aboutsummaryrefslogtreecommitdiff
path: root/src/Data/Array/Nested/Ranked.hs
diff options
context:
space:
mode:
authorTom Smeding <tom@tomsmeding.com>2024-05-30 22:47:52 +0200
committerTom Smeding <tom@tomsmeding.com>2024-05-30 22:47:52 +0200
commit8b59d8ef4ff97936f2a753d1ce345e0404c26b2b (patch)
tree947f75cb43982fbdb551dc329f036b0591f3c2b2 /src/Data/Array/Nested/Ranked.hs
parentf0752d67cd188f438280e1f0c692dc1f5f14a190 (diff)
Clearer module purposes
Thanks Mikolaj for discussion
Diffstat (limited to 'src/Data/Array/Nested/Ranked.hs')
-rw-r--r--src/Data/Array/Nested/Ranked.hs446
1 files changed, 0 insertions, 446 deletions
diff --git a/src/Data/Array/Nested/Ranked.hs b/src/Data/Array/Nested/Ranked.hs
deleted file mode 100644
index c2f9405..0000000
--- a/src/Data/Array/Nested/Ranked.hs
+++ /dev/null
@@ -1,446 +0,0 @@
-{-# LANGUAGE DataKinds #-}
-{-# LANGUAGE FlexibleContexts #-}
-{-# LANGUAGE FlexibleInstances #-}
-{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-{-# LANGUAGE ImportQualifiedPost #-}
-{-# LANGUAGE InstanceSigs #-}
-{-# LANGUAGE PolyKinds #-}
-{-# LANGUAGE RankNTypes #-}
-{-# LANGUAGE ScopedTypeVariables #-}
-{-# LANGUAGE StandaloneDeriving #-}
-{-# LANGUAGE StandaloneKindSignatures #-}
-{-# LANGUAGE TypeApplications #-}
-{-# LANGUAGE TypeFamilies #-}
-{-# LANGUAGE TypeOperators #-}
-{-# LANGUAGE UndecidableInstances #-}
-{-# LANGUAGE ViewPatterns #-}
-{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
-{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
-module Data.Array.Nested.Ranked where
-
-import Prelude hiding (mappend)
-
-import Control.DeepSeq (NFData)
-import Control.Monad.ST
-import Data.Array.RankedS qualified as S
-import Data.Bifunctor (first)
-import Data.Coerce (coerce)
-import Data.Kind (Type)
-import Data.List.NonEmpty (NonEmpty)
-import Data.Proxy
-import Data.Type.Equality
-import Data.Vector.Storable qualified as VS
-import Foreign.Storable (Storable)
-import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp)
-import GHC.TypeLits
-import GHC.TypeNats qualified as TN
-
-import Data.Array.Mixed (XArray(..))
-import Data.Array.Mixed qualified as X
-import Data.Array.Mixed.Internal.Arith
-import Data.Array.Mixed.Lemmas
-import Data.Array.Mixed.Shape
-import Data.Array.Mixed.Types
-import Data.Array.Nested.Mixed
-import Data.Array.Nested.Shape
-
-
--- | A rank-typed array: the number of dimensions of the array (its /rank/) is
--- represented on the type level as a 'Nat'.
---
--- Valid elements of a ranked arrays are described by the 'Elt' type class.
--- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are
--- supported (and are represented as a single, flattened, struct-of-arrays
--- array internally).
---
--- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's.
-type Ranked :: Nat -> Type -> Type
-newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a)
-deriving instance Show (Mixed (Replicate n Nothing) a) => Show (Ranked n a)
-deriving instance Eq (Mixed (Replicate n Nothing) a) => Eq (Ranked n a)
-deriving instance Ord (Mixed '[] a) => Ord (Ranked 0 a)
-deriving instance NFData (Mixed (Replicate n Nothing) a) => NFData (Ranked n a)
-
--- just unwrap the newtype and defer to the general instance for nested arrays
-newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a))
-deriving instance Show (Mixed sh (Mixed (Replicate n Nothing) a)) => Show (Mixed sh (Ranked n a))
-
-newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a))
-
--- 'Ranked' and 'Shaped' can already be used at the top level of an array nest;
--- these instances allow them to also be used as elements of arrays, thus
--- making them first-class in the API.
