS topsp topval k = case (topsp, topval) of
-- order is relevant to make sure we set the acted flag correctly
(SpAbsent, v@ENil{}) -> k SpAbsent v
(SpAbsent, v@EZero{}) -> k SpAbsent v
(SpAbsent, _) -> acted $ k SpAbsent (EZero ext SMTNil (ENil ext))
(_, EZero{}) -> acted $ k SpAbsent (EZero ext SMTNil (ENil ext))
(sp, _) | isAbsent sp -> acted $ k SpAbsent (EZero ext SMTNil (ENil ext))
-- the unsparsifying
(SpSparse s, EOneHot _ (SMTMaybe t) (SAPJust prj) idx val) ->
acted $ unsparseOneHotS s (EOneHot ext t prj idx val) k
-- recursion
-- TODO: coproducts could safely become projections as they do not need
-- zeroinfo. But that would only work if the coproduct is at the top, because
-- as soon as we hit a product, we need zeroinfo to make it a projection and
-- we don't have that.
(SpSparse s, e) -> k (SpSparse s) e
(SpPair s1 _, EOneHot _ (SMTPair t1 _) (SAPFst prj) idx val) ->
unsparseOneHotS s1 (EOneHot ext t1 prj (efst idx) val) $ \s1' e' ->
acted $ k (SpPair s1' SpAbsent) (EPair ext e' (ENil ext))
(SpPair _ s2, EOneHot _ (SMTPair _ t2) (SAPSnd prj) idx val) ->
unsparseOneHotS s2 (EOneHot ext t2 prj (esnd idx) val) $ \s2' e' ->
acted $ k (SpPair SpAbsent s2') (EPair ext (ENil ext) e')
(SpLEither s1 s2, EOneHot _ (SMTLEither t1 _) (SAPLeft prj) idx val) ->
unsparseOneHotS s1 (EOneHot ext t1 prj idx val) $ \s1' e' -> do
case s2 of SpAbsent -> pure () ; _ -> tellActed
k (SpLEither s1' SpAbsent) (ELInl ext STNil e')
(SpLEither s1 s2, EOneHot _ (SMTLEither _ t2) (SAPRight prj) idx val) ->
unsparseOneHotS s2 (EOneHot ext t2 prj idx val) $ \s2' e' -> do
case s1 of SpAbsent -> pure () ; _ -> tellActed
acted $ k (SpLEither SpAbsent s2') (ELInr ext STNil e')
(SpMaybe s1, EOneHot _ (SMTMaybe t1) (SAPJust prj) idx val) ->
unsparseOneHotS s1 (EOneHot ext t1 prj idx val) $ \s1' e' ->
k (SpMaybe s1') (EJust ext e')
(SpArr s1, EOneHot _ (SMTArr n t1) (SAPArrIdx prj) idx val) ->
unsparseOneHotS s1 (EOneHot ext t1 prj (esnd (evar IZ)) (weakenExpr WSink val)) $ \s1' e' ->
k (SpArr s1') (elet idx $ EOneHot ext (SMTArr n (applySparse s1' _)) (SAPArrIdx SAPHere) (EPair ext (efst (evar IZ)) (ENil ext)) e')
_ -> _
-}
-- | Recognises 'EZero' and 'EOneHot'.
