aboutsummaryrefslogtreecommitdiff
path: root/src/Data/Array/Nested/Internal.hs
diff options
context:
space:
mode:
authorTom Smeding <tom@tomsmeding.com>2024-05-30 22:20:57 +0200
committerTom Smeding <tom@tomsmeding.com>2024-05-30 22:20:57 +0200
commitf0752d67cd188f438280e1f0c692dc1f5f14a190 (patch)
tree2dd05c13aef3b3c6384bfa091b14633bc86e65a4 /src/Data/Array/Nested/Internal.hs
parent19eab026f4f4c6a2d38ceb1fffa6062ba2637a46 (diff)
Refactor Nested (modules, function names)
Diffstat (limited to 'src/Data/Array/Nested/Internal.hs')
-rw-r--r--src/Data/Array/Nested/Internal.hs2054
1 files changed, 0 insertions, 2054 deletions
diff --git a/src/Data/Array/Nested/Internal.hs b/src/Data/Array/Nested/Internal.hs
deleted file mode 100644
index 0870789..0000000
--- a/src/Data/Array/Nested/Internal.hs
+++ /dev/null
@@ -1,2054 +0,0 @@
-{-# LANGUAGE ConstraintKinds #-}
-{-# LANGUAGE DataKinds #-}
-{-# LANGUAGE DefaultSignatures #-}
-{-# LANGUAGE DeriveFoldable #-}
-{-# LANGUAGE DeriveFunctor #-}
-{-# LANGUAGE DeriveGeneric #-}
-{-# LANGUAGE DerivingVia #-}
-{-# LANGUAGE FlexibleContexts #-}
-{-# LANGUAGE FlexibleInstances #-}
-{-# LANGUAGE GADTs #-}
-{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-{-# LANGUAGE InstanceSigs #-}
-{-# LANGUAGE PatternSynonyms #-}
-{-# LANGUAGE PolyKinds #-}
-{-# LANGUAGE QuantifiedConstraints #-}
-{-# LANGUAGE RankNTypes #-}
-{-# LANGUAGE RoleAnnotations #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-{-# LANGUAGE StandaloneDeriving #-}
-{-# LANGUAGE StandaloneKindSignatures #-}
-{-# LANGUAGE StrictData #-}
-{-# LANGUAGE TypeAbstractions #-}
-{-# LANGUAGE TypeApplications #-}
-{-# LANGUAGE TypeFamilies #-}
-{-# LANGUAGE TypeOperators #-}
-{-# LANGUAGE UndecidableInstances #-}
-{-# LANGUAGE ViewPatterns #-}
-{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
-{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
-
-module Data.Array.Nested.Internal where
-
-import Prelude hiding (mappend)
-
-import Control.DeepSeq (NFData)
-import Control.Monad (forM_, when)
-import Control.Monad.ST
-import qualified Data.Array.RankedS as S
-import Data.Bifunctor (first)
-import Data.Coerce (coerce, Coercible)
-import Data.Foldable as Foldable (toList)
-import Data.Functor.Const
-import Data.Int
-import Data.Kind
-import Data.List.NonEmpty (NonEmpty(..))
-import Data.Monoid (Sum(..))
-import Data.Proxy
-import Data.Type.Equality
-import qualified Data.Vector.Storable as VS
-import qualified Data.Vector.Storable.Mutable as VSM
-import Foreign.C.Types (CInt(..))
-import Foreign.Storable (Storable)
-import qualified GHC.Float (log1p, expm1, log1pexp, log1mexp)
-import GHC.Generics (Generic)
-import GHC.IsList (IsList)
-import qualified GHC.IsList as IsList
-import GHC.TypeLits
-import qualified GHC.TypeNats as TypeNats
-import Unsafe.Coerce
-
-import Data.Array.Mixed
-import qualified Data.Array.Mixed as X
-import Data.Array.Mixed.Lemmas
-import Data.Array.Mixed.Permutation
-import Data.Array.Mixed.Shape
-import Data.Array.Mixed.Internal.Arith
-import Data.Array.Mixed.Types
-
-
--- Invariant in the API
--- ====================
---
--- In the underlying XArray, there is some shape for elements of an empty
--- array. For example, for this array:
---
--- arr :: Ranked I3 (Ranked I2 Int, Ranked I1 Float)
--- rshape arr == 0 :.: 0 :.: 0 :.: ZIR
---
--- the two underlying XArrays have a shape, and those shapes might be anything.
--- The invariant is that these element shapes are unobservable in the API.
--- (This is possible because you ought to not be able to get to such an element
--- without indexing out of bounds.)
---
--- Note, though, that the converse situation may arise: the outer array might
--- be nonempty but then the inner arrays might. This is fine, an invariant only
--- applies if the _outer_ array is empty.
---
--- TODO: can we enforce that the elements of an empty (nested) array have
--- all-zero shape?
--- -> no, because mlift and also any kind of internals probing from outsiders
-
-
--- Primitive element types
--- =======================
---
--- There are a few primitive element types; arrays containing elements of such
--- type are a newtype over an XArray, which it itself a newtype over a Vector.
--- Unfortunately, the setup of the library requires us to list these primitive
--- element types multiple times; to aid in extending the list, all these lists
--- have been marked with [PRIMITIVE ELEMENT TYPES LIST].
-
-
-type family MapJust l where
- MapJust '[] = '[]
- MapJust (x : xs) = Just x : MapJust xs
-
-
--- Stupid things that the type checker should be able to figure out in-line, but can't
-
-subst1 :: forall f a b. a :~: b -> f a :~: f b
-subst1 Refl = Refl
-
-subst2 :: forall f c a b. a :~: b -> f a c :~: f b c
-subst2 Refl = Refl
-
-lemAppLeft :: Proxy l -> a :~: b -> a ++ l :~: b ++ l
-lemAppLeft _ Refl = Refl
-
-knownNatSucc :: KnownNat n => Dict KnownNat (n + 1)
-knownNatSucc = Dict
-
-
-lemKnownShX :: StaticShX sh -> Dict KnownShX sh
-lemKnownShX ZKX = Dict
-lemKnownShX (SKnown SNat :!% ssh) | Dict <- lemKnownShX ssh = Dict
-lemKnownShX (SUnknown () :!% ssh) | Dict <- lemKnownShX ssh = Dict
-
-ssxFromSNat :: SNat n -> StaticShX (Replicate n Nothing)
-ssxFromSNat SZ = ZKX
-ssxFromSNat (SS (n :: SNat nm1)) | Refl <- lemReplicateSucc @(Nothing @Nat) @nm1 = SUnknown () :!% ssxFromSNat n
-
-lemKnownReplicate :: SNat n -> Dict KnownShX (Replicate n Nothing)
-lemKnownReplicate sn = lemKnownShX (ssxFromSNat sn)
-
-lemRankReplicate :: SNat n -> Rank (Replicate n (Nothing @Nat)) :~: n
-lemRankReplicate SZ = Refl
-lemRankReplicate (SS (n :: SNat nm1))
- | Refl <- lemReplicateSucc @(Nothing @Nat) @nm1
- , Refl <- lemRankReplicate n
- = Refl
-
-lemRankMapJust :: forall sh. ShS sh -> Rank (MapJust sh) :~: Rank sh
-lemRankMapJust ZSS = Refl
-lemRankMapJust (_ :$$ sh') | Refl <- lemRankMapJust sh' = Refl
-
-lemReplicatePlusApp :: forall n m a. SNat n -> Proxy m -> Proxy a
- -> Replicate (n + m) a :~: Replicate n a ++ Replicate m a
-lemReplicatePlusApp sn _ _ = go sn
- where
- go :: SNat n' -> Replicate (n' + m) a :~: Replicate n' a ++ Replicate m a
- go SZ = Refl
- go (SS (n :: SNat n'm1))
- | Refl <- lemReplicateSucc @a @n'm1
- , Refl <- go n
- = sym (lemReplicateSucc @a @(n'm1 + m))
-
-lemLeqPlus :: n <= m => Proxy n -> Proxy m -> Proxy k -> (n <=? (m + k)) :~: 'True
-lemLeqPlus _ _ _ = Refl
-
-lemLeqSuccSucc :: (k + 1 <= n) => Proxy k -> Proxy n -> (k <=? n - 1) :~: True
-lemLeqSuccSucc _ _ = unsafeCoerce Refl
-
-lemDropLenApp :: Rank l1 <= Rank l2
- => Proxy l1 -> Proxy l2 -> Proxy rest
- -> DropLen l1 l2 ++ rest :~: DropLen l1 (l2 ++ rest)
-lemDropLenApp _ _ _ = unsafeCoerce Refl
-
-lemTakeLenApp :: Rank l1 <= Rank l2
- => Proxy l1 -> Proxy l2 -> Proxy rest
- -> TakeLen l1 l2 :~: TakeLen l1 (l2 ++ rest)
-lemTakeLenApp _ _ _ = unsafeCoerce Refl
-
-srankSh :: ShX sh f -> SNat (Rank sh)
-srankSh ZSX = SNat
-srankSh (_ :$% sh) | SNat <- srankSh sh = SNat
-
-
--- === NEW INDEX TYPES === --
-
-type role ListR nominal representational
-type ListR :: Nat -> Type -> Type
-data ListR n i where
- ZR :: ListR 0 i
- (:::) :: forall n {i}. i -> ListR n i -> ListR (n + 1) i
-deriving instance Eq i => Eq (ListR n i)
-deriving instance Ord i => Ord (ListR n i)
-deriving instance Functor (ListR n)
-deriving instance Foldable (ListR n)
-infixr 3 :::
-
-instance Show i => Show (ListR n i) where
- showsPrec _ = showListR shows
-
-data UnconsListRRes i n1 =
- forall n. (n + 1 ~ n1) => UnconsListRRes (ListR n i) i
-unconsListR :: ListR n1 i -> Maybe (UnconsListRRes i n1)
-unconsListR (i ::: sh') = Just (UnconsListRRes sh' i)
-unconsListR ZR = Nothing
-
-showListR :: forall sh i. (i -> ShowS) -> ListR sh i -> ShowS
-showListR f l = showString "[" . go "" l . showString "]"
- where
- go :: String -> ListR sh' i -> ShowS
- go _ ZR = id
- go prefix (x ::: xs) = showString prefix . f x . go "," xs
-
-listrAppend :: ListR n i -> ListR m i -> ListR (n + m) i
-listrAppend ZR sh = sh
-listrAppend (x ::: xs) sh = x ::: listrAppend xs sh
-
-listrFromList :: [i] -> (forall n. ListR n i -> r) -> r
-listrFromList [] k = k ZR
-listrFromList (x : xs) k = listrFromList xs $ \l -> k (x ::: l)
-
-listrIndex :: forall k n i. (k + 1 <= n) => SNat k -> ListR n i -> i
-listrIndex SZ (x ::: _) = x
-listrIndex (SS i) (_ ::: xs) | Refl <- lemLeqSuccSucc (Proxy @k) (Proxy @n) = listrIndex i xs
-listrIndex _ ZR = error "k + 1 <= 0"
-
-
--- | An index into a rank-typed array.
-type role IxR nominal representational
-type IxR :: Nat -> Type -> Type
-newtype IxR n i = IxR (ListR n i)
- deriving (Eq, Ord)
- deriving newtype (Functor, Foldable)
-
-pattern ZIR :: forall n i. () => n ~ 0 => IxR n i
-pattern ZIR = IxR ZR
-
-pattern (:.:)
- :: forall {n1} {i}.
- forall n. (n + 1 ~ n1)
- => i -> IxR n i -> IxR n1 i
-pattern i :.: sh <- IxR (unconsListR -> Just (UnconsListRRes (IxR -> sh) i))
- where i :.: IxR sh = IxR (i ::: sh)
-infixr 3 :.:
-
-{-# COMPLETE ZIR, (:.:) #-}
-
-type IIxR n = IxR n Int
-
-instance Show i => Show (IxR n i) where
- showsPrec _ (IxR l) = showListR shows l
-
-
-type role ShR nominal representational
-type ShR :: Nat -> Type -> Type
-newtype ShR n i = ShR (ListR n i)
- deriving (Eq, Ord)
- deriving newtype (Functor, Foldable)
-
-pattern ZSR :: forall n i. () => n ~ 0 => ShR n i
-pattern ZSR = ShR ZR
-
-pattern (:$:)
- :: forall {n1} {i}.
- forall n. (n + 1 ~ n1)
- => i -> ShR n i -> ShR n1 i
-pattern i :$: sh <- ShR (unconsListR -> Just (UnconsListRRes (ShR -> sh) i))
- where i :$: (ShR sh) = ShR (i ::: sh)
-infixr 3 :$:
-
-{-# COMPLETE ZSR, (:$:) #-}
-
-type IShR n = ShR n Int
-
-instance Show i => Show (ShR n i) where
- showsPrec _ (ShR l) = showListR shows l
-
-
--- | Untyped: length is checked at runtime.
-instance KnownNat n => IsList (ListR n i) where
- type Item (ListR n i) = i
- fromList = go (SNat @n)
- where
- go :: SNat n' -> [i] -> ListR n' i
- go SZ [] = ZR
- go (SS n) (i : is) = i ::: go n is
- go _ _ = error "IsList(ListR): Mismatched list length"
- toList = Foldable.toList
-
--- | Untyped: length is checked at runtime.
-instance KnownNat n => IsList (IxR n i) where
- type Item (IxR n i) = i
- fromList = IxR . IsList.fromList
- toList = Foldable.toList
-
--- | Untyped: length is checked at runtime.