-instance Elt a => Elt (Ranked n a) where
- mshape (M_Ranked arr) = mshape arr
- mindex (M_Ranked arr) i = Ranked (mindex arr i)
-
- mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IIxX sh -> Mixed sh' (Ranked n a)
- mindexPartial (M_Ranked arr) i =
- coerce @(Mixed sh' (Mixed (Replicate n Nothing) a)) @(Mixed sh' (Ranked n a)) $
- mindexPartial arr i
-
- mscalar (Ranked x) = M_Ranked (M_Nest ZSX x)
-
- mfromListOuter :: forall sh. NonEmpty (Mixed sh (Ranked n a)) -> Mixed (Nothing : sh) (Ranked n a)
- mfromListOuter l = M_Ranked (mfromListOuter (coerce l))
-
- mtoListOuter :: forall m sh. Mixed (m : sh) (Ranked n a) -> [Mixed sh (Ranked n a)]
- mtoListOuter (M_Ranked arr) =
- coerce @[Mixed sh (Mixed (Replicate n 'Nothing) a)] @[Mixed sh (Ranked n a)] (mtoListOuter arr)
-
- mlift :: forall sh1 sh2.
- StaticShX sh2
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
- -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a)
- mlift ssh2 f (M_Ranked arr) =
- coerce @(Mixed sh2 (Mixed (Replicate n Nothing) a)) @(Mixed sh2 (Ranked n a)) $
- mlift ssh2 f arr
-
- mlift2 :: forall sh1 sh2 sh3.
- StaticShX sh3
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
- -> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) -> Mixed sh3 (Ranked n a)
- mlift2 ssh3 f (M_Ranked arr1) (M_Ranked arr2) =
- coerce @(Mixed sh3 (Mixed (Replicate n Nothing) a)) @(Mixed sh3 (Ranked n a)) $
- mlift2 ssh3 f arr1 arr2
-
- mcast ssh1 sh2 psh' (M_Ranked arr) = M_Ranked (mcast ssh1 sh2 psh' arr)
-
- mtranspose perm (M_Ranked arr) = M_Ranked (mtranspose perm arr)
-
- type ShapeTree (Ranked n a) = (IShR n, ShapeTree a)
-
- mshapeTree (Ranked arr) = first shCvtXR' (mshapeTree arr)
-
- mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
-
- mshapeTreeEmpty _ (sh, t) = shrSize sh == 0 && mshapeTreeEmpty (Proxy @a) t
-
- mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
-
- mvecsWrite :: forall sh s. IShX sh -> IIxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s ()
- mvecsWrite sh idx (Ranked arr) vecs =
- mvecsWrite sh idx arr
- (coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a))
- vecs)
-
- mvecsWritePartial :: forall sh sh' s.
- IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Ranked n a)
- -> MixedVecs s (sh ++ sh') (Ranked n a)
- -> ST s ()
- mvecsWritePartial sh idx arr vecs =
- mvecsWritePartial sh idx
- (coerce @(Mixed sh' (Ranked n a))
- @(Mixed sh' (Mixed (Replicate n Nothing) a))
- arr)
- (coerce @(MixedVecs s (sh ++ sh') (Ranked n a))
- @(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a))
- vecs)
-
- mvecsFreeze :: forall sh s. IShX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a))
- mvecsFreeze sh vecs =
- coerce @(Mixed sh (Mixed (Replicate n Nothing) a))
- @(Mixed sh (Ranked n a))
- <$> mvecsFreeze sh
- (coerce @(MixedVecs s sh (Ranked n a))
- @(MixedVecs s sh (Mixed (Replicate n Nothing) a))
- vecs)
-
-instance (KnownNat n, KnownElt a) => KnownElt (Ranked n a) where
- memptyArray :: forall sh. IShX sh -> Mixed sh (Ranked n a)
- memptyArray i
- | Dict <- lemKnownReplicate (SNat @n)
- = coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) $
- memptyArray i
-
- mvecsUnsafeNew idx (Ranked arr)
- | Dict <- lemKnownReplicate (SNat @n)
- = MV_Ranked <$> mvecsUnsafeNew idx arr
-
- mvecsNewEmpty _
- | Dict <- lemKnownReplicate (SNat @n)
- = MV_Ranked <$> mvecsNewEmpty (Proxy @(Mixed (Replicate n Nothing) a))
-
-
-arithPromoteRanked :: forall n a. PrimElt a
- => (forall sh. Mixed sh a -> Mixed sh a)
- -> Ranked n a -> Ranked n a
-arithPromoteRanked = coerce
-
-arithPromoteRanked2 :: forall n a. PrimElt a
- => (forall sh. Mixed sh a -> Mixed sh a -> Mixed sh a)
- -> Ranked n a -> Ranked n a -> Ranked n a
-arithPromoteRanked2 = coerce
-
-instance (NumElt a, PrimElt a) => Num (Ranked n a) where
- (+) = arithPromoteRanked2 (+)
- (-) = arithPromoteRanked2 (-)
- (*) = arithPromoteRanked2 (*)
- negate = arithPromoteRanked negate
- abs = arithPromoteRanked abs
- signum = arithPromoteRanked signum
- fromInteger _ = error "Data.Array.Nested.fromIntegral: No singletons available, use explicit rreplicateScal"
-
-instance (FloatElt a, NumElt a, PrimElt a) => Fractional (Ranked n a) where
- fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit rreplicateScal"
- recip = arithPromoteRanked recip
- (/) = arithPromoteRanked2 (/)
-
-instance (FloatElt a, NumElt a, PrimElt a) => Floating (Ranked n a) where
- pi = error "Data.Array.Nested.pi: No singletons available, use explicit rreplicateScal"
- exp = arithPromoteRanked exp
- log = arithPromoteRanked log
- sqrt = arithPromoteRanked sqrt
- (**) = arithPromoteRanked2 (**)
- logBase = arithPromoteRanked2 logBase
- sin = arithPromoteRanked sin
- cos = arithPromoteRanked cos
- tan = arithPromoteRanked tan
- asin = arithPromoteRanked asin
- acos = arithPromoteRanked acos
- atan = arithPromoteRanked atan
- sinh = arithPromoteRanked sinh
- cosh = arithPromoteRanked cosh
- tanh = arithPromoteRanked tanh
- asinh = arithPromoteRanked asinh
- acosh = arithPromoteRanked acosh
- atanh = arithPromoteRanked atanh
- log1p = arithPromoteRanked GHC.Float.log1p
- expm1 = arithPromoteRanked GHC.Float.expm1
- log1pexp = arithPromoteRanked GHC.Float.log1pexp
- log1mexp = arithPromoteRanked GHC.Float.log1mexp
-
-
-rshape :: forall n a. Elt a => Ranked n a -> IShR n
-rshape (Ranked arr) = shCvtXR' (mshape arr)
-
-rindex :: Elt a => Ranked n a -> IIxR n -> a
-rindex (Ranked arr) idx = mindex arr (ixCvtRX idx)
-
-rindexPartial :: forall n m a. Elt a => Ranked (n + m) a -> IIxR n -> Ranked m a
-rindexPartial (Ranked arr) idx =
- Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing)
- (castWith (subst2 (lemReplicatePlusApp (ixrToSNat idx) (Proxy @m) (Proxy @Nothing))) arr)
- (ixCvtRX idx))
-
--- | __WARNING__: All values returned from the function must have equal shape.
--- See the documentation of 'mgenerate' for more details.
