diff options
| author | Tom Smeding <tom@tomsmeding.com> | 2025-03-20 13:01:24 +0100 | 
|---|---|---|
| committer | Tom Smeding <tom@tomsmeding.com> | 2025-03-20 13:01:24 +0100 | 
| commit | 55036a5ea4a6e590d0404638b2823c6a4aec3fba (patch) | |
| tree | 484bc377229d3edff36bd9a2a80f999bbcd2e889 /src/Data/Array/Mixed/Internal | |
| parent | 5414434df62b2b196354b9748b265093c168601b (diff) | |
Separate arith routines into a library
The point is that this separate library does not depend on orthotope.
Diffstat (limited to 'src/Data/Array/Mixed/Internal')
| -rw-r--r-- | src/Data/Array/Mixed/Internal/Arith.hs | 928 | ||||
| -rw-r--r-- | src/Data/Array/Mixed/Internal/Arith/Foreign.hs | 47 | ||||
| -rw-r--r-- | src/Data/Array/Mixed/Internal/Arith/Lists.hs | 95 | ||||
| -rw-r--r-- | src/Data/Array/Mixed/Internal/Arith/Lists/TH.hs | 83 | 
4 files changed, 11 insertions, 1142 deletions
| diff --git a/src/Data/Array/Mixed/Internal/Arith.hs b/src/Data/Array/Mixed/Internal/Arith.hs index 27ebb64..f7a76bc 100644 --- a/src/Data/Array/Mixed/Internal/Arith.hs +++ b/src/Data/Array/Mixed/Internal/Arith.hs @@ -1,929 +1,23 @@ -{-# LANGUAGE DataKinds #-}  {-# LANGUAGE ImportQualifiedPost #-} -{-# LANGUAGE LambdaCase #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE TemplateHaskell #-} -{-# LANGUAGE TupleSections #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeOperators #-} -{-# LANGUAGE ViewPatterns #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}  module Data.Array.Mixed.Internal.Arith where -import Control.Monad (forM, guard)  import Data.Array.Internal qualified as OI  import Data.Array.Internal.RankedG qualified as RG  import Data.Array.Internal.RankedS qualified as RS -import Data.Bifunctor (second) -import Data.Bits -import Data.Int -import Data.List (sort) -import Data.Vector.Storable qualified as VS -import Data.Vector.Storable.Mutable qualified as VSM -import Foreign.C.Types -import Foreign.Marshal.Alloc (alloca) -import Foreign.Ptr -import Foreign.Storable (Storable(sizeOf), peek, poke) -import GHC.TypeLits -import GHC.TypeNats qualified as TypeNats -import Language.Haskell.TH -import System.IO (hFlush, stdout) -import System.IO.Unsafe -import Data.Array.Mixed.Internal.Arith.Foreign -import Data.Array.Mixed.Internal.Arith.Lists -import Data.Array.Mixed.Types (fromSNat') +import Data.Array.Strided qualified as AS --- TODO: need to sort strides for reduction-like functions so that the C inner-loop specialisation has some chance of working even after transposition +fromO :: RS.Array n a -> AS.Array n a +fromO (RS.A (RG.A sh (OI.T strides offset vec))) = AS.Array sh strides offset vec +toO :: AS.Array n a -> RS.Array n a +toO (AS.Array sh strides offset vec) = RS.A (RG.A sh (OI.T strides offset vec)) --- TODO: test all the cases of this thing with various input strides -liftVEltwise1 :: (Storable a, Storable b) -              => SNat n -              -> (VS.Vector a -> VS.Vector b) -              -> RS.Array n a -> RS.Array n b -liftVEltwise1 SNat f arr@(RS.A (RG.A sh (OI.T strides offset vec))) -  | Just (blockOff, blockSz) <- stridesDense sh offset strides = -      let vec' = f (VS.slice blockOff blockSz vec) -      in RS.A (RG.A sh (OI.T strides (offset - blockOff) vec')) -  | otherwise = RS.fromVector sh (f (RS.toVector arr)) +liftO1 :: (AS.Array n a -> AS.Array n' b) +       -> RS.Array n a -> RS.Array n' b +liftO1 f = toO . f . fromO --- TODO: test all the cases of this thing with various input strides -{-# NOINLINE liftOpEltwise1 #-} -liftOpEltwise1 :: (Storable a, Storable b) -               => SNat n -               -> (Ptr a -> Ptr a') -               -> (Ptr b -> Ptr b') -               -> (Int64 -> Ptr b' -> Ptr Int64 -> Ptr Int64 -> Ptr a' -> IO ()) -               -> RS.Array n a -> RS.Array n b -liftOpEltwise1 sn@SNat ptrconv1 ptrconv2 cf_strided (RS.A (RG.A sh (OI.T strides offset vec))) -  -- TODO: less code duplication between these two branches -  | Just (blockOff, blockSz) <- stridesDense sh offset strides = -      if blockSz == 0 -        then RS.A (RG.A sh (OI.T (map (const 0) strides) 0 VS.empty)) -        else unsafePerformIO $ do -               outv <- VSM.unsafeNew blockSz -               VSM.unsafeWith outv $ \poutv -> -                 VS.unsafeWith (VS.singleton (fromIntegral blockSz)) $ \psh -> -                   VS.unsafeWith (VS.singleton 1) $ \pstrides -> -                     VS.unsafeWith (VS.slice blockOff blockSz vec) $ \pv -> -                       cf_strided 1 (ptrconv2 poutv) psh pstrides (ptrconv1 pv) -               RS.A . RG.A sh . OI.T strides (offset - blockOff) <$> VS.unsafeFreeze outv -  | otherwise = unsafePerformIO $ do -      outv <- VSM.unsafeNew (product sh) -      VSM.unsafeWith outv $ \poutv -> -        VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral sh)) $ \psh -> -          VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides)) $ \pstrides -> -            VS.unsafeWith (VS.slice offset (VS.length vec - offset) vec) $ \pv -> -              cf_strided (fromIntegral (fromSNat sn)) (ptrconv2 poutv) psh pstrides (ptrconv1 pv) -      RS.fromVector sh <$> VS.unsafeFreeze outv - --- TODO: test all the cases of this thing with various input strides -liftVEltwise2 :: Storable a -              => SNat n -              -> (a -> b) -              -> (Ptr a -> Ptr b) -              -> (a -> a -> a) -              -> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ())  -- ^ sv -              -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ())  -- ^ vs -              -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ())  -- ^ vv -              -> RS.Array n a -> RS.Array n a -> RS.Array n a -liftVEltwise2 sn@SNat valconv ptrconv f_ss f_sv f_vs f_vv -    arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1))) -    arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2))) -  | sh1 /= sh2 = error $ "liftVEltwise2: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2 -  | product sh1 == 0 = RS.A (RG.A sh1 (OI.T (0 <$ strides1) 0 VS.empty)) -  | otherwise = case (stridesDense sh1 offset1 strides1, stridesDense sh2 offset2 strides2) of -      (Just (_, 1), Just (_, 1)) ->  -- both are a (potentially replicated) scalar; just apply f to the scalars -        let vec' = VS.singleton (f_ss (vec1 VS.! offset1) (vec2 VS.! offset2)) -        in RS.A (RG.A sh1 (OI.T strides1 0 vec')) - -      (Just (_, 1), Just (blockOff, blockSz)) ->  -- scalar * dense -        let arr2' = RS.fromVector [blockSz] (VS.slice blockOff blockSz vec2) -            RS.A (RG.A _ (OI.T _ _ resvec)) = wrapBinarySV (SNat @1) valconv ptrconv f_sv (vec1 VS.! offset1) arr2' -        in RS.A (RG.A sh1 (OI.T strides2 (offset2 - blockOff) resvec)) - -      (Just (_, 1), Nothing) ->  -- scalar * array -        wrapBinarySV sn valconv ptrconv f_sv (vec1 VS.! offset1) arr2 - -      (Just (blockOff, blockSz), Just (_, 1)) ->  -- dense * scalar -        let arr1' = RS.fromVector [blockSz] (VS.slice blockOff blockSz vec1) -            RS.A (RG.A _ (OI.T _ _ resvec)) = wrapBinaryVS (SNat @1) valconv ptrconv f_vs arr1' (vec2 VS.! offset2) -        in RS.A (RG.A sh1 (OI.T strides1 (offset1 - blockOff) resvec)) - -      (Nothing, Just (_, 1)) ->  -- array * scalar -        wrapBinaryVS sn valconv ptrconv f_vs arr1 (vec2 VS.! offset2) - -      (Just (blockOff1, blockSz1), Just (blockOff2, blockSz2)) -        | blockSz1 == blockSz2  -- not sure if this check is necessary, might be implied by the strides check -        , strides1 == strides2 -        ->  -- dense * dense but the strides match -          let arr1' = RS.fromVector [blockSz1] (VS.slice blockOff1 blockSz1 vec1) -              arr2' = RS.fromVector [blockSz1] (VS.slice blockOff2 blockSz2 vec2) -              RS.A (RG.A _ (OI.T _ _ resvec)) = wrapBinaryVV (SNat @1) ptrconv f_vv arr1' arr2' -          in RS.A (RG.A sh1 (OI.T strides1 (offset1 - blockOff1) resvec)) - -      (_, _) ->  -- fallback case -        wrapBinaryVV sn ptrconv f_vv arr1 arr2 - --- | Given shape vector, offset and stride vector, check whether this virtual --- vector uses a dense subarray of its backing array. If so, the first index --- and the number of elements in this subarray is returned. --- This excludes any offset. -stridesDense :: [Int] -> Int -> [Int] -> Maybe (Int, Int) -stridesDense sh offset _ | any (<= 0) sh = Just (offset, 0) -stridesDense sh offsetNeg stridesNeg = -  -- First reverse all dimensions with negative stride, so that the first used -  -- value is at 'offset' and the rest is >= offset. -  let (offset, strides) = flipReverseds sh offsetNeg stridesNeg -  in -- sort dimensions on their stride, ascending, dropping any zero strides -     case filter ((/= 0) . fst) (sort (zip strides sh)) of -       [] -> Just (offset, 1) -       (1, n) : pairs -> (offset,) <$> checkCover n pairs -       _ -> Nothing  -- if the smallest stride is not 1, it will never be dense -  where -    -- Given size of currently densely covered region at beginning of the -    -- array and the remaining (stride, size) pairs with all strides >=1, -    -- return whether this all together covers a dense prefix of the array. If -    -- it does, return the number of elements in this prefix. -    checkCover :: Int -> [(Int, Int)] -> Maybe Int -    checkCover block [] = Just block -    checkCover block ((s, n) : pairs) = guard (s <= block) >> checkCover ((n-1) * s + block) pairs - -    -- Given shape, offset and strides, returns new (offset, strides) such that all strides are >=0 -    flipReverseds :: [Int] -> Int -> [Int] -> (Int, [Int]) -    flipReverseds [] off [] = (off, []) -    flipReverseds (n : sh') off (s : str') -      | s >= 0 = second (s :) (flipReverseds sh' off str') -      | otherwise = -          let off' = off + (n - 1) * s -          in second ((-s) :) (flipReverseds sh' off' str') -    flipReverseds _ _ _ = error "flipReverseds: invalid arguments" - -{-# NOINLINE wrapBinarySV #-} -wrapBinarySV :: Storable a -             => SNat n -             -> (a -> b) -             -> (Ptr a -> Ptr b) -             -> (Int64 -> Ptr Int64 -> Ptr b -> b -> Ptr Int64 -> Ptr b -> IO ()) -             -> a -> RS.Array n a -             -> RS.Array n a -wrapBinarySV sn@SNat valconv ptrconv cf_strided x (RS.A (RG.A sh (OI.T strides offset vec))) = -  unsafePerformIO $ do -    outv <- VSM.unsafeNew (product sh) -    VSM.unsafeWith outv $ \poutv -> -      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral sh)) $ \psh -> -        VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides)) $ \pstrides -> -          VS.unsafeWith (VS.slice offset (VS.length vec - offset) vec) $ \pv -> -            cf_strided (fromIntegral (fromSNat' sn)) psh (ptrconv poutv) (valconv x) pstrides (ptrconv pv) -    RS.fromVector sh <$> VS.unsafeFreeze outv - -wrapBinaryVS :: Storable a -             => SNat n -             -> (a -> b) -             -> (Ptr a -> Ptr b) -             -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> b -> IO ()) -             -> RS.Array n a -> a -             -> RS.Array n a -wrapBinaryVS sn valconv ptrconv cf_strided arr y = -  wrapBinarySV sn valconv ptrconv -               (\rank psh poutv y' pstrides pv -> cf_strided rank psh poutv pstrides pv y') y arr - --- | This function assumes that the two shapes are equal. -{-# NOINLINE wrapBinaryVV #-} -wrapBinaryVV :: Storable a -             => SNat n -             -> (Ptr a -> Ptr b) -             -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ()) -             -> RS.Array n a -> RS.Array n a -             -> RS.Array n a -wrapBinaryVV sn@SNat ptrconv cf_strided -    (RS.A (RG.A sh (OI.T strides1 offset1 vec1))) -    (RS.A (RG.A _  (OI.T strides2 offset2 vec2))) = -  unsafePerformIO $ do -    outv <- VSM.unsafeNew (product sh) -    VSM.unsafeWith outv $ \poutv -> -      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral sh)) $ \psh -> -      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides1)) $ \pstrides1 -> -      VS.unsafeWith (VS.fromListN (fromSNat' sn) (map fromIntegral strides2)) $ \pstrides2 -> -      VS.unsafeWith (VS.slice offset1 (VS.length vec1 - offset1) vec1) $ \pv1 -> -      VS.unsafeWith (VS.slice offset2 (VS.length vec2 - offset2) vec2) $ \pv2 -> -        cf_strided (fromIntegral (fromSNat' sn)) psh (ptrconv poutv) pstrides1 (ptrconv pv1) pstrides2 (ptrconv pv2) -    RS.fromVector sh <$> VS.unsafeFreeze outv - -{-# NOINLINE vectorOp1 #-} -vectorOp1 :: forall a b. Storable a -          => (Ptr a -> Ptr b) -          -> (Int64 -> Ptr b -> Ptr b -> IO ()) -          -> VS.Vector a -> VS.Vector a -vectorOp1 ptrconv f v = unsafePerformIO $ do -  outv <- VSM.unsafeNew (VS.length v) -  VSM.unsafeWith outv $ \poutv -> -    VS.unsafeWith v $ \pv -> -      f (fromIntegral (VS.length v)) (ptrconv poutv) (ptrconv pv) -  VS.unsafeFreeze outv - --- | If two vectors are given, assumes that they have the same length. -{-# NOINLINE vectorOp2 #-} -vectorOp2 :: forall a b. Storable a -          => (a -> b) -          -> (Ptr a -> Ptr b) -          -> (a -> a -> a) -          -> (Int64 -> Ptr b -> b -> Ptr b -> IO ())  -- sv -          -> (Int64 -> Ptr b -> Ptr b -> b -> IO ())  -- vs -          -> (Int64 -> Ptr b -> Ptr b -> Ptr b -> IO ())  -- vv -          -> Either a (VS.Vector a) -> Either a (VS.Vector a) -> VS.Vector a -vectorOp2 valconv ptrconv fss fsv fvs fvv = \cases -  (Left x) (Left y) -> VS.singleton (fss x y) - -  (Left x) (Right vy) -> -    unsafePerformIO $ do -      outv <- VSM.unsafeNew (VS.length vy) -      VSM.unsafeWith outv $ \poutv -> -        VS.unsafeWith vy $ \pvy -> -          fsv (fromIntegral (VS.length vy)) (ptrconv poutv) (valconv x) (ptrconv pvy) -      VS.unsafeFreeze outv - -  (Right vx) (Left y) -> -    unsafePerformIO $ do -      outv <- VSM.unsafeNew (VS.length vx) -      VSM.unsafeWith outv $ \poutv -> -        VS.unsafeWith vx $ \pvx -> -          fvs (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (valconv y) -      VS.unsafeFreeze outv - -  (Right vx) (Right vy) -    | VS.length vx == VS.length vy -> -        unsafePerformIO $ do -          outv <- VSM.unsafeNew (VS.length vx) -          VSM.unsafeWith outv $ \poutv -> -            VS.unsafeWith vx $ \pvx -> -              VS.unsafeWith vy $ \pvy -> -                fvv (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (ptrconv pvy) -          VS.unsafeFreeze outv -    | otherwise -> error $ "vectorOp: unequal lengths: " ++ show (VS.length vx) ++ " /= " ++ show (VS.length vy) - --- TODO: test handling of negative strides --- | Reduce along the inner dimension -{-# NOINLINE vectorRedInnerOp #-} -vectorRedInnerOp :: forall a b n. (Num a, Storable a) -                 => SNat n -                 -> (a -> b) -                 -> (Ptr a -> Ptr b) -                 -> (Int64 -> Ptr b -> b -> Ptr b -> IO ())  -- ^ scale by constant -                 -> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ reduction kernel -                 -> RS.Array (n + 1) a -> RS.Array n a -vectorRedInnerOp sn@SNat valconv ptrconv fscale fred (RS.A (RG.A sh (OI.T strides offset vec))) -  | null sh = error "unreachable" -  | last sh <= 0 = RS.stretch (init sh) (RS.fromList (1 <$ init sh) [0]) -  | any (<= 0) (init sh) = RS.A (RG.A (init sh) (OI.T (0 <$ init strides) 0 VS.empty)) -  -- now the input array is nonempty -  | last sh == 1 = RS.A (RG.A (init sh) (OI.T (init strides) offset vec)) -  | last strides == 0 = -      liftVEltwise1 sn -        (vectorOp1 id (\n pout px -> fscale n (ptrconv pout) (valconv (fromIntegral (last sh))) (ptrconv px))) -        (RS.A (RG.A (init sh) (OI.T (init strides) offset vec))) -  -- now there is useful work along the inner dimension -  | otherwise = -      let -- replicated dimensions: dimensions with zero stride. The reduction -          -- kernel need not concern itself with those (and in fact has a -          -- precondition that there are no such dimensions in its input). -          replDims = map (== 0) strides -          -- filter out replicated dimensions -          (shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims] -          -- replace replicated dimensions with ones -          shOnes = zipWith (\n repl -> if repl then 1 else n) sh replDims -          ndimsF = length shF  -- > 0, otherwise `last strides == 0` - -          -- reversed dimensions: dimensions with negative stride. Reversal is -          -- irrelevant for a reduction, and indeed the kernel has a -          -- precondition that there are no such dimensions. -          revDims = map (< 0) stridesF -          stridesR = map abs stridesF -          offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF) -          -- The *R values give an array with strides all > 0, hence the -          -- left-most element is at offsetR. -      in unsafePerformIO $ do -           outvR <- VSM.unsafeNew (product (init shF)) -           VSM.unsafeWith outvR $ \poutvR -> -             VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF -> -               VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR -> -                 VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR -> -                   fred (fromIntegral ndimsF) (ptrconv poutvR) pshF pstridesR (ptrconv pvecR) -           TypeNats.withSomeSNat (fromIntegral (ndimsF - 1)) $ \(SNat :: SNat lenFm1) -> -             RS.stretch (init sh)  -- replicate to original shape -               . RS.reshape (init shOnes)  -- add 1-sized dimensions where the original was replicated -               . RS.rev (map fst (filter snd (zip [0..] revDims)))  -- re-reverse the correct dimensions -               . RS.fromVector @_ @lenFm1 (init shF)  -- the partially-reversed result array -               <$> VS.unsafeFreeze outvR - --- TODO: test handling of negative strides --- | Reduce full array -{-# NOINLINE vectorRedFullOp #-} -vectorRedFullOp :: forall a b n. (Num a, Storable a) -                => SNat n -                -> (a -> Int -> a) -                -> (b -> a) -                -> (Ptr a -> Ptr b) -                -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO b)  -- ^ reduction kernel -                -> RS.Array n a -> a -vectorRedFullOp _ scaleval valbackconv ptrconv fred (RS.A (RG.A sh (OI.T strides offset vec))) -  | null sh = vec VS.! offset  -- 0D array has one element -  | any (<= 0) sh = 0 -  -- now the input array is nonempty -  | all (== 0) strides = fromIntegral (product sh) * vec VS.! offset -  -- now there is at least one non-replicated dimension -  | otherwise = -      let -- replicated dimensions: dimensions with zero stride. The reduction -          -- kernel need not concern itself with those (and in fact has a -          -- precondition that there are no such dimensions in its input). -          replDims = map (== 0) strides -          -- filter out replicated dimensions -          (shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims] -          ndimsF = length shF  -- > 0, otherwise `all (== 0) strides` -          -- we should scale up the output this many times to account for the replicated dimensions -          multiplier = product [n | (n, True) <- zip sh replDims] - -          -- reversed dimensions: dimensions with negative stride. Reversal is -          -- irrelevant for a reduction, and indeed the kernel has a -          -- precondition that there are no such dimensions. -          revDims = map (< 0) stridesF -          stridesR = map abs stridesF -          offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF) -          -- The *R values give an array with strides all > 0, hence the -          -- left-most element is at offsetR. -      in unsafePerformIO $ do -           VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF -> -             VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR -> -               VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR -> -                 (`scaleval` multiplier) . valbackconv -                   <$> fred (fromIntegral ndimsF) pshF pstridesR (ptrconv pvecR) - --- TODO: test this function --- | Find extremum (minindex ("argmin") or maxindex) in full array -{-# NOINLINE vectorExtremumOp #-} -vectorExtremumOp :: forall a b n. Storable a -                 => (Ptr a -> Ptr b) -                 -> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ extremum kernel -                 -> RS.Array n a -> [Int]  -- result length: n -vectorExtremumOp ptrconv fextrem (RS.A (RG.A sh (OI.T strides offset vec))) -  | null sh = [] -  | any (<= 0) sh = error "Extremum (minindex/maxindex): empty array" -  -- now the input array is nonempty -  | all (== 0) strides = 0 <$ sh -  -- now there is at least one non-replicated dimension -  | otherwise = -      let -- replicated dimensions: dimensions with zero stride. The extremum -          -- kernel need not concern itself with those (and in fact has a -          -- precondition that there are no such dimensions in its input). -          replDims = map (== 0) strides -          -- filter out replicated dimensions -          (shF, stridesF) = unzip [(n, s) | (n, s, False) <- zip3 sh strides replDims] -          ndimsF = length shF  -- > 0, because not all strides were <=0 - -          -- un-reverse reversed dimensions -          revDims = map (< 0) stridesF -          stridesR = map abs stridesF -          offsetR = offset + sum (zipWith3 (\rev n s -> if rev then (n - 1) * s else 0) revDims shF stridesF) - -          -- function to insert zeros in replicated-out dimensions -          insertZeros :: [Bool] -> [Int] -> [Int] -          insertZeros [] idx = idx -          insertZeros (True : repls) idx = 0 : insertZeros repls idx -          insertZeros (False : repls) (i : idx) = i : insertZeros repls idx -          insertZeros (_:_) [] = error "unreachable" -      in unsafePerformIO $ do -           outvR <- VSM.unsafeNew (length shF) -           VSM.unsafeWith outvR $ \poutvR -> -             VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF -> -               VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesR)) $ \pstridesR -> -                 VS.unsafeWith (VS.slice offsetR (VS.length vec - offsetR) vec) $ \pvecR -> -                   fextrem poutvR (fromIntegral ndimsF) pshF pstridesR (ptrconv pvecR) -           insertZeros replDims -             . zipWith3 (\rev n i -> if rev then n - 1 - i else i) revDims shF  -- re-reverse the reversed dimensions -             . map (fromIntegral @Int64 @Int) -             . VS.toList -             <$> VS.unsafeFreeze outvR - -vectorDotprodInnerOp :: forall a b n. (Num a, Storable a) -                     => SNat n -                     -> (a -> b) -                     -> (Ptr a -> Ptr b) -                     -> (SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a)  -- ^ elementwise multiplication -                     -> (Int64 -> Ptr b -> b -> Ptr b -> IO ())  -- ^ scale by constant -                     -> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ reduction kernel -                     -> (Int64 -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> Ptr Int64 -> Ptr b -> IO ())  -- ^ dotprod kernel -                     -> RS.Array (n + 1) a -> RS.Array (n + 1) a -> RS.Array n a -vectorDotprodInnerOp sn@SNat valconv ptrconv fmul fscale fred fdotinner -    arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1))) -    arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2))) -  | null sh1 || null sh2 = error "unreachable" -  | sh1 /= sh2 = error $ "vectorDotprodInnerOp: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2 -  | last sh1 <= 0 = RS.stretch (init sh1) (RS.fromList (1 <$ init sh1) [0]) -  | any (<= 0) (init sh1) = RS.A (RG.A (init