-instance KnownNat n => IsList (ShR n i) where
- type Item (ShR n i) = i
- fromList = ShR . IsList.fromList
- toList = Foldable.toList
-
-
-type role ListS nominal representational
-type ListS :: [Nat] -> (Nat -> Type) -> Type
-data ListS sh f where
- ZS :: ListS '[] f
- (::$) :: forall n sh {f}. KnownNat n => f n -> ListS sh f -> ListS (n : sh) f
-deriving instance (forall n. Eq (f n)) => Eq (ListS sh f)
-deriving instance (forall n. Ord (f n)) => Ord (ListS sh f)
-infixr 3 ::$
-
-instance (forall n. Show (f n)) => Show (ListS sh f) where
- showsPrec _ = showListS shows
-
-data UnconsListSRes f sh1 =
- forall n sh. (KnownNat n, n : sh ~ sh1) => UnconsListSRes (ListS sh f) (f n)
-unconsListS :: ListS sh1 f -> Maybe (UnconsListSRes f sh1)
-unconsListS (x ::$ sh') = Just (UnconsListSRes sh' x)
-unconsListS ZS = Nothing
-
-fmapListS :: (forall n. f n -> g n) -> ListS sh f -> ListS sh g
-fmapListS _ ZS = ZS
-fmapListS f (x ::$ xs) = f x ::$ fmapListS f xs
-
-foldListS :: Monoid m => (forall n. f n -> m) -> ListS sh f -> m
-foldListS _ ZS = mempty
-foldListS f (x ::$ xs) = f x <> foldListS f xs
-
-showListS :: forall sh f. (forall n. f n -> ShowS) -> ListS sh f -> ShowS
-showListS f l = showString "[" . go "" l . showString "]"
- where
- go :: String -> ListS sh' f -> ShowS
- go _ ZS = id
- go prefix (x ::$ xs) = showString prefix . f x . go "," xs
-
-listSToList :: ListS sh (Const i) -> [i]
-listSToList ZS = []
-listSToList (Const i ::$ is) = i : listSToList is
-
-
--- | An index into a shape-typed array.
---
--- For convenience, this contains regular 'Int's instead of bounded integers
--- (traditionally called \"@Fin@\"). Note that because the shape of a
--- shape-typed array is known statically, you can also retrieve the array shape
--- from a 'KnownShape' dictionary.
-type role IxS nominal representational
-type IxS :: [Nat] -> Type -> Type
-newtype IxS sh i = IxS (ListS sh (Const i))
- deriving (Eq, Ord)
-
-pattern ZIS :: forall sh i. () => sh ~ '[] => IxS sh i
-pattern ZIS = IxS ZS
-
-pattern (:.$)
- :: forall {sh1} {i}.
- forall n sh. (KnownNat n, n : sh ~ sh1)
- => i -> IxS sh i -> IxS sh1 i
-pattern i :.$ shl <- IxS (unconsListS -> Just (UnconsListSRes (IxS -> shl) (getConst -> i)))
- where i :.$ IxS shl = IxS (Const i ::$ shl)
-infixr 3 :.$
-
-{-# COMPLETE ZIS, (:.$) #-}
-
-type IIxS sh = IxS sh Int
-
-instance Show i => Show (IxS sh i) where
- showsPrec _ (IxS l) = showListS (\(Const i) -> shows i) l
-
-instance Functor (IxS sh) where
- fmap f (IxS l) = IxS (fmapListS (Const . f . getConst) l)
-
-instance Foldable (IxS sh) where
- foldMap f (IxS l) = foldListS (f . getConst) l
-
-
--- | The shape of a shape-typed array given as a list of 'SNat' values.
-type role ShS nominal
-type ShS :: [Nat] -> Type
-newtype ShS sh = ShS (ListS sh SNat)
- deriving (Eq, Ord)
-
-pattern ZSS :: forall sh. () => sh ~ '[] => ShS sh
-pattern ZSS = ShS ZS
-
-pattern (:$$)
- :: forall {sh1}.
- forall n sh. (KnownNat n, n : sh ~ sh1)
- => SNat n -> ShS sh -> ShS sh1
-pattern i :$$ shl <- ShS (unconsListS -> Just (UnconsListSRes (ShS -> shl) i))
- where i :$$ ShS shl = ShS (i ::$ shl)
-
-infixr 3 :$$
-
-{-# COMPLETE ZSS, (:$$) #-}
-
-instance Show (ShS sh) where
- showsPrec _ (ShS l) = showListS (shows . fromSNat) l
-
-lengthShS :: ShS sh -> Int
-lengthShS (ShS l) = getSum (foldListS (\_ -> Sum 1) l)
-
-shSToList :: ShS sh -> [Int]
-shSToList ZSS = []
-shSToList (sn :$$ sh) = fromSNat' sn : shSToList sh
-
-
--- | Untyped: length is checked at runtime.
-instance KnownShS sh => IsList (ListS sh (Const i)) where
- type Item (ListS sh (Const i)) = i
- fromList topl = go (knownShS @sh) topl
- where
- go :: ShS sh' -> [i] -> ListS sh' (Const i)
- go ZSS [] = ZS
- go (_ :$$ sh) (i : is) = Const i ::$ go sh is
- go _ _ = error $ "IsList(ListS): Mismatched list length (type says "
- ++ show (lengthShS (knownShS @sh)) ++ ", list has length "
- ++ show (length topl) ++ ")"
- toList = listSToList
-
--- | Very untyped: only length is checked (at runtime), index bounds are __not checked__.
-instance KnownShS sh => IsList (IxS sh i) where
- type Item (IxS sh i) = i
- fromList = IxS . IsList.fromList
- toList = Foldable.toList
-
--- | Untyped: length and values are checked at runtime.
-instance KnownShS sh => IsList (ShS sh) where
- type Item (ShS sh) = Int
- fromList topl = ShS (go (knownShS @sh) topl)
- where
- go :: ShS sh' -> [Int] -> ListS sh' SNat
- go ZSS [] = ZS
- go (sn :$$ sh) (i : is)
- | i == fromSNat' sn = sn ::$ go sh is
- | otherwise = error $ "IsList(ShS): Value does not match typing (type says "
- ++ show (fromSNat' sn) ++ ", list contains " ++ show i ++ ")"
- go _ _ = error $ "IsList(ShS): Mismatched list length (type says "
- ++ show (lengthShS (knownShS @sh)) ++ ", list has length "
- ++ show (length topl) ++ ")"
- toList = shSToList
-
-
--- | Wrapper type used as a tag to attach instances on. The instances on arrays
--- of @'Primitive' a@ are more polymorphic than the direct instances for arrays
--- of scalars; this means that if @orthotope@ supports an element type @T@ that
--- this library does not (directly), it may just work if you use an array of
--- @'Primitive' T@ instead.
-newtype Primitive a = Primitive a
-
--- | Element types that are primitive; arrays of these types are just a newtype
--- wrapper over an array.
-class Storable a => PrimElt a where
- fromPrimitive :: Mixed sh (Primitive a) -> Mixed sh a
- toPrimitive :: Mixed sh a -> Mixed sh (Primitive a)
-
- default fromPrimitive :: Coercible (Mixed sh a) (Mixed sh (Primitive a)) => Mixed sh (Primitive a) -> Mixed sh a
- fromPrimitive = coerce
-
- default toPrimitive :: Coercible (Mixed sh (Primitive a)) (Mixed sh a) => Mixed sh a -> Mixed sh (Primitive a)
- toPrimitive = coerce
-
--- [PRIMITIVE ELEMENT TYPES LIST]
-instance PrimElt Int
-instance PrimElt Int64
-instance PrimElt Int32
-instance PrimElt CInt
-instance PrimElt Float
-instance PrimElt Double
-instance PrimElt ()
-
-
--- | Mixed arrays: some dimensions are size-typed, some are not. Distributes
--- over product-typed elements using a data family so that the full array is
--- always in struct-of-arrays format.
---
--- Built on top of 'XArray' which is built on top of @orthotope@, meaning that
--- dimension permutations (e.g. 'mtranspose') are typically free.
---
--- Many of the methods for working on 'Mixed' arrays come from the 'Elt' type
--- class.
-type Mixed :: [Maybe Nat] -> Type -> Type
-data family Mixed sh a
--- NOTE: When opening up the Mixed abstraction, you might see dimension sizes
--- that you're not supposed to see. In particular, you might see (nonempty)
--- sizes of the elements of an empty array, which is information that should
--- ostensibly not exist; the full array is still empty.
-
-data instance Mixed sh (Primitive a) = M_Primitive !(IShX sh) !(XArray sh a)
- deriving (Show, Eq, Generic)
-
--- | Only on scalars, because lexicographical ordering is strange on multi-dimensional arrays.
-deriving instance (Ord a, Storable a) => Ord (Mixed '[] (Primitive a))
-
-instance NFData a => NFData (Mixed sh (Primitive a))
-
--- [PRIMITIVE ELEMENT TYPES LIST]
-newtype instance Mixed sh Int = M_Int (Mixed sh (Primitive Int)) deriving (Show, Eq, Generic)
-newtype instance Mixed sh Int64 = M_Int64 (Mixed sh (Primitive Int64)) deriving (Show, Eq, Generic)
-newtype instance Mixed sh Int32 = M_Int32 (Mixed sh (Primitive Int32)) deriving (Show, Eq, Generic)
-newtype instance Mixed sh CInt = M_CInt (Mixed sh (Primitive CInt)) deriving (Show, Eq, Generic)
-newtype instance Mixed sh Float = M_Float (Mixed sh (Primitive Float)) deriving (Show, Eq, Generic)
-newtype instance Mixed sh Double = M_Double (Mixed sh (Primitive Double)) deriving (Show, Eq, Generic)
-newtype instance Mixed sh () = M_Nil (Mixed sh (Primitive ())) deriving (Show, Eq, Generic) -- no content, orthotope optimises this (via Vector)
--- etc.
-
--- [PRIMITIVE ELEMENT TYPES LIST]
-deriving instance Ord (Mixed '[] Int) ; instance NFData (Mixed sh Int)
-deriving instance Ord (Mixed '[] Int64) ; instance NFData (Mixed sh Int64)
-deriving instance Ord (Mixed '[] Int32) ; instance NFData (Mixed sh Int32)
-deriving instance Ord (Mixed '[] CInt) ; instance NFData (Mixed sh CInt)
-deriving instance Ord (Mixed '[] Float) ; instance NFData (Mixed sh Float)
-deriving instance Ord (Mixed '[] Double) ; instance NFData (Mixed sh Double)
-deriving instance Ord (Mixed '[] ()) ; instance NFData (Mixed sh ())
-
-data instance Mixed sh (a, b) = M_Tup2 !(Mixed sh a) !(Mixed sh b) deriving (Generic)
-deriving instance (Show (Mixed sh a), Show (Mixed sh b)) => Show (Mixed sh (a, b))
-instance (NFData (Mixed sh a), NFData (Mixed sh b)) => NFData (Mixed sh (a, b))
--- etc., larger tuples (perhaps use generics to allow arbitrary product types)
-
-data instance Mixed sh1 (Mixed sh2 a) = M_Nest !(IShX sh1) !(Mixed (sh1 ++ sh2) a) deriving (Generic)
-deriving instance Show (Mixed (sh1 ++ sh2) a) => Show (Mixed sh1 (Mixed sh2 a))
-instance NFData (Mixed (sh1 ++ sh2) a) => NFData (Mixed sh1 (Mixed sh2 a))
-
-
--- | Internal helper data family mirroring 'Mixed' that consists of mutable
--- vectors instead of 'XArray's.
-type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type
-data family MixedVecs s sh a
-
-newtype instance MixedVecs s sh (Primitive a) = MV_Primitive (VS.MVector s a)
-
--- [PRIMITIVE ELEMENT TYPES LIST]
-newtype instance MixedVecs s sh Int = MV_Int (VS.MVector s Int)
-newtype instance MixedVecs s sh Int64 = MV_Int64 (VS.MVector s Int64)
-newtype instance MixedVecs s sh Int32 = MV_Int32 (VS.MVector s Int32)
-newtype instance MixedVecs s sh CInt = MV_CInt (VS.MVector s CInt)
-newtype instance MixedVecs s sh Double = MV_Double (VS.MVector s Double)
-newtype instance MixedVecs s sh Float = MV_Float (VS.MVector s Float)
-newtype instance MixedVecs s sh () = MV_Nil (VS.MVector s ()) -- no content, MVector optimises this
--- etc.
-
-data instance MixedVecs s sh (a, b) = MV_Tup2 !(MixedVecs s sh a) !(MixedVecs s sh b)
--- etc.
-
-data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest !(IShX sh2) !(MixedVecs s (sh1 ++ sh2) a)
-
-
--- | Tree giving the shape of every array component.
-type family ShapeTree a where
- ShapeTree (a, b) = (ShapeTree a, ShapeTree b)
- ShapeTree (Mixed sh a) = (IShX sh, ShapeTree a)
- ShapeTree (Ranked n a) = (IShR n, ShapeTree a)
- ShapeTree (Shaped sh a) = (ShS sh, ShapeTree a)
-
- -- to avoid having to list all of the primitive types:
- ShapeTree _ = ()
-
-
--- | Allowable element types in a mixed array, and by extension in a 'Ranked' or
--- 'Shaped' array. Note the polymorphic instance for 'Elt' of @'Primitive'
--- a@; see the documentation for 'Primitive' for more details.
-class Elt a where
- -- ====== PUBLIC METHODS ====== --
-
- mshape :: Mixed sh a -> IShX sh
- mindex :: Mixed sh a -> IIxX sh -> a
- mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IIxX sh -> Mixed sh' a
- mscalar :: a -> Mixed '[] a
-
- -- | All arrays in the list, even subarrays inside @a@, must have the same
- -- shape; if they do not, a runtime error will be thrown. See the
- -- documentation of 'mgenerate' for more information about this restriction.