-rgenerate :: forall n a. KnownElt a => IShR n -> (IIxR n -> a) -> Ranked n a
-rgenerate sh f
- | sn@SNat <- shrToSNat sh
- , Dict <- lemKnownReplicate sn
- , Refl <- lemRankReplicate sn
- = Ranked (mgenerate (shCvtRX sh) (f . ixCvtXR))
-
--- | See the documentation of 'mlift'.
-rlift :: forall n1 n2 a. Elt a
- => SNat n2
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)
- -> Ranked n1 a -> Ranked n2 a
-rlift sn2 f (Ranked arr) = Ranked (mlift (ssxFromSNat sn2) f arr)
-
--- | See the documentation of 'mlift2'.
-rlift2 :: forall n1 n2 n3 a. Elt a
- => SNat n3
- -> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b -> XArray (Replicate n3 Nothing ++ sh') b)
- -> Ranked n1 a -> Ranked n2 a -> Ranked n3 a
-rlift2 sn3 f (Ranked arr1) (Ranked arr2) = Ranked (mlift2 (ssxFromSNat sn3) f arr1 arr2)
-
-rsumOuter1P :: forall n a.
- (Storable a, NumElt a)
- => Ranked (n + 1) (Primitive a) -> Ranked n (Primitive a)
-rsumOuter1P (Ranked arr)
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = Ranked (msumOuter1P arr)
-
-rsumOuter1 :: forall n a. (NumElt a, PrimElt a)
- => Ranked (n + 1) a -> Ranked n a
-rsumOuter1 = rfromPrimitive . rsumOuter1P . rtoPrimitive
-
-rtranspose :: forall n a. Elt a => [Int] -> Ranked n a -> Ranked n a
-rtranspose perm arr
- | sn@SNat <- shrToSNat (rshape arr)
- , Dict <- lemKnownReplicate sn
- , length perm <= fromIntegral (natVal (Proxy @n))
- = rlift sn
- (\ssh' -> X.transposeUntyped (natSing @n) ssh' perm)
- arr
- | otherwise
- = error "Data.Array.Nested.rtranspose: Permutation longer than rank of array"
-
-rappend :: forall n a. Elt a
- => Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked (n + 1) a
-rappend arr1 arr2
- | sn@SNat <- shrToSNat (rshape arr1)
- , Dict <- lemKnownReplicate sn
- , Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = coerce (mappend @Nothing @Nothing @(Replicate n Nothing))
- arr1 arr2
-
-rscalar :: Elt a => a -> Ranked 0 a
-rscalar x = Ranked (mscalar x)
-
-rfromVectorP :: forall n a. Storable a => IShR n -> VS.Vector a -> Ranked n (Primitive a)
-rfromVectorP sh v
- | Dict <- lemKnownReplicate (shrToSNat sh)
- = Ranked (mfromVectorP (shCvtRX sh) v)
-
-rfromVector :: forall n a. PrimElt a => IShR n -> VS.Vector a -> Ranked n a
-rfromVector sh v = rfromPrimitive (rfromVectorP sh v)
-
-rtoVectorP :: Storable a => Ranked n (Primitive a) -> VS.Vector a
-rtoVectorP = coerce mtoVectorP
-
-rtoVector :: PrimElt a => Ranked n a -> VS.Vector a
-rtoVector = coerce mtoVector
-
-rfromListOuter :: forall n a. Elt a => NonEmpty (Ranked n a) -> Ranked (n + 1) a
-rfromListOuter l
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = Ranked (mfromListOuter (coerce l :: NonEmpty (Mixed (Replicate n Nothing) a)))
-
-rfromList1 :: Elt a => NonEmpty a -> Ranked 1 a
-rfromList1 l = Ranked (mfromList1 l)
-
-rfromList1Prim :: PrimElt a => [a] -> Ranked 1 a
-rfromList1Prim l = Ranked (mfromList1Prim l)
-
-rtoListOuter :: forall n a. Elt a => Ranked (n + 1) a -> [Ranked n a]
-rtoListOuter (Ranked arr)