recogniseMonoid :: SMTy t -> Ex env t -> (Any, Ex env t)
recogniseMonoid _ e@EOneHot{} = return e
recogniseMonoid SMTNil (ENil _) = acted $ return $ EZero ext SMTNil (ENil ext)
recogniseMonoid typ@(SMTPair t1 t2) (EPair _ a b) =
((,) <$> recogniseMonoid t1 a <*> recogniseMonoid t2 b) >>= \case
(EZero _ _ ezi1, EZero _ _ ezi2) -> acted $ return $ EZero ext typ (EPair ext ezi1 ezi2)
(a', EZero _ _ ezi2) -> acted $ EOneHot ext typ (SAPFst SAPHere) (EPair ext (ENil ext) ezi2) <$> recogniseMonoid t1 a'
(EZero _ _ ezi1, b') -> acted $ EOneHot ext typ (SAPSnd SAPHere) (EPair ext ezi1 (ENil ext)) <$> recogniseMonoid t2 b'
(a', b') -> return $ EPair ext a' b'
recogniseMonoid typ@(SMTLEither t1 t2) expr =
case expr of
ELNil{} -> acted $ return $ EZero ext typ (ENil ext)
ELInl _ _ e -> acted $ EOneHot ext typ (SAPLeft SAPHere) (ENil ext) <$> recogniseMonoid t1 e
ELInr _ _ e -> acted $ EOneHot ext typ (SAPRight SAPHere) (ENil ext) <$> recogniseMonoid t2 e
_ -> return expr
recogniseMonoid typ@(SMTMaybe t1) expr =
case expr of
ENothing{} -> acted $ return $ EZero ext typ (ENil ext)
EJust _ e -> acted $ EOneHot ext typ (SAPJust SAPHere) (ENil ext) <$> recogniseMonoid t1 e
_ -> return expr
recogniseMonoid typ@(SMTArr SZ t) (EUnit _ e) =
acted $ do
e' <- recogniseMonoid t e
return $
ELet ext e' $
EOneHot ext typ (SAPArrIdx SAPHere)
(EPair ext (EPair ext (ENil ext) (EUnit ext (makeZeroInfo t (EVar ext (fromSMTy t) IZ))))
(ENil ext))
(EVar ext (fromSMTy t) IZ)
recogniseMonoid typ@(SMTScal sty) e@(EConst _ _ x) = case (sty, x) of
(STI32, 0) -> acted $ return $ EZero ext typ (ENil ext)
(STI64, 0) -> acted $ return $ EZero ext typ (ENil ext)
(STF32, 0) -> acted $ return $ EZero ext typ (ENil ext)
(STF64, 0) -> acted $ return $ EZero ext typ (ENil ext)
_ -> return e
recogniseMonoid _ e = return e
reduceAcIdx :: SMTy a -> SAcPrj p a b -> Ex env (AcIdxS p a) -> Ex env (AcIdxD p a)
reduceAcIdx topty topprj e = case (topty, topprj) of
(_, SAPHere) -> ENil ext
(SMTPair t1 _, SAPFst p) -> reduceAcIdx t1 p (efst e)
(SMTPair _ t2, SAPSnd p) -> reduceAcIdx t2 p (esnd e)
(SMTLEither t1 _ , SAPLeft p) -> reduceAcIdx t1 p e
(SMTLEither _ t2, SAPRight p) -> reduceAcIdx t2 p e
(SMTMaybe t1, SAPJust p) -> reduceAcIdx t1 p e
(SMTArr _ t, SAPArrIdx p) ->
eunPair e $ \_ e1 e2 ->
EPair ext (efst e1) (reduceAcIdx t p e2)
zeroInfoFromOneHot :: SMTy t -> SAcPrj p t a -> Ex env (AcIdxS p t) -> Ex env a -> Ex env (ZeroInfo t)
zeroInfoFromOneHot = \ty prj eidx e -> ELet ext eidx $ go ty prj (EVar ext (typeOf eidx) IZ) (weakenExpr WSink e)
where
-- invariant: AcIdx expression is duplicable
go :: SMTy t -> SAcPrj p t a -> Ex env (AcIdxS p t) -> Ex env a -> Ex env (ZeroInfo t)
go t SAPHere _ e = makeZeroInfo t e
go (SMTPair t1 _) (SAPFst prj) eidx e = EPair ext (go t1 prj (EFst ext eidx) e) (ESnd ext eidx)
go (SMTPair _ t2) (SAPSnd prj) eidx e = EPair ext (EFst ext eidx) (go t2 prj (ESnd ext eidx) e)
go SMTLEither{} _ _ _ = ENil ext
go SMTMaybe{} _ _ _ = ENil ext
go SMTArr{} SAPArrIdx{} eidx _ = ESnd ext (EFst ext eidx)
|