- -- Furthermore, the length of the list must correspond with @n@: if @n@ is
- -- @Just m@ and @m@ does not equal the length of the list, a runtime error is
- -- thrown.
- --
- -- Consider also 'mfromListPrim', which can avoid intermediate arrays.
- mfromListOuter :: forall sh. NonEmpty (Mixed sh a) -> Mixed (Nothing : sh) a
-
- mtoListOuter :: Mixed (n : sh) a -> [Mixed sh a]
-
- -- | Note: this library makes no particular guarantees about the shapes of
- -- arrays "inside" an empty array. With 'mlift' and 'mlift2' you can see the
- -- full 'XArray' and as such you can distinguish different empty arrays by
- -- the "shapes" of their elements. This information is meaningless, so you
- -- should not use it.
- mlift :: forall sh1 sh2.
- StaticShX sh2
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
- -> Mixed sh1 a -> Mixed sh2 a
-
- -- | See the documentation for 'mlift'.
- mlift2 :: forall sh1 sh2 sh3.
- StaticShX sh3
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
- -> Mixed sh1 a -> Mixed sh2 a -> Mixed sh3 a
-
- mcast :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2
- => StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') a -> Mixed (sh2 ++ sh') a
-
- mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh)
- => Perm is -> Mixed sh a -> Mixed (PermutePrefix is sh) a
-
- -- ====== PRIVATE METHODS ====== --
-
- mshapeTree :: a -> ShapeTree a
-
- mshapeTreeEq :: Proxy a -> ShapeTree a -> ShapeTree a -> Bool
-
- mshapeTreeEmpty :: Proxy a -> ShapeTree a -> Bool
-
- mshowShapeTree :: Proxy a -> ShapeTree a -> String
-
- -- | Given the shape of this array, an index and a value, write the value at
- -- that index in the vectors.
- mvecsWrite :: IShX sh -> IIxX sh -> a -> MixedVecs s sh a -> ST s ()
-
- -- | Given the shape of this array, an index and a value, write the value at
- -- that index in the vectors.
- mvecsWritePartial :: IShX (sh ++ sh') -> IIxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s ()
-
- -- | Given the shape of this array, finalise the vectors into 'XArray's.
- mvecsFreeze :: IShX sh -> MixedVecs s sh a -> ST s (Mixed sh a)
-
-
--- | Element types for which we have evidence of the (static part of the) shape
--- in a type class constraint. Compare the instance contexts of the instances
--- of this class with those of 'Elt': some instances have an additional
--- "known-shape" constraint.
---
--- This class is (currently) only required for 'mgenerate' / 'rgenerate' /
--- 'sgenerate'.
-class Elt a => KnownElt a where
- -- | Create an empty array. The given shape must have size zero; this may or may not be checked.
- memptyArray :: IShX sh -> Mixed sh a
-
- -- | Create uninitialised vectors for this array type, given the shape of
- -- this vector and an example for the contents.
- mvecsUnsafeNew :: IShX sh -> a -> ST s (MixedVecs s sh a)
-
- mvecsNewEmpty :: Proxy a -> ST s (MixedVecs s sh a)
-
-
--- Arrays of scalars are basically just arrays of scalars.
-instance Storable a => Elt (Primitive a) where
- mshape (M_Primitive sh _) = sh
- mindex (M_Primitive _ a) i = Primitive (X.index a i)
- mindexPartial (M_Primitive sh a) i = M_Primitive (shxDropIx sh i) (X.indexPartial a i)
- mscalar (Primitive x) = M_Primitive ZSX (X.scalar x)
- mfromListOuter l@(arr1 :| _) =
- let sh = SUnknown (length l) :$% mshape arr1
- in M_Primitive sh (X.fromListOuter (ssxFromShape sh) (map (\(M_Primitive _ a) -> a) (toList l)))
- mtoListOuter (M_Primitive sh arr) = map (M_Primitive (shxTail sh)) (X.toListOuter arr)
-
- mlift :: forall sh1 sh2.
- StaticShX sh2
- -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a)
- -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a)
- mlift ssh2 f (M_Primitive _ a)
- | Refl <- lemAppNil @sh1
- , Refl <- lemAppNil @sh2
- , let result = f ZKX a
- = M_Primitive (X.shape ssh2 result) result
-
- mlift2 :: forall sh1 sh2 sh3.
- StaticShX sh3
- -> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a -> XArray (sh3 ++ '[]) a)
- -> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) -> Mixed sh3 (Primitive a)
- mlift2 ssh3 f (M_Primitive _ a) (M_Primitive _ b)
- | Refl <- lemAppNil @sh1
- , Refl <- lemAppNil @sh2
- , Refl <- lemAppNil @sh3
- , let result = f ZKX a b
- = M_Primitive (X.shape ssh3 result) result
-
- mcast :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2
- => StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') (Primitive a) -> Mixed (sh2 ++ sh') (Primitive a)
- mcast ssh1 sh2 _ (M_Primitive sh1' arr) =
- let (_, sh') = shxSplitApp (Proxy @sh') ssh1 sh1'
- in M_Primitive (shxAppend sh2 sh') (X.cast ssh1 sh2 (ssxFromShape sh') arr)
-
- mtranspose perm (M_Primitive sh arr) =
- M_Primitive (shxPermutePrefix perm sh)
- (X.transpose (ssxFromShape sh) perm arr)
-
- mshapeTree _ = ()
- mshapeTreeEq _ () () = True
- mshapeTreeEmpty _ () = False
- mshowShapeTree _ () = "()"
- mvecsWrite sh i (Primitive x) (MV_Primitive v) = VSM.write v (ixxToLinear sh i) x
-
- -- TODO: this use of toVector is suboptimal
- mvecsWritePartial
- :: forall sh' sh s.
- IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Primitive a) -> MixedVecs s (sh ++ sh') (Primitive a) -> ST s ()
- mvecsWritePartial sh i (M_Primitive sh' arr) (MV_Primitive v) = do
- let arrsh = X.shape (ssxFromShape sh') arr
- offset = ixxToLinear sh (ixxAppend i (ixxZero' arrsh))
- VS.copy (VSM.slice offset (shxSize arrsh) v) (X.toVector arr)
-
- mvecsFreeze sh (MV_Primitive v) = M_Primitive sh . X.fromVector sh <$> VS.freeze v
-
--- [PRIMITIVE ELEMENT TYPES LIST]
-deriving via Primitive Int instance Elt Int
-deriving via Primitive Int64 instance Elt Int64
-deriving via Primitive Int32 instance Elt Int32
-deriving via Primitive CInt instance Elt CInt
-deriving via Primitive Double instance Elt Double
-deriving via Primitive Float instance Elt Float
-deriving via Primitive () instance Elt ()
-
-instance Storable a => KnownElt (Primitive a) where
- memptyArray sh = M_Primitive sh (X.empty sh)
- mvecsUnsafeNew sh _ = MV_Primitive <$> VSM.unsafeNew (shxSize sh)
- mvecsNewEmpty _ = MV_Primitive <$> VSM.unsafeNew 0
-
--- [PRIMITIVE ELEMENT TYPES LIST]
-deriving via Primitive Int instance KnownElt Int
-deriving via Primitive Int64 instance KnownElt Int64
-deriving via Primitive Int32 instance KnownElt Int32
-deriving via Primitive CInt instance KnownElt CInt
-deriving via Primitive Double instance KnownElt Double
-deriving via Primitive Float instance KnownElt Float
-deriving via Primitive () instance KnownElt ()
-
--- Arrays of pairs are pairs of arrays.
-instance (Elt a, Elt b) => Elt (a, b) where
- mshape (M_Tup2 a _) = mshape a
- mindex (M_Tup2 a b) i = (mindex a i, mindex b i)
- mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i)
- mscalar (x, y) = M_Tup2 (mscalar x) (mscalar y)
- mfromListOuter l =
- M_Tup2 (mfromListOuter ((\(M_Tup2 x _) -> x) <$> l))
- (mfromListOuter ((\(M_Tup2 _ y) -> y) <$> l))
- mtoListOuter (M_Tup2 a b) = zipWith M_Tup2 (mtoListOuter a) (mtoListOuter b)
- mlift ssh2 f (M_Tup2 a b) = M_Tup2 (mlift ssh2 f a) (mlift ssh2 f b)
- mlift2 ssh3 f (M_Tup2 a b) (M_Tup2 x y) = M_Tup2 (mlift2 ssh3 f a x) (mlift2 ssh3 f b y)
-
- mcast ssh1 sh2 psh' (M_Tup2 a b) =
- M_Tup2 (mcast ssh1 sh2 psh' a) (mcast ssh1 sh2 psh' b)
-
- mtranspose perm (M_Tup2 a b) = M_Tup2 (mtranspose perm a) (mtranspose perm b)
-
- mshapeTree (x, y) = (mshapeTree x, mshapeTree y)
- mshapeTreeEq _ (t1, t2) (t1', t2') = mshapeTreeEq (Proxy @a) t1 t1' && mshapeTreeEq (Proxy @b) t2 t2'
- mshapeTreeEmpty _ (t1, t2) = mshapeTreeEmpty (Proxy @a) t1 && mshapeTreeEmpty (Proxy @b) t2
- mshowShapeTree _ (t1, t2) = "(" ++ mshowShapeTree (Proxy @a) t1 ++ ", " ++ mshowShapeTree (Proxy @b) t2 ++ ")"
- mvecsWrite sh i (x, y) (MV_Tup2 a b) = do
- mvecsWrite sh i x a
- mvecsWrite sh i y b
- mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do
- mvecsWritePartial sh i x a
- mvecsWritePartial sh i y b
- mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b
-
-instance (KnownElt a, KnownElt b) => KnownElt (a, b) where
- memptyArray sh = M_Tup2 (memptyArray sh) (memptyArray sh)
- mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y
- mvecsNewEmpty _ = MV_Tup2 <$> mvecsNewEmpty (Proxy @a) <*> mvecsNewEmpty (Proxy @b)
-
--- Arrays of arrays are just arrays, but with more dimensions.
-instance Elt a => Elt (Mixed sh' a) where
- -- TODO: this is quadratic in the nesting depth because it repeatedly
- -- truncates the shape vector to one a little shorter. Fix with a
- -- moverlongShape method, a prefix of which is mshape.
- mshape :: forall sh. Mixed sh (Mixed sh' a) -> IShX sh
- mshape (M_Nest sh arr)
- = fst (shxSplitApp (Proxy @sh') (ssxFromShape sh) (mshape arr))
-
- mindex :: Mixed sh (Mixed sh' a) -> IIxX sh -> Mixed sh' a
- mindex (M_Nest _ arr) i = mindexPartial arr i
-
- mindexPartial :: forall sh1 sh2.
- Mixed (sh1 ++ sh2) (Mixed sh' a) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
- mindexPartial (M_Nest sh arr) i
- | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
- = M_Nest (shxDropIx sh i) (mindexPartial @a @sh1 @(sh2 ++ sh') arr i)
-
- mscalar = M_Nest ZSX
-
- mfromListOuter :: forall sh. NonEmpty (Mixed sh (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a)
- mfromListOuter l@(arr :| _) =
- M_Nest (SUnknown (length l) :$% mshape arr)
- (mfromListOuter ((\(M_Nest _ a) -> a) <$> l))
-
- mtoListOuter (M_Nest sh arr) = map (M_Nest (shxTail sh)) (mtoListOuter arr)
-
- mlift :: forall sh1 sh2.
- StaticShX sh2
- -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b)
- -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a)
- mlift ssh2 f (M_Nest sh1 arr) =
- let result = mlift (ssxAppend ssh2 ssh') f' arr
- (sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape result)
- in M_Nest sh2 result
- where
- ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr)))
-
- f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b
- f' sshT
- | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
- , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
- = f (ssxAppend ssh' sshT)
-
- mlift2 :: forall sh1 sh2 sh3.
- StaticShX sh3
- -> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b -> XArray (sh3 ++ shT) b)
- -> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) -> Mixed sh3 (Mixed sh' a)
- mlift2 ssh3 f (M_Nest sh1 arr1) (M_Nest _ arr2) =
- let result = mlift2 (ssxAppend ssh3 ssh') f' arr1 arr2
- (sh3, _) = shxSplitApp (Proxy @sh') ssh3 (mshape result)
- in M_Nest sh3 result
- where
- ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1)))
-
- f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b -> XArray ((sh3 ++ sh') ++ shT) b
- f' sshT
- | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
- , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
- , Refl <- lemAppAssoc (Proxy @sh3) (Proxy @sh') (Proxy @shT)
- = f (ssxAppend ssh' sshT)
-
- mcast :: forall sh1 sh2 shT. Rank sh1 ~ Rank sh2
- => StaticShX sh1 -> IShX sh2 -> Proxy shT -> Mixed (sh1 ++ shT) (Mixed sh' a) -> Mixed (sh2 ++ shT) (Mixed sh' a)
- mcast ssh1 sh2 _ (M_Nest sh1T arr)
- | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @shT) (Proxy @sh')
- , Refl <- lemAppAssoc (Proxy @sh2) (Proxy @shT) (Proxy @sh')
- = let (_, shT) = shxSplitApp (Proxy @shT) ssh1 sh1T
- in M_Nest (shxAppend sh2 shT) (mcast ssh1 sh2 (Proxy @(shT ++ sh')) arr)
-
- mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh)
- => Perm is -> Mixed sh (Mixed sh' a)
- -> Mixed (PermutePrefix is sh) (Mixed sh' a)
- mtranspose perm (M_Nest sh arr)
- | let sh' = shxDropSh @sh @sh' (mshape arr) sh
- , Refl <- lemRankApp (ssxFromShape sh) (ssxFromShape sh')
- , Refl <- lemLeqPlus (Proxy @(Rank is)) (Proxy @(Rank sh)) (Proxy @(Rank sh'))
- , Refl <- lemAppAssoc (Proxy @(Permute is (TakeLen is (sh ++ sh')))) (Proxy @(DropLen is sh)) (Proxy @sh')
- , Refl <- lemDropLenApp (Proxy @is) (Proxy @sh) (Proxy @sh')
- , Refl <- lemTakeLenApp (Proxy @is) (Proxy @sh) (Proxy @sh')
- = M_Nest (shxPermutePrefix perm sh)
- (mtranspose perm arr)
-
- mshapeTree :: Mixed sh' a -> ShapeTree (Mixed sh' a)
- mshapeTree arr = (mshape arr, mshapeTree (mindex arr (ixxZero (ssxFromShape (mshape arr)))))
-
- mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
-
- mshapeTreeEmpty _ (sh, t) = shxSize sh == 0 && mshapeTreeEmpty (Proxy @a) t
-
- mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
-
- mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (shxAppend sh sh') idx val vecs
-
- mvecsWritePartial :: forall sh1 sh2 s.
- IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
- -> MixedVecs s (sh1 ++ sh2) (Mixed sh' a)
- -> ST s ()
- mvecsWritePartial sh12 idx (M_Nest _ arr) (MV_Nest sh' vecs)
- | Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
- = mvecsWritePartial (shxAppend sh12 sh') idx arr vecs
-
- mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest sh <$> mvecsFreeze (shxAppend sh sh') vecs
-
-instance (KnownShX sh', KnownElt a) => KnownElt (Mixed sh' a) where
- memptyArray sh = M_Nest sh (memptyArray (shxAppend sh (shxCompleteZeros (knownShX @sh'))))
-
- mvecsUnsafeNew sh example
- | shxSize sh' == 0 = mvecsNewEmpty (Proxy @(Mixed sh' a))
- | otherwise = MV_Nest sh' <$> mvecsUnsafeNew (shxAppend sh sh') (mindex example (ixxZero (ssxFromShape sh')))
- where
- sh' = mshape example
-
- mvecsNewEmpty _ = MV_Nest (shxCompleteZeros (knownShX @sh')) <$> mvecsNewEmpty (Proxy @a)
-
-
--- | Create an array given a size and a function that computes the element at a
--- given index.
---
--- __WARNING__: It is required that every @a@ returned by the argument to
--- 'mgenerate' has the same shape. For example, the following will throw a
--- runtime error:
---
--- > foo :: Mixed [Nothing] (Mixed [Nothing] Double)
--- > foo = mgenerate (10 :.: ZIR) $ \(i :.: ZIR) ->
--- > mgenerate (i :.: ZIR) $ \(j :.: ZIR) ->
--- > ...
---
--- because the size of the inner 'mgenerate' is not always the same (it depends
--- on @i@). Nested arrays in @ox-arrays@ are always stored fully flattened, so
--- the entire hierarchy (after distributing out tuples) must be a rectangular
--- array. The type of 'mgenerate' allows this requirement to be broken very
--- easily, hence the runtime check.
-mgenerate :: forall sh a. KnownElt a => IShX sh -> (IIxX sh -> a) -> Mixed sh a
-mgenerate sh f = case shxEnum sh of
- [] -> memptyArray sh
- firstidx : restidxs ->
- let firstelem = f (ixxZero' sh)
- shapetree = mshapeTree firstelem
- in if mshapeTreeEmpty (Proxy @a) shapetree
- then memptyArray sh
- else runST $ do
- vecs <- mvecsUnsafeNew sh firstelem
- mvecsWrite sh firstidx firstelem vecs
- -- TODO: This is likely fine if @a@ is big, but if @a@ is a
- -- scalar this array copying inefficient. Should improve this.
- forM_ restidxs $ \idx -> do
- let val = f idx
- when (not (mshapeTreeEq (Proxy @a) (mshapeTree val) shapetree)) $
- error "Data.Array.Nested mgenerate: generated values do not have equal shapes"
- mvecsWrite sh idx val vecs
- mvecsFreeze sh vecs
-
-msumOuter1P :: forall sh n a. (Storable a, NumElt a)
- => Mixed (n : sh) (Primitive a) -> Mixed sh (Primitive a)
-msumOuter1P (M_Primitive (n :$% sh) arr) =
- let nssh = fromSMayNat (\_ -> SUnknown ()) SKnown n :!% ZKX
- in M_Primitive sh (X.sumOuter nssh (ssxFromShape sh) arr)
-
-msumOuter1 :: forall sh n a. (NumElt a, PrimElt a)
- => Mixed (n : sh) a -> Mixed sh a
-msumOuter1 = fromPrimitive . msumOuter1P @sh @n @a . toPrimitive
-
-mappend :: forall n m sh a. Elt a
- => Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (AddMaybe n m : sh) a
-mappend arr1 arr2 = mlift2 (snm :!% ssh) f arr1 arr2
- where
- sn :$% sh = mshape arr1
- sm :$% _ = mshape arr2
- ssh = ssxFromShape sh
- snm :: SMayNat () SNat (AddMaybe n m)
- snm = case (sn, sm) of
- (SUnknown{}, _) -> SUnknown ()
- (SKnown{}, SUnknown{}) -> SUnknown ()
- (SKnown n, SKnown m) -> SKnown (snatPlus n m)
-
- f :: forall sh' b. Storable b
- => StaticShX sh' -> XArray (n : sh ++ sh') b -> XArray (m : sh ++ sh') b -> XArray (AddMaybe n m : sh ++ sh') b
- f ssh' = X.append (ssxAppend ssh ssh')
-
-mfromVectorP :: forall sh a. Storable a => IShX sh -> VS.Vector a -> Mixed sh (Primitive a)
-mfromVectorP sh v = M_Primitive sh (X.fromVector sh v)
-
-mfromVector :: forall sh a. PrimElt a => IShX sh -> VS.Vector a -> Mixed sh a
-mfromVector sh v = fromPrimitive (mfromVectorP sh v)
-
-mtoVectorP :: Storable a => Mixed sh (Primitive a) -> VS.Vector a
-mtoVectorP (M_Primitive _ v) = X.toVector v
-
-mtoVector :: PrimElt a => Mixed sh a -> VS.Vector a
-mtoVector arr = mtoVectorP (toPrimitive arr)
-
-mfromList1 :: Elt a => NonEmpty a -> Mixed '[Nothing] a
-mfromList1 = mfromListOuter . fmap mscalar -- TODO: optimise?
-
-mfromList1Prim :: PrimElt a => [a] -> Mixed '[Nothing] a
-mfromList1Prim l =
- let ssh = SUnknown () :!% ZKX
- xarr = X.fromList1 ssh l
- in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr
-
-mtoList1 :: Elt a => Mixed '[n] a -> [a]
-mtoList1 = map munScalar . mtoListOuter
-
-mfromListPrim :: PrimElt a => [a] -> Mixed '[Nothing] a
-mfromListPrim l =
- let ssh = SUnknown () :!% ZKX
- xarr = X.fromList1 ssh l
- in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr
-
-mfromListPrimLinear :: PrimElt a => IShX sh -> [a] -> Mixed sh a
-mfromListPrimLinear sh l =
- let M_Primitive _ xarr = toPrimitive (mfromListPrim l)
- in fromPrimitive $ M_Primitive sh (X.reshape (SUnknown () :!% ZKX) sh xarr)
-
-munScalar :: Elt a => Mixed '[] a -> a
-munScalar arr = mindex arr ZIX
-
-mrerankP :: forall sh1 sh2 sh a b. (Storable a, Storable b)
- => StaticShX sh -> IShX sh2
- -> (Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive b))
- -> Mixed (sh ++ sh1) (Primitive a) -> Mixed (sh ++ sh2) (Primitive b)
-mrerankP ssh sh2 f (M_Primitive sh arr) =
- let sh1 = shxDropSSX sh ssh
- in M_Primitive (shxAppend (shxTakeSSX (Proxy @sh1) sh ssh) sh2)
- (X.rerank ssh (ssxFromShape sh1) (ssxFromShape sh2)
- (\a -> let M_Primitive _ r = f (M_Primitive sh1 a) in r)
- arr)
-
--- | See the caveats at @X.rerank@.
-mrerank :: forall sh1 sh2 sh a b. (PrimElt a, PrimElt b)
- => StaticShX sh -> IShX sh2
- -> (Mixed sh1 a -> Mixed sh2 b)
- -> Mixed (sh ++ sh1) a -> Mixed (sh ++ sh2) b
-mrerank ssh sh2 f (toPrimitive -> arr) =
- fromPrimitive $ mrerankP ssh sh2 (toPrimitive . f . fromPrimitive) arr
-
-mreplicate :: forall sh sh' a. Elt a
- => IShX sh -> Mixed sh' a -> Mixed (sh ++ sh') a
-mreplicate sh arr =
- let ssh' = ssxFromShape (mshape arr)
- in mlift (ssxAppend (ssxFromShape sh) ssh')
- (\(sshT :: StaticShX shT) ->
- case lemAppAssoc (Proxy @sh) (Proxy @sh') (Proxy @shT) of
- Refl -> X.replicate sh (ssxAppend ssh' sshT))
- arr
-
-mreplicateScalP :: forall sh a. Storable a => IShX sh -> a -> Mixed sh (Primitive a)
-mreplicateScalP sh x = M_Primitive sh (X.replicateScal sh x)
-
-mreplicateScal :: forall sh a. PrimElt a
- => IShX sh -> a -> Mixed sh a
-mreplicateScal sh x = fromPrimitive (mreplicateScalP sh x)
-
-mslice :: Elt a => SNat i -> SNat n -> Mixed (Just (i + n + k) : sh) a -> Mixed (Just n : sh) a
-mslice i n arr =
- let _ :$% sh = mshape arr
- in mlift (SKnown n :!% ssxFromShape sh) (\_ -> X.slice i n) arr
-
-msliceU :: Elt a => Int -> Int -> Mixed (Nothing : sh) a -> Mixed (Nothing : sh) a
-msliceU i n arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.sliceU i n) arr
-
-mrev1 :: Elt a => Mixed (n : sh) a -> Mixed (n : sh) a
-mrev1 arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.rev1) arr
-
-mreshape :: forall sh sh' a. Elt a => IShX sh' -> Mixed sh a -> Mixed sh' a
-mreshape sh' arr =
- mlift (ssxFromShape sh')
- (\sshIn -> X.reshapePartial (ssxFromShape (mshape arr)) sshIn sh')
- arr
-
-miota :: (Enum a, PrimElt a) => SNat n -> Mixed '[Just n] a
-miota sn = fromPrimitive $ M_Primitive (SKnown sn :$% ZSX) (X.iota sn)
-
-masXArrayPrimP :: Mixed sh (Primitive a) -> (IShX sh, XArray sh a)
-masXArrayPrimP (M_Primitive sh arr) = (sh, arr)
-
-masXArrayPrim :: PrimElt a => Mixed sh a -> (IShX sh, XArray sh a)
-masXArrayPrim = masXArrayPrimP . toPrimitive
-
-mfromXArrayPrimP :: StaticShX sh -> XArray sh a -> Mixed sh (Primitive a)
-mfromXArrayPrimP ssh arr = M_Primitive (X.shape ssh arr) arr
-
-mfromXArrayPrim :: PrimElt a => StaticShX sh -> XArray sh a -> Mixed sh a
-mfromXArrayPrim = (fromPrimitive .) . mfromXArrayPrimP
-
-mliftPrim :: PrimElt a
- => (a -> a)
- -> Mixed sh a -> Mixed sh a
-mliftPrim f (toPrimitive -> M_Primitive sh (X.XArray arr)) = fromPrimitive $ M_Primitive sh (X.XArray (S.mapA f arr))
-
-mliftPrim2 :: PrimElt a
- => (a -> a -> a)
- -> Mixed sh a -> Mixed sh a -> Mixed sh a
-mliftPrim2 f (toPrimitive -> M_Primitive sh (X.XArray arr1)) (toPrimitive -> M_Primitive _ (X.XArray arr2)) =
- fromPrimitive $ M_Primitive sh (X.XArray (S.zipWithA f arr1 arr2))
-
-mliftNumElt1 :: PrimElt a => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) a) -> Mixed sh a -> Mixed sh a
-mliftNumElt1 f (toPrimitive -> M_Primitive sh (XArray arr)) = fromPrimitive $ M_Primitive sh (XArray (f (srankSh sh) arr))
-
-mliftNumElt2 :: PrimElt a
- => (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) a -> S.Array (Rank sh) a)
- -> Mixed sh a -> Mixed sh a -> Mixed sh a
-mliftNumElt2 f (toPrimitive -> M_Primitive sh1 (XArray arr1)) (toPrimitive -> M_Primitive sh2 (XArray arr2))
- | sh1 == sh2 = fromPrimitive $ M_Primitive sh1 (XArray (f (srankSh sh1) arr1 arr2))
- | otherwise = error $ "Data.Array.Nested: Shapes unequal in elementwise Num operation: " ++ show sh1 ++ " vs " ++ show sh2
-
-instance (NumElt a, PrimElt a) => Num (Mixed sh a) where
- (+) = mliftNumElt2 numEltAdd
- (-) = mliftNumElt2 numEltSub
- (*) = mliftNumElt2 numEltMul
- negate = mliftNumElt1 numEltNeg
- abs = mliftNumElt1 numEltAbs
- signum = mliftNumElt1 numEltSignum
- fromInteger _ = error "Data.Array.Nested.fromIntegral: No singletons available, use explicit mreplicate"
-
-instance (FloatElt a, NumElt a, PrimElt a) => Fractional (Mixed sh a) where
- fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit mreplicate"
- recip = mliftNumElt1 floatEltRecip
- (/) = mliftNumElt2 floatEltDiv
-
-instance (FloatElt a, NumElt a, PrimElt a) => Floating (Mixed sh a) where
- pi = error "Data.Array.Nested.pi: No singletons available, use explicit mreplicate"
- exp = mliftNumElt1 floatEltExp
- log = mliftNumElt1 floatEltLog
- sqrt = mliftNumElt1 floatEltSqrt
-
- (**) = mliftNumElt2 floatEltPow
- logBase = mliftNumElt2 floatEltLogbase
-
- sin = mliftNumElt1 floatEltSin
- cos = mliftNumElt1 floatEltCos
- tan = mliftNumElt1 floatEltTan
- asin = mliftNumElt1 floatEltAsin
- acos = mliftNumElt1 floatEltAcos
- atan = mliftNumElt1 floatEltAtan
- sinh = mliftNumElt1 floatEltSinh
- cosh = mliftNumElt1 floatEltCosh
- tanh = mliftNumElt1 floatEltTanh
- asinh = mliftNumElt1 floatEltAsinh
- acosh = mliftNumElt1 floatEltAcosh
- atanh = mliftNumElt1 floatEltAtanh
- log1p = mliftNumElt1 floatEltLog1p
- expm1 = mliftNumElt1 floatEltExpm1
- log1pexp = mliftNumElt1 floatEltLog1pexp
- log1mexp = mliftNumElt1 floatEltLog1mexp
-
-mtoRanked :: forall sh a. Elt a => Mixed sh a -> Ranked (Rank sh) a
-mtoRanked arr
- | Refl <- lemAppNil @sh
- , Refl <- lemAppNil @(Replicate (Rank sh) (Nothing @Nat))
- , Refl <- lemRankReplicate (srankSh (mshape arr))
- = Ranked (mcast (ssxFromShape (mshape arr)) (convSh (mshape arr)) (Proxy @'[]) arr)
- where
- convSh :: IShX sh' -> IShX (Replicate (Rank sh') Nothing)
- convSh ZSX = ZSX
- convSh (smn :$% (sh :: IShX sh'T))
- | Refl <- lemReplicateSucc @(Nothing @Nat) @(Rank sh'T)
- = SUnknown (fromSMayNat' smn) :$% convSh sh
-
-mcastToShaped :: forall sh sh' a. (Elt a, Rank sh ~ Rank sh')
- => Mixed sh a -> ShS sh' -> Shaped sh' a
-mcastToShaped arr targetsh
- | Refl <- lemAppNil @sh
- , Refl <- lemAppNil @(MapJust sh')
- , Refl <- lemRankMapJust targetsh
- = Shaped (mcast (ssxFromShape (mshape arr)) (shCvtSX targetsh) (Proxy @'[]) arr)
-
-
--- | A rank-typed array: the number of dimensions of the array (its /rank/) is
--- represented on the type level as a 'Nat'.