sh1) (OI.T (0 <$ init strides1) 0 VS.empty)) -  -- now the input arrays are nonempty -  | last sh1 == 1 = fmul sn (RS.reshape (init sh1) arr1) (RS.reshape (init sh1) arr2) -  | last strides1 == 0 = -      fmul sn -        (RS.A (RG.A (init sh1) (OI.T (init strides1) offset1 vec1))) -        (vectorRedInnerOp sn valconv ptrconv fscale fred arr2) -  | last strides2 == 0 = -      fmul sn -        (vectorRedInnerOp sn valconv ptrconv fscale fred arr1) -        (RS.A (RG.A (init sh2) (OI.T (init strides2) offset2 vec2))) -  -- now there is useful dotprod work along the inner dimension -  | otherwise = unsafePerformIO $ do -      let inrank = fromSNat' sn + 1 -      outv <- VSM.unsafeNew (product (init sh1)) -      VSM.unsafeWith outv $ \poutv -> -        VS.unsafeWith (VS.fromListN inrank (map fromIntegral sh1)) $ \psh -> -        VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides1)) $ \pstrides1 -> -        VS.unsafeWith vec1 $ \pvec1 -> -        VS.unsafeWith (VS.fromListN inrank (map fromIntegral strides2)) $ \pstrides2 -> -        VS.unsafeWith vec2 $ \pvec2 -> -          fdotinner (fromIntegral @Int @Int64 inrank) psh (ptrconv poutv) -                    pstrides1 (ptrconv pvec1 `plusPtr` (sizeOf (undefined :: a) * offset1)) -                    pstrides2 (ptrconv pvec2 `plusPtr` (sizeOf (undefined :: a) * offset2)) -      RS.fromVector @_ @n (init sh1) <$> VS.unsafeFreeze outv - -{-# NOINLINE dotScalarVector #-} -dotScalarVector :: forall a b. (Num a, Storable a) -                => Int -> (Ptr a -> Ptr b) -                -> (Int64 -> Ptr b -> Ptr Int64 -> Ptr Int64 -> Ptr b -> IO ())  -- ^ reduction kernel -                -> a -> VS.Vector a -> a -dotScalarVector len ptrconv fred scalar vec = unsafePerformIO $ do -  alloca @a $ \pout -> do -    alloca @Int64 $ \pshape -> do -      poke pshape (fromIntegral @Int @Int64 len) -      alloca @Int64 $ \pstride -> do -        poke pstride 1 -        VS.unsafeWith vec $ \pvec -> -          fred 1 (ptrconv pout) pshape pstride (ptrconv pvec) -    res <- peek pout -    return (scalar * res) - -{-# NOINLINE dotVectorVector #-} -dotVectorVector :: Storable a => Int -> (b -> a) -> (Ptr a -> Ptr b) -                -> (Int64 -> Ptr b -> Ptr b -> IO b)  -- ^ dotprod kernel -                -> VS.Vector a -> VS.Vector a -> a -dotVectorVector len valbackconv ptrconv fdot vec1 vec2 = unsafePerformIO $ do -  VS.unsafeWith vec1 $ \pvec1 -> -    VS.unsafeWith vec2 $ \pvec2 -> -      valbackconv <$> fdot (fromIntegral @Int @Int64 len) (ptrconv pvec1) (ptrconv pvec2) - -{-# NOINLINE dotVectorVectorStrided #-} -dotVectorVectorStrided :: Storable a => Int -> (b -> a) -> (Ptr a -> Ptr b) -                       -> (Int64 -> Int64 -> Int64 -> Ptr b -> Int64 -> Int64 -> Ptr b -> IO b)  -- ^ dotprod kernel -                       -> Int -> Int -> VS.Vector a -                       -> Int -> Int -> VS.Vector a -                       -> a -dotVectorVectorStrided len valbackconv ptrconv fdot offset1 stride1 vec1 offset2 stride2 vec2 = unsafePerformIO $ do -  VS.unsafeWith vec1 $ \pvec1 -> -    VS.unsafeWith vec2 $ \pvec2 -> -      valbackconv <$> fdot (fromIntegral @Int @Int64 len) -                           (fromIntegral offset1) (fromIntegral stride1) (ptrconv pvec1) -                           (fromIntegral offset2) (fromIntegral stride2) (ptrconv pvec2) - -flipOp :: (Int64 -> Ptr a -> a -> Ptr a -> IO ()) -       ->  Int64 -> Ptr a -> Ptr a -> a -> IO () -flipOp f n out v s = f n out s v - -$(fmap concat . forM typesList $ \arithtype -> do -    let ttyp = conT (atType arithtype) -    fmap concat . forM [minBound..maxBound] $ \arithop -> do -      let name = mkName (aboName arithop ++ "Vector" ++ nameBase (atType arithtype)) -          cnamebase = "c_binary_" ++ atCName arithtype -          c_ss_str = varE (aboNumOp arithop) -          c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop))) -          c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop))) -          c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (aboEnum arithop))) -      sequence [SigD name <$> -                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |] -               ,do body <- [| \sn -> liftVEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |] -                   return $ FunD name [Clause [] (NormalB body) []]]) - -$(fmap concat . forM intTypesList $ \arithtype -> do -    let ttyp = conT (atType arithtype) -    fmap concat . forM [minBound..maxBound] $ \arithop -> do -      let name = mkName (aiboName arithop ++ "Vector" ++ nameBase (atType arithtype)) -          cnamebase = "c_ibinary_" ++ atCName arithtype -          c_ss_str = varE (aiboNumOp arithop) -          c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop))) -          c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop))) -          c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (aiboEnum arithop))) -      sequence [SigD name <$> -                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |] -               ,do body <- [| \sn -> liftVEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |] -                   return $ FunD name [Clause [] (NormalB body) []]]) - -$(fmap concat . forM floatTypesList $ \arithtype -> do -    let ttyp = conT (atType arithtype) -    fmap concat . forM [minBound..maxBound] $ \arithop -> do -      let name = mkName (afboName arithop ++ "Vector" ++ nameBase (atType arithtype)) -          cnamebase = "c_fbinary_" ++ atCName arithtype -          c_ss_str = varE (afboNumOp arithop) -          c_sv_str = varE (mkName (cnamebase ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop))) -          c_vs_str = varE (mkName (cnamebase ++ "_vs_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop))) -          c_vv_str = varE (mkName (cnamebase ++ "_vv_strided")) `appE` litE (integerL (fromIntegral (afboEnum arithop))) -      sequence [SigD name <$> -                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |] -               ,do body <- [| \sn -> liftVEltwise2 sn id id $c_ss_str $c_sv_str $c_vs_str $c_vv_str |] -                   return $ FunD name [Clause [] (NormalB body) []]]) - -$(fmap concat . forM typesList $ \arithtype -> do -    let ttyp = conT (atType arithtype) -    fmap concat . forM [minBound..maxBound] $ \arithop -> do -      let name = mkName (auoName arithop ++ "Vector" ++ nameBase (atType arithtype)) -          c_op_strided = varE (mkName ("c_unary_" ++ atCName arithtype ++ "_strided")) `appE` litE (integerL (fromIntegral (auoEnum arithop))) -      sequence [SigD name <$> -                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |] -               ,do body <- [| \sn -> liftOpEltwise1 sn id id $c_op_strided |] -                   return $ FunD name [Clause [] (NormalB body) []]]) - -$(fmap concat . forM floatTypesList $ \arithtype -> do -    let ttyp = conT (atType arithtype) -    fmap concat . forM [minBound..maxBound] $ \arithop -> do -      let name = mkName (afuoName arithop ++ "Vector" ++ nameBase (atType arithtype)) -          c_op_strided = varE (mkName ("c_funary_" ++ atCName arithtype ++ "_strided")) `appE` litE (integerL (fromIntegral (afuoEnum arithop))) -      sequence [SigD name <$> -                     [t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |] -               ,do body <- [| \sn -> liftOpEltwise1 sn id id $c_op_strided |] -                   return $ FunD name [Clause [] (NormalB body) []]]) - -mulWithInt :: Num a => a -> Int -> a -mulWithInt a i = a * fromIntegral i - -scaleFromSVStrided :: (Int64 -> Ptr Int64 -> Ptr a -> a -> Ptr Int64 -> Ptr a -> IO ()) -                   -> Int64 -> Ptr a -> a -> Ptr a -> IO () -scaleFromSVStrided fsv n out x ys = -  VS.unsafeWith (VS.singleton n) $ \psh -> -    VS.unsafeWith (VS.singleton 1) $ \pstrides -> -      fsv 1 psh out x pstrides ys - -$(fmap concat . forM typesList $ \arithtype -> do -    let ttyp = conT (atType arithtype) -    fmap concat . forM [minBound..maxBound] $ \arithop -> do -      let scaleVar = case arithop of -                       RO_SUM -> varE 'mulWithInt -                       RO_PRODUCT -> varE '(^) -      let name1 = mkName (aroName arithop ++ "1Vector" ++ nameBase (atType arithtype)) -          namefull = mkName (aroName arithop ++ "FullVector" ++ nameBase (atType arithtype)) -          c_op1 = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop))) -          c_opfull = varE (mkName ("c_reducefull_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop))) -          c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL))) -      sequence [SigD name1 <$> -                     [t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |] -               ,do body <- [| \sn -> vectorRedInnerOp sn id id (scaleFromSVStrided $c_scale_op) $c_op1 |] -                   return $ FunD name1 [Clause [] (NormalB body) []] -               ,SigD namefull <$> -                     [t| forall n. SNat n -> RS.Array n $ttyp -> $ttyp |] -               ,do body <- [| \sn -> vectorRedFullOp sn $scaleVar id id $c_opfull |] -                   return $ FunD namefull [Clause [] (NormalB body) []] -               ]) - -$(fmap concat . forM typesList $ \arithtype -> -    fmap concat . forM ["min", "max"] $ \fname -> do -      let ttyp = conT (atType arithtype) -          name = mkName (fname ++ "indexVector" ++ nameBase (atType arithtype)) -          c_op = varE (mkName ("c_extremum_" ++ fname ++ "_" ++ atCName arithtype)) -      sequence [SigD name <$> -                     [t| forall n. RS.Array n $ttyp -> [Int] |] -               ,do body <- [| vectorExtremumOp id $c_op |] -                   return $ FunD name [Clause [] (NormalB body) []]]) - -$(fmap concat . forM typesList $ \arithtype -> do -    let ttyp = conT (atType arithtype) -        name = mkName ("dotprodinnerVector" ++ nameBase (atType arithtype)) -        c_op = varE (mkName ("c_dotprodinner_" ++ atCName arithtype)) -        mul_op = varE (mkName ("mulVector" ++ nameBase (atType arithtype))) -        c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv_strided")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL))) -        c_red_op = varE (mkName ("c_reduce1_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum RO_SUM))) -    sequence [SigD name <$> -                   [t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |] -             ,do body <- [| \sn -> vectorDotprodInnerOp sn id id $mul_op (scaleFromSVStrided $c_scale_op) $c_red_op $c_op |] -                 return $ FunD name [Clause [] (NormalB body) []]]) - -foreign import ccall unsafe "oxarrays_stats_enable" c_stats_enable :: Int32 -> IO () -foreign import ccall unsafe "oxarrays_stats_print_all" c_stats_print_all :: IO () - -statisticsEnable :: Bool -> IO () -statisticsEnable b = c_stats_enable (if b then 1 else 0) - --- | Consumes the log: one particular event will only ever be printed once, --- even if statisticsPrintAll is called multiple times. -statisticsPrintAll :: IO () -statisticsPrintAll = do -  hFlush stdout  -- lower the chance of overlapping output -  c_stats_print_all - --- This branch is ostensibly a runtime branch, but will (hopefully) be --- constant-folded away by GHC. -intWidBranch1 :: forall i n. (FiniteBits i, Storable i) -              => (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ()) -              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -              -> (SNat n -> RS.Array n i -> RS.Array n i) -intWidBranch1 f32 f64 sn -  | finiteBitSize (undefined :: i) == 32 = liftOpEltwise1 sn castPtr castPtr f32 -  | finiteBitSize (undefined :: i) == 64 = liftOpEltwise1 sn castPtr castPtr f64 -  | otherwise = error "Unsupported Int width" - -intWidBranch2 :: forall i n. (FiniteBits i, Storable i, Integral i) -              => (i -> i -> i)  -- ss -                 -- int32 -              -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Int32 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- sv -              -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> Int32 -> IO ())  -- vs -              -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- vv -                 -- int64 -              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- sv -              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Int64 -> IO ())  -- vs -              -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- vv -              -> (SNat n -> RS.Array n i -> RS.Array n i -> RS.Array n i) -intWidBranch2 ss sv32 vs32 vv32 sv64 vs64 vv64 sn -  | finiteBitSize (undefined :: i) == 32 = liftVEltwise2 sn fromIntegral castPtr ss sv32 vs32 vv32 -  | finiteBitSize (undefined :: i) == 64 = liftVEltwise2 sn fromIntegral castPtr ss sv64 vs64 vv64 -  | otherwise = error "Unsupported Int width" - -intWidBranchRed1 :: forall i n. (FiniteBits i, Storable i, Integral i) -                 => -- int32 -                    (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ())  -- ^ scale by constant -                 -> (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ reduction kernel -                    -- int64 -                 -> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ())  -- ^ scale by constant -                 -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ reduction kernel -                 -> (SNat n -> RS.Array (n + 1) i -> RS.Array n i) -intWidBranchRed1 fsc32 fred32 fsc64 fred64 sn -  | finiteBitSize (undefined :: i) == 32 = vectorRedInnerOp @i @Int32 sn fromIntegral castPtr fsc32 fred32 -  | finiteBitSize (undefined :: i) == 64 = vectorRedInnerOp @i @Int64 sn fromIntegral castPtr fsc64 fred64 -  | otherwise = error "Unsupported Int width" - -intWidBranchRedFull :: forall i n. (FiniteBits i, Storable i, Integral i) -                    => (i -> Int -> i)  -- ^ scale op -                       -- int32 -                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO Int32)  -- ^ reduction kernel -                       -- int64 -                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO Int64)  -- ^ reduction kernel -                    -> (SNat n -> RS.Array n i -> i) -intWidBranchRedFull fsc fred32 fred64 sn -  | finiteBitSize (undefined :: i) == 32 = vectorRedFullOp @i @Int32 sn fsc fromIntegral castPtr fred32 -  | finiteBitSize (undefined :: i) == 64 = vectorRedFullOp @i @Int64 sn fsc fromIntegral castPtr fred64 -  | otherwise = error "Unsupported Int width" - -intWidBranchExtr :: forall i n. (FiniteBits i, Storable i, Integral i) -                 => -- int32 -                    (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ extremum kernel -                    -- int64 -                 -> (Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ extremum kernel -                 -> (RS.Array n i -> [Int]) -intWidBranchExtr fextr32 fextr64 -  | finiteBitSize (undefined :: i) == 32 = vectorExtremumOp @i @Int32 castPtr fextr32 -  | finiteBitSize (undefined :: i) == 64 = vectorExtremumOp @i @Int64 castPtr fextr64 -  | otherwise = error "Unsupported Int width" - -intWidBranchDotprod :: forall i n. (FiniteBits i, Storable i, Integral i, NumElt i) -                    => -- int32 -                       (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ())  -- ^ scale by constant -                    -> (Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ reduction kernel -                    -> (Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> Ptr Int64 -> Ptr Int32 -> IO ())  -- ^ dotprod kernel -                       -- int64 -                    -> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ())  -- ^ scale by constant -                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ reduction kernel -                    -> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())  -- ^ dotprod kernel -                    -> (SNat n -> RS.Array (n + 1) i -> RS.Array (n + 1) i -> RS.Array n i) -intWidBranchDotprod fsc32 fred32 fdot32 fsc64 fred64 fdot64 sn -  | finiteBitSize (undefined :: i) == 32 = vectorDotprodInnerOp @i @Int32 sn fromIntegral castPtr numEltMul fsc32 fred32 fdot32 -  | finiteBitSize (undefined :: i) == 64 = vectorDotprodInnerOp @i @Int64 sn fromIntegral castPtr numEltMul fsc64 fred64 fdot64 -  | otherwise = error "Unsupported Int width" - -class NumElt a where -  numEltAdd :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a -  numEltSub :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a -  numEltMul :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a -  numEltNeg :: SNat n -> RS.Array n a -> RS.Array n a -  numEltAbs :: SNat n -> RS.Array n a -> RS.Array n a -  numEltSignum :: SNat n -> RS.Array n a -> RS.Array n a -  numEltSum1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a -  numEltProduct1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a -  numEltSumFull :: SNat n -> RS.Array n a -> a -  numEltProductFull :: SNat n -> RS.Array n a -> a -  numEltMinIndex :: SNat n -> RS.Array n a -> [Int] -  numEltMaxIndex :: SNat n -> RS.Array n a -> [Int] -  numEltDotprodInner :: SNat n -> RS.Array (n + 1) a -> RS.Array (n + 1) a -> RS.Array n a - -instance NumElt Int32 where -  numEltAdd = addVectorInt32 -  numEltSub = subVectorInt32 -  numEltMul = mulVectorInt32 -  numEltNeg = negVectorInt32 -  numEltAbs = absVectorInt32 -  numEltSignum = signumVectorInt32 -  numEltSum1Inner = sum1VectorInt32 -  numEltProduct1Inner = product1VectorInt32 -  numEltSumFull = sumFullVectorInt32 -  numEltProductFull = productFullVectorInt32 -  numEltMinIndex _ = minindexVectorInt32 -  numEltMaxIndex _ = maxindexVectorInt32 -  numEltDotprodInner = dotprodinnerVectorInt32 - -instance NumElt Int64 where -  numEltAdd = addVectorInt64 -  numEltSub = subVectorInt64 -  numEltMul = mulVectorInt64 -  numEltNeg = negVectorInt64 -  numEltAbs = absVectorInt64 -  numEltSignum = signumVectorInt64 -  numEltSum1Inner = sum1VectorInt64 -  numEltProduct1Inner = product1VectorInt64 -  numEltSumFull = sumFullVectorInt64 -  numEltProductFull = productFullVectorInt64 -  numEltMinIndex _ = minindexVectorInt64 -  numEltMaxIndex _ = maxindexVectorInt64 -  numEltDotprodInner = dotprodinnerVectorInt64 - -instance NumElt Float where -  numEltAdd = addVectorFloat -  numEltSub = subVectorFloat -  numEltMul = mulVectorFloat -  numEltNeg = negVectorFloat -  numEltAbs = absVectorFloat -  numEltSignum = signumVectorFloat -  numEltSum1Inner = sum1VectorFloat -  numEltProduct1Inner = product1VectorFloat -  numEltSumFull = sumFullVectorFloat -  numEltProductFull = productFullVectorFloat -  numEltMinIndex _ = minindexVectorFloat -  numEltMaxIndex _ = maxindexVectorFloat -  numEltDotprodInner = dotprodinnerVectorFloat - -instance NumElt Double where -  numEltAdd = addVectorDouble -  numEltSub = subVectorDouble -  numEltMul = mulVectorDouble -  numEltNeg = negVectorDouble -  numEltAbs = absVectorDouble -  numEltSignum = signumVectorDouble -  numEltSum1Inner = sum1VectorDouble -  numEltProduct1Inner = product1VectorDouble -  numEltSumFull = sumFullVectorDouble -  numEltProductFull = productFullVectorDouble -  numEltMinIndex _ = minindexVectorDouble -  numEltMaxIndex _ = maxindexVectorDouble -  numEltDotprodInner = dotprodinnerVectorDouble - -instance NumElt Int where -  numEltAdd = intWidBranch2 @Int (+) -                (c_binary_i32_sv_strided (aboEnum BO_ADD)) (c_binary_i32_vs_strided (aboEnum BO_ADD)) (c_binary_i32_vv_strided (aboEnum BO_ADD)) -                (c_binary_i64_sv_strided (aboEnum BO_ADD)) (c_binary_i64_vs_strided (aboEnum BO_ADD)) (c_binary_i64_vv_strided (aboEnum BO_ADD)) -  numEltSub = intWidBranch2 @Int (-) -                (c_binary_i32_sv_strided (aboEnum BO_SUB)) (c_binary_i32_vs_strided (aboEnum BO_SUB)) (c_binary_i32_vv_strided (aboEnum BO_SUB)) -                (c_binary_i64_sv_strided (aboEnum BO_SUB)) (c_binary_i64_vs_strided (aboEnum BO_SUB)) (c_binary_i64_vv_strided (aboEnum BO_SUB)) -  numEltMul = intWidBranch2 @Int (*) -                (c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_binary_i32_vs_strided (aboEnum BO_MUL)) (c_binary_i32_vv_strided (aboEnum BO_MUL)) -                (c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_binary_i64_vs_strided (aboEnum BO_MUL)) (c_binary_i64_vv_strided (aboEnum BO_MUL)) -  numEltNeg = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_NEG)) (c_unary_i64_strided (auoEnum UO_NEG)) -  numEltAbs = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_ABS)) (c_unary_i64_strided (auoEnum UO_ABS)) -  numEltSignum = intWidBranch1 @Int (c_unary_i32_strided (auoEnum UO_SIGNUM)) (c_unary_i64_strided (auoEnum UO_SIGNUM)) -  numEltSum1Inner = intWidBranchRed1 @Int -                      (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM)) -                      (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM)) -  numEltProduct1Inner = intWidBranchRed1 @Int -                          (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_PRODUCT)) -                          (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_PRODUCT)) -  numEltSumFull = intWidBranchRedFull @Int (*) (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM)) -  numEltProductFull = intWidBranchRedFull @Int (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT)) -  numEltMinIndex _ = intWidBranchExtr @Int c_extremum_min_i32 c_extremum_min_i64 -  numEltMaxIndex _ = intWidBranchExtr @Int c_extremum_max_i32 c_extremum_max_i64 -  numEltDotprodInner = intWidBranchDotprod @Int (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32 -                                                (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64 - -instance NumElt CInt where -  numEltAdd = intWidBranch2 @CInt (+) -                (c_binary_i32_sv_strided (aboEnum BO_ADD)) (c_binary_i32_vs_strided (aboEnum BO_ADD)) (c_binary_i32_vv_strided (aboEnum BO_ADD)) -                (c_binary_i64_sv_strided (aboEnum BO_ADD)) (c_binary_i64_vs_strided (aboEnum BO_ADD)) (c_binary_i64_vv_strided (aboEnum BO_ADD)) -  numEltSub = intWidBranch2 @CInt (-) -                (c_binary_i32_sv_strided (aboEnum BO_SUB)) (c_binary_i32_vs_strided (aboEnum BO_SUB)) (c_binary_i32_vv_strided (aboEnum BO_SUB)) -                (c_binary_i64_sv_strided (aboEnum BO_SUB)) (c_binary_i64_vs_strided (aboEnum BO_SUB)) (c_binary_i64_vv_strided (aboEnum BO_SUB)) -  numEltMul = intWidBranch2 @CInt (*) -                (c_binary_i32_sv_strided (aboEnum BO_MUL)) (c_binary_i32_vs_strided (aboEnum BO_MUL)) (c_binary_i32_vv_strided (aboEnum BO_MUL)) -                (c_binary_i64_sv_strided (aboEnum BO_MUL)) (c_binary_i64_vs_strided (aboEnum BO_MUL)) (c_binary_i64_vv_strided (aboEnum BO_MUL)) -  numEltNeg = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_NEG)) (c_unary_i64_strided (auoEnum UO_NEG)) -  numEltAbs = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_ABS)) (c_unary_i64_strided (auoEnum UO_ABS)) -  numEltSignum = intWidBranch1 @CInt (c_unary_i32_strided (auoEnum UO_SIGNUM)) (c_unary_i64_strided (auoEnum UO_SIGNUM)) -  numEltSum1Inner = intWidBranchRed1 @CInt -                      (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM)) -                      (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM)) -  numEltProduct1Inner = intWidBranchRed1 @CInt -                          (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_PRODUCT)) -                          (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_PRODUCT)) -  numEltSumFull = intWidBranchRedFull @CInt mulWithInt (c_reducefull_i32 (aroEnum RO_SUM)) (c_reducefull_i64 (aroEnum RO_SUM)) -  numEltProductFull = intWidBranchRedFull @CInt (^) (c_reducefull_i32 (aroEnum RO_PRODUCT)) (c_reducefull_i64 (aroEnum RO_PRODUCT)) -  numEltMinIndex _ = intWidBranchExtr @CInt c_extremum_min_i32 c_extremum_min_i64 -  numEltMaxIndex _ = intWidBranchExtr @CInt c_extremum_max_i32 c_extremum_max_i64 -  numEltDotprodInner = intWidBranchDotprod @CInt (scaleFromSVStrided (c_binary_i32_sv_strided (aboEnum BO_MUL))) (c_reduce1_i32 (aroEnum RO_SUM)) c_dotprodinner_i32 -                                                 (scaleFromSVStrided (c_binary_i64_sv_strided (aboEnum BO_MUL))) (c_reduce1_i64 (aroEnum RO_SUM)) c_dotprodinner_i64 - -class NumElt a => IntElt a where -  intEltQuot :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a -  intEltRem :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a - -instance IntElt Int32 where -  intEltQuot = quotVectorInt32 -  intEltRem = remVectorInt32 - -instance IntElt Int64 where -  intEltQuot = quotVectorInt64 -  intEltRem = remVectorInt64 - -instance IntElt Int where -  intEltQuot = intWidBranch2 @Int quot -                 (c_binary_i32_sv_strided (aiboEnum IB_QUOT)) (c_binary_i32_vs_strided (aiboEnum IB_QUOT)) (c_binary_i32_vv_strided (aiboEnum IB_QUOT)) -                 (c_binary_i64_sv_strided (aiboEnum IB_QUOT)) (c_binary_i64_vs_strided (aiboEnum IB_QUOT)) (c_binary_i64_vv_strided (aiboEnum IB_QUOT)) -  intEltRem = intWidBranch2 @Int rem -                (c_binary_i32_sv_strided (aiboEnum IB_REM)) (c_binary_i32_vs_strided (aiboEnum IB_REM)) (c_binary_i32_vv_strided (aiboEnum IB_REM)) -                (c_binary_i64_sv_strided (aiboEnum IB_REM)) (c_binary_i64_vs_strided (aiboEnum IB_REM)) (c_binary_i64_vv_strided (aiboEnum IB_REM)) - -instance IntElt CInt where -  intEltQuot = intWidBranch2 @CInt quot -                 (c_binary_i32_sv_strided (aiboEnum IB_QUOT)) (c_binary_i32_vs_strided (aiboEnum IB_QUOT)) (c_binary_i32_vv_strided (aiboEnum IB_QUOT)) -                 (c_binary_i64_sv_strided (aiboEnum IB_QUOT)) (c_binary_i64_vs_strided (aiboEnum IB_QUOT)) (c_binary_i64_vv_strided (aiboEnum IB_QUOT)) -  intEltRem = intWidBranch2 @CInt rem -                (c_binary_i32_sv_strided (aiboEnum IB_REM)) (c_binary_i32_vs_strided (aiboEnum IB_REM)) (c_binary_i32_vv_strided (aiboEnum IB_REM)) -                (c_binary_i64_sv_strided (aiboEnum IB_REM)) (c_binary_i64_vs_strided (aiboEnum IB_REM)) (c_binary_i64_vv_strided (aiboEnum IB_REM)) - -class NumElt a => FloatElt a where -  floatEltDiv :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a -  floatEltPow :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a -  floatEltLogbase :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a -  floatEltRecip :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltExp :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltLog :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltSqrt :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltSin :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltCos :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltTan :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltAsin :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltAcos :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltAtan :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltSinh :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltCosh :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltTanh :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltAsinh :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltAcosh :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltAtanh :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltLog1p :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltExpm1 :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltLog1pexp :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltLog1mexp :: SNat n -> RS.Array n a -> RS.Array n a -  floatEltAtan2 :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a - -instance FloatElt Float where -  floatEltDiv = divVectorFloat -  floatEltPow = powVectorFloat -  floatEltLogbase = logbaseVectorFloat -  floatEltRecip = recipVectorFloat -  floatEltExp = expVectorFloat -  floatEltLog = logVectorFloat -  floatEltSqrt = sqrtVectorFloat -  floatEltSin = sinVectorFloat -  floatEltCos = cosVectorFloat -  floatEltTan = tanVectorFloat -  floatEltAsin = asinVectorFloat -  floatEltAcos = acosVectorFloat -  floatEltAtan = atanVectorFloat -  floatEltSinh = sinhVectorFloat -  floatEltCosh = coshVectorFloat -  floatEltTanh = tanhVectorFloat -  floatEltAsinh = asinhVectorFloat -  floatEltAcosh = acoshVectorFloat -  floatEltAtanh = atanhVectorFloat -  floatEltLog1p = log1pVectorFloat -  floatEltExpm1 = expm1VectorFloat -  floatEltLog1pexp = log1pexpVectorFloat -  floatEltLog1mexp = log1mexpVectorFloat -  floatEltAtan2 = atan2VectorFloat - -instance FloatElt Double where -  floatEltDiv = divVectorDouble -  floatEltPow = powVectorDouble -  floatEltLogbase = logbaseVectorDouble -  floatEltRecip = recipVectorDouble -  floatEltExp = expVectorDouble -  floatEltLog = logVectorDouble -  floatEltSqrt = sqrtVectorDouble -  floatEltSin = sinVectorDouble -  floatEltCos = cosVectorDouble -  floatEltTan = tanVectorDouble -  floatEltAsin = asinVectorDouble -  floatEltAcos = acosVectorDouble -  floatEltAtan = atanVectorDouble -  floatEltSinh = sinhVectorDouble -  floatEltCosh = coshVectorDouble -  floatEltTanh = tanhVectorDouble -  floatEltAsinh = asinhVectorDouble -  floatEltAcosh = acoshVectorDouble -  floatEltAtanh = atanhVectorDouble -  floatEltLog1p = log1pVectorDouble -  floatEltExpm1 = expm1VectorDouble -  floatEltLog1pexp = log1pexpVectorDouble -  floatEltLog1mexp = log1mexpVectorDouble -  floatEltAtan2 = atan2VectorDouble +liftO2 :: (AS.Array n a -> AS.Array n1 b -> AS.Array n2 c) +       -> RS.Array n a -> RS.Array n1 b -> RS.Array n2 c +liftO2 f x y = toO (f (fromO x) (fromO y)) diff --git a/src/Data/Array/Mixed/Internal/Arith/Foreign.hs b/src/Data/Array/Mixed/Internal/Arith/Foreign.hs deleted file mode 100644 index 78d5365..0000000 --- a/src/Data/Array/Mixed/Internal/Arith/Foreign.hs +++ /dev/null @@ -1,47 +0,0 @@ -{-# LANGUAGE ForeignFunctionInterface #-} -{-# LANGUAGE TemplateHaskell #-} -module Data.Array.Mixed.Internal.Arith.Foreign where - -import Data.Int -import Foreign.C.Types -import Foreign.Ptr -import Language.Haskell.TH - -import Data.Array.Mixed.Internal.Arith.Lists - - -$(do -  let importsScal ttyp tyn = -        [("binary_" ++ tyn ++ "_vv_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("binary_" ++ tyn ++ "_sv_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp ->                  $ttyp -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("binary_" ++ tyn ++ "_vs_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp ->                  $ttyp -> IO () |]) -        ,("unary_" ++ tyn ++ "_strided",     [t| CInt -> Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("reduce1_" ++ tyn,                 [t| CInt -> Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("reducefull_" ++ tyn,              [t| CInt -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr $ttyp -> IO $ttyp |]) -        ,("extremum_min_" ++ tyn,            [t| Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("extremum_max_" ++ tyn,            [t| Ptr Int64 -> Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("dotprodinner_" ++ tyn,            [t| Int64 -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ] - -  let importsInt ttyp tyn = -        [("ibinary_" ++ tyn ++ "_vv_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("ibinary_" ++ tyn ++ "_sv_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp ->                  $ttyp -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("ibinary_" ++ tyn ++ "_vs_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp ->                  $ttyp -> IO () |]) -        ] - -  let importsFloat ttyp tyn = -        [("fbinary_" ++ tyn ++ "_vv_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("fbinary_" ++ tyn ++ "_sv_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp ->                  $ttyp -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ,("fbinary_" ++ tyn ++ "_vs_strided", [t| CInt -> Int64 -> Ptr Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr $ttyp ->                  $ttyp -> IO () |]) -        ,("funary_" ++ tyn ++ "_strided",     [t| CInt -> Int64 -> Ptr $ttyp -> Ptr Int64 -> Ptr Int64 -> Ptr $ttyp -> IO () |]) -        ] - -  let generate types imports = -        sequence -          [ForeignD . ImportF CCall Unsafe ("oxarop_" ++ name) (mkName ("c_" ++ name)) <$> typ -          | arithtype <- types -          , (name, typ) <- imports (conT (atType arithtype)) (atCName arithtype)] -  decs1 <- generate typesList importsScal -  decs2 <- generate intTypesList importsInt -  decs3 <- generate floatTypesList importsFloat -  return (decs1 ++ decs2 ++ decs3)) diff --git a/src/Data/Array/Mixed/Internal/Arith/Lists.hs b/src/Data/Array/Mixed/Internal/Arith/Lists.hs deleted file mode 100644 index 370b708..0000000 --- a/src/Data/Array/Mixed/Internal/Arith/Lists.hs +++ /dev/null @@ -1,95 +0,0 @@ -{-# LANGUAGE LambdaCase #-} -{-# LANGUAGE TemplateHaskell #-} -module Data.Array.Mixed.Internal.Arith.Lists where - -import Data.Char -import Data.Int -import Language.Haskell.TH - -import Data.Array.Mixed.Internal.Arith.Lists.TH - - -data ArithType = ArithType -  { atType :: Name  -- ''Int32 -  , atCName :: String  -- "i32" -  } - -intTypesList :: [ArithType] -intTypesList = -  [ArithType ''Int32 "i32" -  ,ArithType ''Int64 "i64" -  ] - -floatTypesList :: [ArithType] -floatTypesList = -  [ArithType ''Float "float" -  ,ArithType ''Double "double" -  ] - -typesList :: [ArithType] -typesList = intTypesList ++ floatTypesList - --- data ArithBOp = BO_ADD | BO_SUB | BO_MUL deriving (Show, Enum, Bounded) -$(genArithDataType Binop "ArithBOp") - -$(genArithNameFun Binop ''ArithBOp "aboName" (map toLower . drop 3)) -$(genArithEnumFun Binop ''ArithBOp "aboEnum") - -$(do clauses <- readArithLists Binop -                  (\name _num hsop -> return (Clause [ConP (mkName name) [] []] -                                                     (NormalB (VarE 'mkName `AppE` LitE (StringL hsop))) -                                                     [])) -                  return -     sequence [SigD (mkName "aboNumOp") <$> [t| ArithBOp -> Name |] -              ,return $ FunD (mkName "aboNumOp") clauses]) - - --- data ArithIBOp = IB_QUOT deriving (Show, Enum, Bounded) -$(genArithDataType IBinop "ArithIBOp") - -$(genArithNameFun IBinop ''ArithIBOp "aiboName" (map toLower . drop 3)) -$(genArithEnumFun IBinop ''ArithIBOp "aiboEnum") - -$(do clauses <- readArithLists IBinop -                  (\name _num hsop -> return (Clause [ConP (mkName name) [] []] -                                                     (NormalB (VarE 'mkName `AppE` LitE (StringL hsop))) -                                                     [])) -                  return -     sequence [SigD (mkName "aiboNumOp") <$> [t| ArithIBOp -> Name |] -              ,return $ FunD (mkName "aiboNumOp") clauses]) - - --- data ArithFBOp = FB_DIV deriving (Show, Enum, Bounded) -$(genArithDataType FBinop "ArithFBOp") - -$(genArithNameFun FBinop ''ArithFBOp "afboName" (map toLower . drop 3)) -$(genArithEnumFun FBinop ''ArithFBOp "afboEnum") - -$(do clauses <- readArithLists FBinop -                  (\name _num hsop -> return (Clause [ConP (mkName name) [] []] -                                                     (NormalB (VarE 'mkName `AppE` LitE (StringL hsop))) -                                                     [])) -                  return -     sequence [SigD (mkName "afboNumOp") <$> [t| ArithFBOp -> Name |] -              ,return $ FunD (mkName "afboNumOp") clauses]) - - --- data ArithUOp = UO_NEG | UO_ABS | UO_SIGNUM | ... deriving (Show, Enum, Bounded) -$(genArithDataType Unop "ArithUOp") - -$(genArithNameFun Unop ''ArithUOp "auoName" (map toLower . drop 3)) -$(genArithEnumFun Unop ''ArithUOp "auoEnum") - - --- data ArithFUOp = FU_RECIP | ... deriving (Show, Enum, Bounded) -$(genArithDataType FUnop "ArithFUOp") - -$(genArithNameFun FUnop ''ArithFUOp "afuoName" (map toLower . drop 3)) -$(genArithEnumFun FUnop ''ArithFUOp "afuoEnum") - - --- data ArithRedOp = RO_SUM1 | RO_PRODUCT1 deriving (Show, Enum, Bounded) -$(genArithDataType Redop "ArithRedOp") - -$(genArithNameFun Redop ''ArithRedOp "aroName" (map toLower . drop 3)) -$(genArithEnumFun Redop ''ArithRedOp "aroEnum") diff --git a/src/Data/Array/Mixed/Internal/Arith/Lists/TH.hs b/src/Data/Array/Mixed/Internal/Arith/Lists/TH.hs deleted file mode 100644 index a156e29..0000000 --- a/src/Data/Array/Mixed/Internal/Arith/Lists/TH.hs +++ /dev/null @@ -1,83 +0,0 @@ -{-# LANGUAGE TemplateHaskellQuotes #-} -module Data.Array.Mixed.Internal.Arith.Lists.TH where - -import Control.Monad -import Control.Monad.IO.Class -import Data.Maybe -import Foreign.C.Types -import Language.Haskell.TH -import Language.Haskell.TH.Syntax -import Text.Read - - -data OpKind = Binop | IBinop | FBinop | Unop | FUnop | Redop -  deriving (Show, Eq) - -readArithLists :: OpKind -               -> (String -> Int -> String -> Q a) -               -> ([a] -> Q r) -               -> Q r -readArithLists targetkind fop fcombine = do -  addDependentFile "cbits/arith_lists.h" -  lns <- liftIO $ lines <$> readFile "cbits/arith_lists.h" - -  mvals <- forM lns $ \line -> do -    if null (dropWhile (== ' ') line) -      then return Nothing -      else do let (kind, name, num, aux) = parseLine line -              if kind == targetkind -                then Just <$> fop name num aux -                else return Nothing - -  fcombine (catMaybes mvals) -  where -    parseLine s0 -      | ("LIST_", s1) <- splitAt 5 s0 -      , (kindstr, '(' : s2) <- break (== '(') s1 -      , (f1, ',' : s3) <- parseField s2 -      , (f2, ',' : s4) <- parseField s3 -      , (f3, ')' : _) <- parseField s4 -      , Just kind <- parseKind kindstr -      , let name = f1 -      , Just num <- readMaybe f2 -      , let aux = f3 -      = (kind, name, num, aux) -      | otherwise -      = error $ "readArithLists: unrecognised line in cbits/arith_lists.h: " ++ show s0 - -    parseField s = break (`elem` ",)") (dropWhile (== ' ') s) - -    parseKind "BINOP" = Just Binop -    parseKind "IBINOP" = Just IBinop -    parseKind "FBINOP" = Just FBinop -    parseKind "UNOP" = Just Unop -    parseKind "FUNOP" = Just FUnop -    parseKind "REDOP" = Just Redop -    parseKind _ = Nothing - -genArithDataType :: OpKind -> String -> Q [Dec] -genArithDataType kind dtname = do -  cons <- readArithLists kind -            (\name _num _ -> return $ NormalC (mkName name) []) -            return -  return [DataD [] (mkName dtname) [] Nothing cons [DerivClause Nothing [ConT ''Show, ConT ''Enum, ConT ''Bounded]]] - -genArithNameFun :: OpKind -> Name -> String -> (String -> String) -> Q [Dec] -genArithNameFun kind dtname funname nametrans = do -  clauses <- readArithLists kind -               (\name _num _ -> return (Clause [ConP (mkName name) [] []] -                                               (NormalB (LitE (StringL (nametrans name)))) -                                               [])) -               return -  return [SigD (mkName funname) (ArrowT `AppT` ConT dtname `AppT` ConT ''String) -         ,FunD (mkName funname) clauses] - -genArithEnumFun :: OpKind -> Name -> String -> Q [Dec] -genArithEnumFun kind dtname funname = do -  clauses <- readArithLists kind -               (\name num _ -> return (Clause [ConP (mkName name) [] []] -                                              (NormalB (LitE (IntegerL (fromIntegral num)))) -                                              [])) -               return -  return [SigD (mkName funname) (ArrowT `AppT` ConT dtname `AppT` ConT ''CInt) -         ,FunD (mkName funname) clauses] | 