---
--- Valid elements of a ranked arrays are described by the 'Elt' type class.
--- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are
--- supported (and are represented as a single, flattened, struct-of-arrays
--- array internally).
---
--- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's.
-type Ranked :: Nat -> Type -> Type
-newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a)
-deriving instance Show (Mixed (Replicate n Nothing) a) => Show (Ranked n a)
-deriving instance Eq (Mixed (Replicate n Nothing) a) => Eq (Ranked n a)
-deriving instance Ord (Mixed '[] a) => Ord (Ranked 0 a)
-deriving instance NFData (Mixed (Replicate n Nothing) a) => NFData (Ranked n a)
-
--- | A shape-typed array: the full shape of the array (the sizes of its
--- dimensions) is represented on the type level as a list of 'Nat's. Note that
--- these are "GHC.TypeLits" naturals, because we do not need induction over
--- them and we want very large arrays to be possible.
---
--- Like for 'Ranked', the valid elements are described by the 'Elt' type class,
--- and 'Shaped' itself is again an instance of 'Elt' as well.
---
--- 'Shaped' is a newtype around a 'Mixed' of 'Just's.
-type Shaped :: [Nat] -> Type -> Type
-newtype Shaped sh a = Shaped (Mixed (MapJust sh) a)
-deriving instance Show (Mixed (MapJust sh) a) => Show (Shaped sh a)
-deriving instance Eq (Mixed (MapJust sh) a) => Eq (Shaped sh a)
-deriving instance Ord (Mixed '[] a) => Ord (Shaped '[] a)
-deriving instance NFData (Mixed (MapJust sh) a) => NFData (Shaped sh a)
-
--- just unwrap the newtype and defer to the general instance for nested arrays
-newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a))
-deriving instance Show (Mixed sh (Mixed (Replicate n Nothing) a)) => Show (Mixed sh (Ranked n a))
-newtype instance Mixed sh (Shaped sh' a) = M_Shaped (Mixed sh (Mixed (MapJust sh' ) a))
-deriving instance Show (Mixed sh (Mixed (MapJust sh' ) a)) => Show (Mixed sh (Shaped sh' a))
-
-newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a))
-newtype instance MixedVecs s sh (Shaped sh' a) = MV_Shaped (MixedVecs s sh (Mixed (MapJust sh' ) a))
-
-
--- 'Ranked' and 'Shaped' can already be used at the top level of an array nest;
--- these instances allow them to also be used as elements of arrays, thus
--- making them first-class in the API.
-instance Elt a => Elt (Ranked n a) where
- mshape (M_Ranked arr) = mshape arr
- mindex (M_Ranked arr) i = Ranked (mindex arr i)
-
- mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IIxX sh -> Mixed sh' (Ranked n a)
- mindexPartial (M_Ranked arr) i =
- coerce @(Mixed sh' (Mixed (Replicate n Nothing) a)) @(Mixed sh' (Ranked n a)) $
- mindexPartial arr i
-
- mscalar (Ranked x) = M_Ranked (M_Nest ZSX x)
-
- mfromListOuter :: forall sh. NonEmpty (Mixed sh (Ranked n a)) -> Mixed (Nothing : sh) (Ranked n a)
- mfromListOuter l = M_Ranked (mfromListOuter (coerce l))
-
- mtoListOuter :: forall m sh. Mixed (m : sh) (Ranked n a) -> [Mixed sh (Ranked n a)]
- mtoListOuter (M_Ranked arr) =
- coerce @[Mixed sh (Mixed (Replicate n 'Nothing) a)] @[Mixed sh (Ranked n a)] (mtoListOuter arr)
-
- mlift :: forall sh1 sh2.
- StaticShX sh2
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
- -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a)
- mlift ssh2 f (M_Ranked arr) =
- coerce @(Mixed sh2 (Mixed (Replicate n Nothing) a)) @(Mixed sh2 (Ranked n a)) $
- mlift ssh2 f arr
-
- mlift2 :: forall sh1 sh2 sh3.
- StaticShX sh3
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
- -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) -> Mixed sh3 (Ranked n a)
- mlift2 ssh3 f (M_Ranked arr1) (M_Ranked arr2) =
- coerce @(Mixed sh3 (Mixed (Replicate n Nothing) a)) @(Mixed sh3 (Ranked n a)) $
- mlift2 ssh3 f arr1 arr2
-
- mcast ssh1 sh2 psh' (M_Ranked arr) = M_Ranked (mcast ssh1 sh2 psh' arr)
-
- mtranspose perm (M_Ranked arr) = M_Ranked (mtranspose perm arr)
-
- mshapeTree (Ranked arr) = first shCvtXR' (mshapeTree arr)
-
- mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
-
- mshapeTreeEmpty _ (sh, t) = shapeSizeR sh == 0 && mshapeTreeEmpty (Proxy @a) t
-
- mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
-
- mvecsWrite :: forall sh s. IShX sh -> IIxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s ()
- mvecsWrite sh idx (Ranked arr) vecs =
- mvecsWrite sh idx arr
- (coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a))
- vecs)
-
- mvecsWritePartial :: forall sh sh' s.
- IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Ranked n a)
- -> MixedVecs s (sh ++ sh') (Ranked n a)
- -> ST s ()
- mvecsWritePartial sh idx arr vecs =
- mvecsWritePartial sh idx
- (coerce @(Mixed sh' (Ranked n a))
- @(Mixed sh' (Mixed (Replicate n Nothing) a))
- arr)
- (coerce @(MixedVecs s (sh ++ sh') (Ranked n a))
- @(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a))
- vecs)
-
- mvecsFreeze :: forall sh s. IShX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a))
- mvecsFreeze sh vecs =
- coerce @(Mixed sh (Mixed (Replicate n Nothing) a))
- @(Mixed sh (Ranked n a))
- <$> mvecsFreeze sh
- (coerce @(MixedVecs s sh (Ranked n a))
- @(MixedVecs s sh (Mixed (Replicate n Nothing) a))
- vecs)
-
-instance (KnownNat n, KnownElt a) => KnownElt (Ranked n a) where
- memptyArray :: forall sh. IShX sh -> Mixed sh (Ranked n a)
- memptyArray i
- | Dict <- lemKnownReplicate (SNat @n)
- = coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) $
- memptyArray i
-
- mvecsUnsafeNew idx (Ranked arr)
- | Dict <- lemKnownReplicate (SNat @n)
- = MV_Ranked <$> mvecsUnsafeNew idx arr
-
- mvecsNewEmpty _
- | Dict <- lemKnownReplicate (SNat @n)
- = MV_Ranked <$> mvecsNewEmpty (Proxy @(Mixed (Replicate n Nothing) a))
-
--- sshapeKnown :: ShS sh -> Dict KnownShape sh
--- sshapeKnown ZSS = Dict
--- sshapeKnown (SNat :$$ sh) | Dict <- sshapeKnown sh = Dict
-
-lemCommMapJustApp :: forall sh1 sh2. ShS sh1 -> Proxy sh2
- -> MapJust (sh1 ++ sh2) :~: MapJust sh1 ++ MapJust sh2
-lemCommMapJustApp ZSS _ = Refl
-lemCommMapJustApp (_ :$$ sh) p | Refl <- lemCommMapJustApp sh p = Refl
-
-instance Elt a => Elt (Shaped sh a) where
- mshape (M_Shaped arr) = mshape arr
- mindex (M_Shaped arr) i = Shaped (mindex arr i)
-
- mindexPartial :: forall sh1 sh2. Mixed (sh1 ++ sh2) (Shaped sh a) -> IIxX sh1 -> Mixed sh2 (Shaped sh a)
- mindexPartial (M_Shaped arr) i =
- coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $
- mindexPartial arr i
-
- mscalar (Shaped x) = M_Shaped (M_Nest ZSX x)
-
- mfromListOuter :: forall sh'. NonEmpty (Mixed sh' (Shaped sh a)) -> Mixed (Nothing : sh') (Shaped sh a)
- mfromListOuter l = M_Shaped (mfromListOuter (coerce l))
-
- mtoListOuter :: forall n sh'. Mixed (n : sh') (Shaped sh a) -> [Mixed sh' (Shaped sh a)]
- mtoListOuter (M_Shaped arr)
- = coerce @[Mixed sh' (Mixed (MapJust sh) a)] @[Mixed sh' (Shaped sh a)] (mtoListOuter arr)
-
- mlift :: forall sh1 sh2.
- StaticShX sh2
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
- -> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a)
- mlift ssh2 f (M_Shaped arr) =
- coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $
- mlift ssh2 f arr
-
- mlift2 :: forall sh1 sh2 sh3.
- StaticShX sh3
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
- -> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a) -> Mixed sh3 (Shaped sh a)
- mlift2 ssh3 f (M_Shaped arr1) (M_Shaped arr2) =
- coerce @(Mixed sh3 (Mixed (MapJust sh) a)) @(Mixed sh3 (Shaped sh a)) $
- mlift2 ssh3 f arr1 arr2
-
- mcast ssh1 sh2 psh' (M_Shaped arr) = M_Shaped (mcast ssh1 sh2 psh' arr)
-
- mtranspose perm (M_Shaped arr) = M_Shaped (mtranspose perm arr)
-
- mshapeTree (Shaped arr) = first shCvtXS' (mshapeTree arr)
-
- mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
-
- mshapeTreeEmpty _ (sh, t) = shapeSizeS sh == 0 && mshapeTreeEmpty (Proxy @a) t
-
- mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
-
- mvecsWrite :: forall sh' s. IShX sh' -> IIxX sh' -> Shaped sh a -> MixedVecs s sh' (Shaped sh a) -> ST s ()
- mvecsWrite sh idx (Shaped arr) vecs =
- mvecsWrite sh idx arr
- (coerce @(MixedVecs s sh' (Shaped sh a)) @(MixedVecs s sh' (Mixed (MapJust sh) a))
- vecs)
-
- mvecsWritePartial :: forall sh1 sh2 s.
- IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Shaped sh a)
- -> MixedVecs s (sh1 ++ sh2) (Shaped sh a)
- -> ST s ()
- mvecsWritePartial sh idx arr vecs =
- mvecsWritePartial sh idx
- (coerce @(Mixed sh2 (Shaped sh a))
- @(Mixed sh2 (Mixed (MapJust sh) a))
- arr)
- (coerce @(MixedVecs s (sh1 ++ sh2) (Shaped sh a))
- @(MixedVecs s (sh1 ++ sh2) (Mixed (MapJust sh) a))
- vecs)
-
- mvecsFreeze :: forall sh' s. IShX sh' -> MixedVecs s sh' (Shaped sh a) -> ST s (Mixed sh' (Shaped sh a))
- mvecsFreeze sh vecs =
- coerce @(Mixed sh' (Mixed (MapJust sh) a))
- @(Mixed sh' (Shaped sh a))
- <$> mvecsFreeze sh
- (coerce @(MixedVecs s sh' (Shaped sh a))
- @(MixedVecs s sh' (Mixed (MapJust sh) a))
- vecs)
-
--- | Evidence for the static part of a shape. This pops up only when you are
--- polymorphic in the element type of an array.
-type KnownShS :: [Nat] -> Constraint
-class KnownShS sh where knownShS :: ShS sh
-instance KnownShS '[] where knownShS = ZSS
-instance (KnownNat n, KnownShS sh) => KnownShS (n : sh) where knownShS = natSing :$$ knownShS
-
-lemKnownMapJust :: forall sh. KnownShS sh => Proxy sh -> Dict KnownShX (MapJust sh)
-lemKnownMapJust _ = lemKnownShX (go (knownShS @sh))
- where
- go :: ShS sh' -> StaticShX (MapJust sh')
- go ZSS = ZKX
- go (n :$$ sh) = SKnown n :!% go sh
-
-instance (KnownShS sh, KnownElt a) => KnownElt (Shaped sh a) where
- memptyArray :: forall sh'. IShX sh' -> Mixed sh' (Shaped sh a)
- memptyArray i
- | Dict <- lemKnownMapJust (Proxy @sh)
- = coerce @(Mixed sh' (Mixed (MapJust sh) a)) @(Mixed sh' (Shaped sh a)) $
- memptyArray i
-
- mvecsUnsafeNew idx (Shaped arr)
- | Dict <- lemKnownMapJust (Proxy @sh)
- = MV_Shaped <$> mvecsUnsafeNew idx arr
-
- mvecsNewEmpty _
- | Dict <- lemKnownMapJust (Proxy @sh)
- = MV_Shaped <$> mvecsNewEmpty (Proxy @(Mixed (MapJust sh) a))
-
-
--- ====== API OF RANKED ARRAYS ====== --
-
-arithPromoteRanked :: forall n a. PrimElt a
- => (forall sh. Mixed sh a -> Mixed sh a)
- -> Ranked n a -> Ranked n a
-arithPromoteRanked = coerce
-
-arithPromoteRanked2 :: forall n a. PrimElt a
- => (forall sh. Mixed sh a -> Mixed sh a -> Mixed sh a)
- -> Ranked n a -> Ranked n a -> Ranked n a
-arithPromoteRanked2 = coerce
-
-instance (NumElt a, PrimElt a) => Num (Ranked n a) where
- (+) = arithPromoteRanked2 (+)
- (-) = arithPromoteRanked2 (-)
- (*) = arithPromoteRanked2 (*)
- negate = arithPromoteRanked negate
- abs = arithPromoteRanked abs
- signum = arithPromoteRanked signum
- fromInteger _ = error "Data.Array.Nested.fromIntegral: No singletons available, use explicit rreplicateScal"
-
-instance (FloatElt a, NumElt a, PrimElt a) => Fractional (Ranked n a) where
- fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit rreplicateScal"
- recip = arithPromoteRanked recip
- (/) = arithPromoteRanked2 (/)
-
-instance (FloatElt a, NumElt a, PrimElt a) => Floating (Ranked n a) where
- pi = error "Data.Array.Nested.pi: No singletons available, use explicit rreplicateScal"
- exp = arithPromoteRanked exp
- log = arithPromoteRanked log
- sqrt = arithPromoteRanked sqrt
- (**) = arithPromoteRanked2 (**)
- logBase = arithPromoteRanked2 logBase
- sin = arithPromoteRanked sin
- cos = arithPromoteRanked cos
- tan = arithPromoteRanked tan
- asin = arithPromoteRanked asin
- acos = arithPromoteRanked acos
- atan = arithPromoteRanked atan
- sinh = arithPromoteRanked sinh
- cosh = arithPromoteRanked cosh
- tanh = arithPromoteRanked tanh
- asinh = arithPromoteRanked asinh
- acosh = arithPromoteRanked acosh
- atanh = arithPromoteRanked atanh
- log1p = arithPromoteRanked GHC.Float.log1p
- expm1 = arithPromoteRanked GHC.Float.expm1
- log1pexp = arithPromoteRanked GHC.Float.log1pexp
- log1mexp = arithPromoteRanked GHC.Float.log1mexp
-
-zeroIxR :: SNat n -> IIxR n
-zeroIxR SZ = ZIR
-zeroIxR (SS n) = 0 :.: zeroIxR n
-
-ixCvtXR :: IIxX sh -> IIxR (Rank sh)
-ixCvtXR ZIX = ZIR
-ixCvtXR (n :.% idx) = n :.: ixCvtXR idx
-
-shCvtXR' :: forall n. IShX (Replicate n Nothing) -> IShR n
-shCvtXR' ZSX =
- castWith (subst2 (unsafeCoerce Refl :: 0 :~: n))
- ZSR
-shCvtXR' (n :$% (idx :: IShX sh))
- | Refl <- lemReplicateSucc @(Nothing @Nat) @(n - 1) =
- castWith (subst2 (lem1 @sh Refl))
- (fromSMayNat' n :$: shCvtXR' (castWith (subst2 (lem2 Refl)) idx))
- where
- lem1 :: forall sh' n' k.
- k : sh' :~: Replicate n' Nothing
- -> Rank sh' + 1 :~: n'
- lem1 Refl = unsafeCoerce Refl
-
- lem2 :: k : sh :~: Replicate n Nothing
- -> sh :~: Replicate (Rank sh) Nothing
- lem2 Refl = unsafeCoerce Refl
-
-ixCvtRX :: IIxR n -> IIxX (Replicate n Nothing)
-ixCvtRX ZIR = ZIX
-ixCvtRX (n :.: (idx :: IxR m Int)) =
- castWith (subst2 @IxX @Int (lemReplicateSucc @(Nothing @Nat) @m))
- (n :.% ixCvtRX idx)
-
-shCvtRX :: IShR n -> IShX (Replicate n Nothing)
-shCvtRX ZSR = ZSX
-shCvtRX (n :$: (idx :: ShR m Int)) =
- castWith (subst2 @ShX @Int (lemReplicateSucc @(Nothing @Nat) @m))
- (SUnknown n :$% shCvtRX idx)
-
-shapeSizeR :: IShR n -> Int
-shapeSizeR ZSR = 1
-shapeSizeR (n :$: sh) = n * shapeSizeR sh
-
-
-rshape :: forall n a. Elt a => Ranked n a -> IShR n
-rshape (Ranked arr) = shCvtXR' (mshape arr)
-
-rindex :: Elt a => Ranked n a -> IIxR n -> a
-rindex (Ranked arr) idx = mindex arr (ixCvtRX idx)
-
-snatFromListR :: ListR n i -> SNat n
-snatFromListR ZR = SNat
-snatFromListR (_ ::: (l :: ListR n i)) | SNat <- snatFromListR l, Dict <- knownNatSucc @n = SNat
-
-snatFromIxR :: IxR n i -> SNat n
-snatFromIxR (IxR sh) = snatFromListR sh
-
-snatFromShR :: ShR n i -> SNat n
-snatFromShR (ShR sh) = snatFromListR sh
-
-rindexPartial :: forall n m a. Elt a => Ranked (n + m) a -> IIxR n -> Ranked m a
-rindexPartial (Ranked arr) idx =
- Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing)
- (castWith (subst2 (lemReplicatePlusApp (snatFromIxR idx) (Proxy @m) (Proxy @Nothing))) arr)
- (ixCvtRX idx))
-
--- | __WARNING__: All values returned from the function must have equal shape.
--- See the documentation of 'mgenerate' for more details.
-rgenerate :: forall n a. KnownElt a => IShR n -> (IIxR n -> a) -> Ranked n a
-rgenerate sh f
- | sn@SNat <- snatFromShR sh
- , Dict <- lemKnownReplicate sn
- , Refl <- lemRankReplicate sn
- = Ranked (mgenerate (shCvtRX sh) (f . ixCvtXR))
-
--- | See the documentation of 'mlift'.
-rlift :: forall n1 n2 a. Elt a
- => SNat n2
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)
- -> Ranked n1 a -> Ranked n2 a
-rlift sn2 f (Ranked arr) = Ranked (mlift (ssxFromSNat sn2) f arr)
-
--- | See the documentation of 'mlift2'.
-rlift2 :: forall n1 n2 n3 a. Elt a
- => SNat n3
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b -> XArray (Replicate n3 Nothing ++ sh') b)
- -> Ranked n1 a -> Ranked n2 a -> Ranked n3 a
-rlift2 sn3 f (Ranked arr1) (Ranked arr2) = Ranked (mlift2 (ssxFromSNat sn3) f arr1 arr2)
-
-rsumOuter1P :: forall n a.
- (Storable a, NumElt a)
- => Ranked (n + 1) (Primitive a) -> Ranked n (Primitive a)
-rsumOuter1P (Ranked arr)
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = Ranked (msumOuter1P arr)
-
-rsumOuter1 :: forall n a. (NumElt a, PrimElt a)
- => Ranked (n + 1) a -> Ranked n a
-rsumOuter1 = rfromPrimitive . rsumOuter1P . rtoPrimitive
-
-applyPermR :: forall i n. [Int] -> ListR n i -> ListR n i
-applyPermR = \perm sh ->
- listrFromList perm $ \sperm ->
- case (snatFromListR sperm, snatFromListR sh) of
- (permlen@SNat, shlen@SNat) -> case cmpNat permlen shlen of
- LTI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post
- EQI -> let (pre, post) = listrSplitAt permlen sh in listrAppend (applyPermRFull permlen sperm pre) post
- GTI -> error $ "Length of permutation (" ++ show (fromSNat' permlen) ++ ")"
- ++ " > length of shape (" ++ show (fromSNat' shlen) ++ ")"
- where
- listrSplitAt :: m <= n' => SNat m -> ListR n' i -> (ListR m i, ListR (n' - m) i)
- listrSplitAt SZ sh = (ZR, sh)
- listrSplitAt (SS m) (n ::: sh) = (\(pre, post) -> (n ::: pre, post)) (listrSplitAt m sh)
- listrSplitAt SS{} ZR = error "m' + 1 <= 0"
-
- applyPermRFull :: SNat m -> ListR k Int -> ListR m i -> ListR k i
- applyPermRFull _ ZR _ = ZR
- applyPermRFull sm@SNat (i ::: perm) l =
- TypeNats.withSomeSNat (fromIntegral i) $ \si@(SNat :: SNat idx) ->
- case cmpNat (SNat @(idx + 1)) sm of
- LTI -> listrIndex si l ::: applyPermRFull sm perm l
- EQI -> listrIndex si l ::: applyPermRFull sm perm l
- GTI -> error "applyPermR: Index in permutation out of range"
-
-applyPermIxR :: forall n i. [Int] -> IxR n i -> IxR n i
-applyPermIxR = coerce (applyPermR @i)
-
-applyPermShR :: forall n i. [Int] -> ShR n i -> ShR n i
-applyPermShR = coerce (applyPermR @i)
-
-rtranspose :: forall n a. Elt a => [Int] -> Ranked n a -> Ranked n a
-rtranspose perm arr
- | sn@SNat <- snatFromShR (rshape arr)
- , Dict <- lemKnownReplicate sn
- , length perm <= fromIntegral (natVal (Proxy @n))
- = rlift sn
- (\ssh' -> X.transposeUntyped (natSing @n) ssh' perm)
- arr
- | otherwise
- = error "Data.Array.Nested.rtranspose: Permutation longer than rank of array"
-
-rappend :: forall n a. Elt a
- => Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked (n + 1) a
-rappend arr1 arr2
- | sn@SNat <- snatFromShR (rshape arr1)
- , Dict <- lemKnownReplicate sn
- , Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = coerce (mappend @Nothing @Nothing @(Replicate n Nothing))
- arr1 arr2
-
-rscalar :: Elt a => a -> Ranked 0 a
-rscalar x = Ranked (mscalar x)
-
-rfromVectorP :: forall n a. Storable a => IShR n -> VS.Vector a -> Ranked n (Primitive a)
-rfromVectorP sh v
- | Dict <- lemKnownReplicate (snatFromShR sh)
- = Ranked (mfromVectorP (shCvtRX sh) v)
-
-rfromVector :: forall n a. PrimElt a => IShR n -> VS.Vector a -> Ranked n a
-rfromVector sh v = rfromPrimitive (rfromVectorP sh v)
-
-rtoVectorP :: Storable a => Ranked n (Primitive a) -> VS.Vector a
-rtoVectorP = coerce mtoVectorP
-
-rtoVector :: PrimElt a => Ranked n a -> VS.Vector a
-rtoVector = coerce mtoVector
-
-rfromListOuter :: forall n a. Elt a => NonEmpty (Ranked n a) -> Ranked (n + 1) a
-rfromListOuter l
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = Ranked (mfromListOuter (coerce l :: NonEmpty (Mixed (Replicate n Nothing) a)))
-
-rfromList1 :: Elt a => NonEmpty a -> Ranked 1 a
-rfromList1 l = Ranked (mfromList1 l)
-
-rfromList1Prim :: PrimElt a => [a] -> Ranked 1 a
-rfromList1Prim l = Ranked (mfromList1Prim l)
-
-rtoListOuter :: forall n a. Elt a => Ranked (n + 1) a -> [Ranked n a]
-rtoListOuter (Ranked arr)
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = coerce (mtoListOuter @a @Nothing @(Replicate n Nothing) arr)
-
-rtoList1 :: Elt a => Ranked 1 a -> [a]
-rtoList1 = map runScalar . rtoListOuter
-
-rfromListPrim :: PrimElt a => [a] -> Ranked 1 a
-rfromListPrim l =
- let ssh = SUnknown () :!% ZKX
- xarr = X.fromList1 ssh l
- in Ranked $ fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr
-
-rfromListPrimLinear :: PrimElt a => IShR n -> [a] -> Ranked n a
-rfromListPrimLinear sh l =
- let M_Primitive _ xarr = toPrimitive (mfromListPrim l)
- in Ranked $ fromPrimitive $ M_Primitive (shCvtRX sh) (X.reshape (SUnknown () :!% ZKX) (shCvtRX sh) xarr)
-
-rfromOrthotope :: PrimElt a => SNat n -> S.Array n a -> Ranked n a
-rfromOrthotope sn arr
- | Refl <- lemRankReplicate sn
- = let xarr = XArray arr
- in Ranked (fromPrimitive (M_Primitive (X.shape (ssxFromSNat sn) xarr) xarr))
-
-runScalar :: Elt a => Ranked 0 a -> a
-runScalar arr = rindex arr ZIR
-
-rrerankP :: forall n1 n2 n a b. (Storable a, Storable b)
- => SNat n -> IShR n2
- -> (Ranked n1 (Primitive a) -> Ranked n2 (Primitive b))
- -> Ranked (n + n1) (Primitive a) -> Ranked (n + n2) (Primitive b)
-rrerankP sn sh2 f (Ranked arr)
- | Refl <- lemReplicatePlusApp sn (Proxy @n1) (Proxy @(Nothing @Nat))
- , Refl <- lemReplicatePlusApp sn (Proxy @n2) (Proxy @(Nothing @Nat))
- = Ranked (mrerankP (ssxFromSNat sn) (shCvtRX sh2)
- (\a -> let Ranked r = f (Ranked a) in r)
- arr)
-
--- | If there is a zero-sized dimension in the @n@-prefix of the shape of the
--- input array, then there is no way to deduce the full shape of the output
--- array (more precisely, the @n2@ part): that could only come from calling
--- @f@, and there are no subarrays to call @f@ on. @orthotope@ errors out in
--- this case; we choose to fill the @n2@ part of the output shape with zeros.
---
--- For example, if:
---
--- @
--- arr :: Ranked 5 Int -- of shape [3, 0, 4, 2, 21]
--- f :: Ranked 2 Int -> Ranked 3 Float
--- @
---
--- then:
---
--- @
--- rrerank _ _ _ f arr :: Ranked 5 Float
--- @
---
--- and this result will have shape @[3, 0, 4, 0, 0, 0]@. Note that the
--- "reranked" part (the last 3 entries) are zero; we don't know if @f@ intended
--- to return an array with shape all-0 here (it probably didn't), but there is
--- no better number to put here absent a subarray of the input to pass to @f@.
-rrerank :: forall n1 n2 n a b. (PrimElt a, PrimElt b)
- => SNat n -> IShR n2
- -> (Ranked n1 a -> Ranked n2 b)
- -> Ranked (n + n1) a -> Ranked (n + n2) b
-rrerank ssh sh2 f (rtoPrimitive -> arr) =
- rfromPrimitive $ rrerankP ssh sh2 (rtoPrimitive . f . rfromPrimitive) arr
-
-rreplicate :: forall n m a. Elt a
- => IShR n -> Ranked m a -> Ranked (n + m) a
-rreplicate sh (Ranked arr)
- | Refl <- lemReplicatePlusApp (snatFromShR sh) (Proxy @m) (Proxy @(Nothing @Nat))
- = Ranked (mreplicate (shCvtRX sh) arr)
-
-rreplicateScalP :: forall n a. Storable a => IShR n -> a -> Ranked n (Primitive a)
-rreplicateScalP sh x
- | Dict <- lemKnownReplicate (snatFromShR sh)
- = Ranked (mreplicateScalP (shCvtRX sh) x)
-
-rreplicateScal :: forall n a. PrimElt a
- => IShR n -> a -> Ranked n a
-rreplicateScal sh x = rfromPrimitive (rreplicateScalP sh x)
-
-rslice :: forall n a. Elt a => Int -> Int -> Ranked (n + 1) a -> Ranked (n + 1) a
-rslice i n arr
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = rlift (snatFromShR (rshape arr))
- (\_ -> X.sliceU i n)
- arr
-
-rrev1 :: forall n a. Elt a => Ranked (n + 1) a -> Ranked (n + 1) a
-rrev1 arr =
- rlift (snatFromShR (rshape arr))
- (\(_ :: StaticShX sh') ->
- case lemReplicateSucc @(Nothing @Nat) @n of
- Refl -> X.rev1 @Nothing @(Replicate n Nothing ++ sh'))
- arr
-
-rreshape :: forall n n' a. Elt a
- => IShR n' -> Ranked n a -> Ranked n' a
-rreshape sh' rarr@(Ranked arr)
- | Dict <- lemKnownReplicate (snatFromShR (rshape rarr))
- , Dict <- lemKnownReplicate (snatFromShR sh')
- = Ranked (mreshape (shCvtRX sh') arr)
-
-riota :: (Enum a, PrimElt a, Elt a) => Int -> Ranked 1 a
-riota n = TypeNats.withSomeSNat (fromIntegral n) $ mtoRanked . miota
-
-rasXArrayPrimP :: Ranked n (Primitive a) -> (IShR n, XArray (Replicate n Nothing) a)
-rasXArrayPrimP (Ranked arr) = first shCvtXR' (masXArrayPrimP arr)
-
-rasXArrayPrim :: PrimElt a => Ranked n a -> (IShR n, XArray (Replicate n Nothing) a)
-rasXArrayPrim (Ranked arr) = first shCvtXR' (masXArrayPrim arr)
-
-rfromXArrayPrimP :: SNat n -> XArray (Replicate n Nothing) a -> Ranked n (Primitive a)
-rfromXArrayPrimP sn arr = Ranked (mfromXArrayPrimP (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr)
-
-rfromXArrayPrim :: PrimElt a => SNat n -> XArray (Replicate n Nothing) a -> Ranked n a
-rfromXArrayPrim sn arr = Ranked (mfromXArrayPrim (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr)
-
-rcastToShaped :: Elt a => Ranked (Rank sh) a -> ShS sh -> Shaped sh a
-rcastToShaped (Ranked arr) targetsh
- | Refl <- lemRankReplicate (srankSh (shCvtSX targetsh))
- , Refl <- lemRankMapJust targetsh
- = mcastToShaped arr targetsh
-
-rfromPrimitive :: PrimElt a => Ranked n (Primitive a) -> Ranked n a
-rfromPrimitive (Ranked arr) = Ranked (fromPrimitive arr)
-
-rtoPrimitive :: PrimElt a => Ranked n a -> Ranked n (Primitive a)
-rtoPrimitive (Ranked arr) = Ranked (toPrimitive arr)
-
-
--- ====== API OF SHAPED ARRAYS ====== --
-
-arithPromoteShaped :: forall sh a. PrimElt a
- => (forall shx. Mixed shx a -> Mixed shx a)
- -> Shaped sh a -> Shaped sh a
-arithPromoteShaped = coerce
-
-arithPromoteShaped2 :: forall sh a. PrimElt a
- => (forall shx. Mixed shx a -> Mixed shx a -> Mixed shx a)
- -> Shaped sh a -> Shaped sh a -> Shaped sh a
-arithPromoteShaped2 = coerce
-
-instance (NumElt a, PrimElt a) => Num (Shaped sh a) where
- (+) = arithPromoteShaped2 (+)
- (-) = arithPromoteShaped2 (-)
- (*) = arithPromoteShaped2 (*)
- negate = arithPromoteShaped negate
- abs = arithPromoteShaped abs
- signum = arithPromoteShaped signum
- fromInteger _ = error "Data.Array.Nested.fromIntegral: No singletons available, use explicit sreplicateScal"
-
-instance (FloatElt a, NumElt a, PrimElt a) => Fractional (Shaped sh a) where
- fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit sreplicateScal"
- recip = arithPromoteShaped recip
- (/) = arithPromoteShaped2 (/)
-
-instance (FloatElt a, NumElt a, PrimElt a) => Floating (Shaped sh a) where
- pi = error "Data.Array.Nested.pi: No singletons available, use explicit sreplicateScal"
- exp = arithPromoteShaped exp
- log = arithPromoteShaped log
- sqrt = arithPromoteShaped sqrt
- (**) = arithPromoteShaped2 (**)
- logBase = arithPromoteShaped2 logBase
- sin = arithPromoteShaped sin
- cos = arithPromoteShaped cos
- tan = arithPromoteShaped tan
- asin = arithPromoteShaped asin
- acos = arithPromoteShaped acos
- atan = arithPromoteShaped atan
- sinh = arithPromoteShaped sinh
- cosh = arithPromoteShaped cosh
- tanh = arithPromoteShaped tanh
- asinh = arithPromoteShaped asinh
- acosh = arithPromoteShaped acosh
- atanh = arithPromoteShaped atanh
- log1p = arithPromoteShaped GHC.Float.log1p
- expm1 = arithPromoteShaped GHC.Float.expm1
- log1pexp = arithPromoteShaped GHC.Float.log1pexp
- log1mexp = arithPromoteShaped GHC.Float.log1mexp
-
-zeroIxS :: ShS sh -> IIxS sh
-zeroIxS ZSS = ZIS
-zeroIxS (_ :$$ sh) = 0 :.$ zeroIxS sh
-
-ixCvtXS :: ShS sh -> IIxX (MapJust sh) -> IIxS sh
-ixCvtXS ZSS ZIX = ZIS
-ixCvtXS (_ :$$ sh) (n :.% idx) = n :.$ ixCvtXS sh idx
-
-type family Tail l where
- Tail (_ : xs) = xs
-
-shCvtXS' :: forall sh. IShX (MapJust sh) -> ShS sh
-shCvtXS' ZSX = castWith (subst1 (unsafeCoerce Refl :: '[] :~: sh)) ZSS
-shCvtXS' (SKnown n@SNat :$% (idx :: IShX mjshT)) =
- castWith (subst1 (lem Refl)) $
- n :$$ shCvtXS' @(Tail sh) (castWith (subst2 (unsafeCoerce Refl :: mjshT :~: MapJust (Tail sh)))
- idx)
- where
- lem :: forall sh1 sh' n.
- Just n : sh1 :~: MapJust sh'
- -> n : Tail sh' :~: sh'
- lem Refl = unsafeCoerce Refl
-shCvtXS' (SUnknown _ :$% _) = error "impossible"
-
-ixCvtSX :: IIxS sh -> IIxX (MapJust sh)
-ixCvtSX ZIS = ZIX
-ixCvtSX (n :.$ sh) = n :.% ixCvtSX sh
-
-shCvtSX :: ShS sh -> IShX (MapJust sh)
-shCvtSX ZSS = ZSX
-shCvtSX (n :$$ sh) = SKnown n :$% shCvtSX sh
-
-shapeSizeS :: ShS sh -> Int
-shapeSizeS ZSS = 1
-shapeSizeS (n :$$ sh) = fromSNat' n * shapeSizeS sh
-
-
-sshape :: forall sh a. Elt a => Shaped sh a -> ShS sh
-sshape (Shaped arr) = shCvtXS' (mshape arr)
-
-sindex :: Elt a => Shaped sh a -> IIxS sh -> a
-sindex (Shaped arr) idx = mindex arr (ixCvtSX idx)
-
-shsTakeIx :: Proxy sh' -> ShS (sh ++ sh') -> IIxS sh -> ShS sh
-shsTakeIx _ _ ZIS = ZSS
-shsTakeIx p sh (_ :.$ idx) = case sh of n :$$ sh' -> n :$$ shsTakeIx p sh' idx
-
-sindexPartial :: forall sh1 sh2 a. Elt a => Shaped (sh1 ++ sh2) a -> IIxS sh1 -> Shaped sh2 a
-sindexPartial sarr@(Shaped arr) idx =
- Shaped (mindexPartial @a @(MapJust sh1) @(MapJust sh2)
- (castWith (subst2 (lemCommMapJustApp (shsTakeIx (Proxy @sh2) (sshape sarr) idx) (Proxy @sh2))) arr)
- (ixCvtSX idx))
-
--- | __WARNING__: All values returned from the function must have equal shape.
--- See the documentation of 'mgenerate' for more details.
-sgenerate :: forall sh a. KnownElt a => ShS sh -> (IIxS sh -> a) -> Shaped sh a
-sgenerate sh f = Shaped (mgenerate (shCvtSX sh) (f . ixCvtXS sh))
-
--- | See the documentation of 'mlift'.
-slift :: forall sh1 sh2 a. Elt a
- => ShS sh2
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b)
- -> Shaped sh1 a -> Shaped sh2 a
-slift sh2 f (Shaped arr) = Shaped (mlift (ssxFromShape (shCvtSX sh2)) f arr)
-
--- | See the documentation of 'mlift'.
-slift2 :: forall sh1 sh2 sh3 a. Elt a
- => ShS sh3
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b -> XArray (MapJust sh3 ++ sh') b)
- -> Shaped sh1 a -> Shaped sh2 a -> Shaped sh3 a
-slift2 sh3 f (Shaped arr1) (Shaped arr2) = Shaped (mlift2 (ssxFromShape (shCvtSX sh3)) f arr1 arr2)
-
-ssumOuter1P :: forall sh n a. (Storable a, NumElt a)
- => Shaped (n : sh) (Primitive a) -> Shaped sh (Primitive a)
-ssumOuter1P (Shaped arr) = Shaped (msumOuter1P arr)
-
-ssumOuter1 :: forall sh n a. (NumElt a, PrimElt a)
- => Shaped (n : sh) a -> Shaped sh a
-ssumOuter1 = sfromPrimitive . ssumOuter1P . stoPrimitive
-
-lemCommMapJustTakeLen :: Perm is -> ShS sh -> TakeLen is (MapJust sh) :~: MapJust (TakeLen is sh)
-lemCommMapJustTakeLen PNil _ = Refl
-lemCommMapJustTakeLen (_ `PCons` is) (_ :$$ sh) | Refl <- lemCommMapJustTakeLen is sh = Refl
-lemCommMapJustTakeLen (_ `PCons` _) ZSS = error "TakeLen of empty"
-
-lemCommMapJustDropLen :: Perm is -> ShS sh -> DropLen is (MapJust sh) :~: MapJust (DropLen is sh)
-lemCommMapJustDropLen PNil _ = Refl
-lemCommMapJustDropLen (_ `PCons` is) (_ :$$ sh) | Refl <- lemCommMapJustDropLen is sh = Refl
-lemCommMapJustDropLen (_ `PCons` _) ZSS = error "DropLen of empty"
-
-lemCommMapJustIndex :: SNat i -> ShS sh -> Index i (MapJust sh) :~: Just (Index i sh)
-lemCommMapJustIndex SZ (_ :$$ _) = Refl
-lemCommMapJustIndex (SS (i :: SNat i')) ((_ :: SNat n) :$$ (sh :: ShS sh'))
- | Refl <- lemCommMapJustIndex i sh
- , Refl <- lemIndexSucc (Proxy @i') (Proxy @(Just n)) (Proxy @(MapJust sh'))
- , Refl <- lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh')
- = Refl
-lemCommMapJustIndex _ ZSS = error "Index of empty"
-
-lemCommMapJustPermute :: Perm is -> ShS sh -> Permute is (MapJust sh) :~: MapJust (Permute is sh)
-lemCommMapJustPermute PNil _ = Refl
-lemCommMapJustPermute (i `PCons` is) sh
- | Refl <- lemCommMapJustPermute is sh
- , Refl <- lemCommMapJustIndex i sh
- = Refl
-
-listsAppend :: ListS sh f -> ListS sh' f -> ListS (sh ++ sh') f
-listsAppend ZS idx' = idx'
-listsAppend (i ::$ idx) idx' = i ::$ listsAppend idx idx'
-
-listsTakeLen :: forall f is sh. Perm is -> ListS sh f -> ListS (TakeLen is sh) f
-listsTakeLen PNil _ = ZS
-listsTakeLen (_ `PCons` is) (n ::$ sh) = n ::$ listsTakeLen is sh
-listsTakeLen (_ `PCons` _) ZS = error "Permutation longer than shape"
-
-listsDropLen :: forall f is sh. Perm is -> ListS sh f -> ListS (DropLen is sh) f
-listsDropLen PNil sh = sh
-listsDropLen (_ `PCons` is) (_ ::$ sh) = listsDropLen is sh
-listsDropLen (_ `PCons` _) ZS = error "Permutation longer than shape"
-
-listsPermute :: forall f is sh. Perm is -> ListS sh f -> ListS (Permute is sh) f
-listsPermute PNil _ = ZS
-listsPermute (i `PCons` (is :: Perm is')) (sh :: ListS sh f) = listsIndex (Proxy @is') (Proxy @sh) i sh (listsPermute is sh)
-
-listsIndex :: forall f i is sh shT. Proxy is -> Proxy shT -> SNat i -> ListS sh f -> ListS (Permute is shT) f -> ListS (Index i sh : Permute is shT) f
-listsIndex _ _ SZ (n ::$ _) rest = n ::$ rest
-listsIndex p pT (SS (i :: SNat i')) ((_ :: f n) ::$ (sh :: ListS sh' f)) rest
- | Refl <- lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh')
- = listsIndex p pT i sh rest
-listsIndex _ _ _ ZS _ = error "Index into empty shape"
-
-shsTakeLen :: Perm is -> ShS sh -> ShS (TakeLen is sh)
-shsTakeLen = coerce (listsTakeLen @SNat)
-
-shsPermute :: Perm is -> ShS sh -> ShS (Permute is sh)
-shsPermute = coerce (listsPermute @SNat)
-
-shsIndex :: Proxy is -> Proxy shT -> SNat i -> ShS sh -> ShS (Permute is shT) -> ShS (Index i sh : Permute is shT)
-shsIndex pis pshT = coerce (listsIndex @SNat pis pshT)
-
-applyPermS :: forall f is sh. Perm is -> ListS sh f -> ListS (PermutePrefix is sh) f
-applyPermS perm sh = listsAppend (listsPermute perm (listsTakeLen perm sh)) (listsDropLen perm sh)
-
-applyPermIxS :: forall i is sh. Perm is -> IxS sh i -> IxS (PermutePrefix is sh) i
-applyPermIxS = coerce (applyPermS @(Const i))
-
-applyPermShS :: forall is sh. Perm is -> ShS sh -> ShS (PermutePrefix is sh)
-applyPermShS = coerce (applyPermS @SNat)
-
-stranspose :: forall is sh a. (IsPermutation is, Rank is <= Rank sh, Elt a)
- => Perm is -> Shaped sh a -> Shaped (PermutePrefix is sh) a
-stranspose perm sarr@(Shaped arr)
- | Refl <- lemRankMapJust (sshape sarr)
- , Refl <- lemCommMapJustTakeLen perm (sshape sarr)
- , Refl <- lemCommMapJustDropLen perm (sshape sarr)
- , Refl <- lemCommMapJustPermute perm (shsTakeLen perm (sshape sarr))
- , Refl <- lemCommMapJustApp (shsPermute perm (shsTakeLen perm (sshape sarr))) (Proxy @(DropLen is sh))
- = Shaped (mtranspose perm arr)
-
-sappend :: Elt a => Shaped (n : sh) a -> Shaped (m : sh) a -> Shaped (n + m : sh) a
-sappend = coerce mappend
-
-sscalar :: Elt a => a -> Shaped '[] a
-sscalar x = Shaped (mscalar x)
-
-sfromVectorP :: Storable a => ShS sh -> VS.Vector a -> Shaped sh (Primitive a)
-sfromVectorP sh v = Shaped (mfromVectorP (shCvtSX sh) v)
-
-sfromVector :: PrimElt a => ShS sh -> VS.Vector a -> Shaped sh a
-sfromVector sh v = sfromPrimitive (sfromVectorP sh v)
-
-stoVectorP :: Storable a => Shaped sh (Primitive a) -> VS.Vector a
-stoVectorP = coerce mtoVectorP
-
-stoVector :: PrimElt a => Shaped sh a -> VS.Vector a
-stoVector = coerce mtoVector
-
-sfromListOuter :: Elt a => SNat n -> NonEmpty (Shaped sh a) -> Shaped (n : sh) a
-sfromListOuter sn l = Shaped (mcast (SUnknown () :!% ZKX) (SKnown sn :$% ZSX) Proxy $ mfromListOuter (coerce l))
-
-sfromList1 :: Elt a => SNat n -> NonEmpty a -> Shaped '[n] a
-sfromList1 sn = Shaped . mcast (SUnknown () :!% ZKX) (SKnown sn :$% ZSX) Proxy . mfromList1
-
-sfromList1Prim :: (PrimElt a, Elt a) => SNat n -> [a] -> Shaped '[n] a
-sfromList1Prim sn = Shaped . mcast (SUnknown () :!% ZKX) (SKnown sn :$% ZSX) Proxy . mfromList1Prim
-
-stoListOuter :: Elt a => Shaped (n : sh) a -> [Shaped sh a]
-stoListOuter (Shaped arr) = coerce (mtoListOuter arr)
-
-stoList1 :: Elt a => Shaped '[n] a -> [a]
-stoList1 = map sunScalar . stoListOuter
-
-sfromListPrim :: forall n a. PrimElt a => SNat n -> [a] -> Shaped '[n] a
-sfromListPrim sn l
- | Refl <- lemAppNil @'[Just n]
- = let ssh = SUnknown () :!% ZKX
- xarr = X.cast ssh (SKnown sn :$% ZSX) ZKX (X.fromList1 ssh l)
- in Shaped $ fromPrimitive $ M_Primitive (X.shape (SKnown sn :!% ZKX) xarr) xarr
-
-sfromListPrimLinear :: PrimElt a => ShS sh -> [a] -> Shaped sh a
-sfromListPrimLinear sh l =
- let M_Primitive _ xarr = toPrimitive (mfromListPrim l)
- in Shaped $ fromPrimitive $ M_Primitive (shCvtSX sh) (X.reshape (SUnknown () :!% ZKX) (shCvtSX sh) xarr)
-
-sunScalar :: Elt a => Shaped '[] a -> a
-sunScalar arr = sindex arr ZIS
-
-srerankP :: forall sh1 sh2 sh a b. (Storable a, Storable b)
- => ShS sh -> ShS sh2
- -> (Shaped sh1 (Primitive a) -> Shaped sh2 (Primitive b))
- -> Shaped (sh ++ sh1) (Primitive a) -> Shaped (sh ++ sh2) (Primitive b)
-srerankP sh sh2 f sarr@(Shaped arr)
- | Refl <- lemCommMapJustApp sh (Proxy @sh1)
- , Refl <- lemCommMapJustApp sh (Proxy @sh2)
- = Shaped (mrerankP (ssxFromShape (shxTakeSSX (Proxy @(MapJust sh1)) (shCvtSX (sshape sarr)) (ssxFromShape (shCvtSX sh))))
- (shCvtSX sh2)
- (\a -> let Shaped r = f (Shaped a) in r)
- arr)
-
-srerank :: forall sh1 sh2 sh a b. (PrimElt a, PrimElt b)
- => ShS sh -> ShS sh2
- -> (Shaped sh1 a -> Shaped sh2 b)
- -> Shaped (sh ++ sh1) a -> Shaped (sh ++ sh2) b
-srerank sh sh2 f (stoPrimitive -> arr) =
- sfromPrimitive $ srerankP sh sh2 (stoPrimitive . f . sfromPrimitive) arr
-
-sreplicate :: forall sh sh' a. Elt a => ShS sh -> Shaped sh' a -> Shaped (sh ++ sh') a
-sreplicate sh (Shaped arr)
- | Refl <- lemCommMapJustApp sh (Proxy @sh')
- = Shaped (mreplicate (shCvtSX sh) arr)
-
-sreplicateScalP :: forall sh a. Storable a => ShS sh -> a -> Shaped sh (Primitive a)
-sreplicateScalP sh x = Shaped (mreplicateScalP (shCvtSX sh) x)
-
-sreplicateScal :: PrimElt a => ShS sh -> a -> Shaped sh a
-sreplicateScal sh x = sfromPrimitive (sreplicateScalP sh x)
-
-sslice :: Elt a => SNat i -> SNat n -> Shaped (i + n + k : sh) a -> Shaped (n : sh) a
-sslice i n@SNat arr =
- let _ :$$ sh = sshape arr
- in slift (n :$$ sh) (\_ -> X.slice i n) arr
-
-srev1 :: Elt a => Shaped (n : sh) a -> Shaped (n : sh) a
-srev1 arr = slift (sshape arr) (\_ -> X.rev1) arr
-
-sreshape :: Elt a => ShS sh' -> Shaped sh a -> Shaped sh' a
-sreshape sh' (Shaped arr) = Shaped (mreshape (shCvtSX sh') arr)
-
-siota :: (Enum a, PrimElt a) => SNat n -> Shaped '[n] a
-siota sn = Shaped (miota sn)
-
-sasXArrayPrimP :: Shaped sh (Primitive a) -> (ShS sh, XArray (MapJust sh) a)
-sasXArrayPrimP (Shaped arr) = first shCvtXS' (masXArrayPrimP arr)
-
-sasXArrayPrim :: PrimElt a => Shaped sh a -> (ShS sh, XArray (MapJust sh) a)
-sasXArrayPrim (Shaped arr) = first shCvtXS' (masXArrayPrim arr)
-
-sfromXArrayPrimP :: ShS sh -> XArray (MapJust sh) a -> Shaped sh (Primitive a)
-sfromXArrayPrimP sh arr = Shaped (mfromXArrayPrimP (ssxFromShape (shCvtSX sh)) arr)
-
-sfromXArrayPrim :: PrimElt a => ShS sh -> XArray (MapJust sh) a -> Shaped sh a
-sfromXArrayPrim sh arr = Shaped (mfromXArrayPrim (ssxFromShape (shCvtSX sh)) arr)
-
-stoRanked :: Elt a => Shaped sh a -> Ranked (Rank sh) a
-stoRanked sarr@(Shaped arr)
- | Refl <- lemRankMapJust (sshape sarr)
- = mtoRanked arr
-
-sfromPrimitive :: PrimElt a => Shaped sh (Primitive a) -> Shaped sh a
-sfromPrimitive (Shaped arr) = Shaped (fromPrimitive arr)
-
-stoPrimitive :: PrimElt a => Shaped sh a -> Shaped sh (Primitive a)
-stoPrimitive (Shaped arr) = Shaped (toPrimitive arr)