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = coerce (mtoListOuter @a @Nothing @(Replicate n Nothing) arr)
-
-rtoList1 :: Elt a => Ranked 1 a -> [a]
-rtoList1 = map runScalar . rtoListOuter
-
-rfromListPrim :: PrimElt a => [a] -> Ranked 1 a
-rfromListPrim l =
- let ssh = SUnknown () :!% ZKX
- xarr = X.fromList1 ssh l
- in Ranked $ fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr
-
-rfromListPrimLinear :: PrimElt a => IShR n -> [a] -> Ranked n a
-rfromListPrimLinear sh l =
- let M_Primitive _ xarr = toPrimitive (mfromListPrim l)
- in Ranked $ fromPrimitive $ M_Primitive (shCvtRX sh) (X.reshape (SUnknown () :!% ZKX) (shCvtRX sh) xarr)
-
-rfromOrthotope :: PrimElt a => SNat n -> S.Array n a -> Ranked n a
-rfromOrthotope sn arr
- | Refl <- lemRankReplicate sn
- = let xarr = XArray arr
- in Ranked (fromPrimitive (M_Primitive (X.shape (ssxFromSNat sn) xarr) xarr))
-
-runScalar :: Elt a => Ranked 0 a -> a
-runScalar arr = rindex arr ZIR
-
-rrerankP :: forall n1 n2 n a b. (Storable a, Storable b)
- => SNat n -> IShR n2
- -> (Ranked n1 (Primitive a) -> Ranked n2 (Primitive b))
- -> Ranked (n + n1) (Primitive a) -> Ranked (n + n2) (Primitive b)
-rrerankP sn sh2 f (Ranked arr)
- | Refl <- lemReplicatePlusApp sn (Proxy @n1) (Proxy @(Nothing @Nat))
- , Refl <- lemReplicatePlusApp sn (Proxy @n2) (Proxy @(Nothing @Nat))
- = Ranked (mrerankP (ssxFromSNat sn) (shCvtRX sh2)
- (\a -> let Ranked r = f (Ranked a) in r)
- arr)
-
--- | If there is a zero-sized dimension in the @n@-prefix of the shape of the
--- input array, then there is no way to deduce the full shape of the output
--- array (more precisely, the @n2@ part): that could only come from calling
--- @f@, and there are no subarrays to call @f@ on. @orthotope@ errors out in
--- this case; we choose to fill the @n2@ part of the output shape with zeros.
---
--- For example, if:
---
--- @
--- arr :: Ranked 5 Int -- of shape [3, 0, 4, 2, 21]
--- f :: Ranked 2 Int -> Ranked 3 Float
--- @
---
--- then:
---
--- @
--- rrerank _ _ _ f arr :: Ranked 5 Float
--- @
---
--- and this result will have shape @[3, 0, 4, 0, 0, 0]@. Note that the
--- "reranked" part (the last 3 entries) are zero; we don't know if @f@ intended
--- to return an array with shape all-0 here (it probably didn't), but there is
--- no better number to put here absent a subarray of the input to pass to @f@.
-rrerank :: forall n1 n2 n a b. (PrimElt a, PrimElt b)
- => SNat n -> IShR n2
- -> (Ranked n1 a -> Ranked n2 b)
- -> Ranked (n + n1) a -> Ranked (n + n2) b
-rrerank ssh sh2 f (rtoPrimitive -> arr) =
- rfromPrimitive $ rrerankP ssh sh2 (rtoPrimitive . f . rfromPrimitive) arr
-
-rreplicate :: forall n m a. Elt a
- => IShR n -> Ranked m a -> Ranked (n + m) a
-rreplicate sh (Ranked arr)
- | Refl <- lemReplicatePlusApp (shrToSNat sh) (Proxy @m) (Proxy @(Nothing @Nat))
- = Ranked (mreplicate (shCvtRX sh) arr)
-
-rreplicateScalP :: forall n a. Storable a => IShR n -> a -> Ranked n (Primitive a)
-rreplicateScalP sh x
- | Dict <- lemKnownReplicate (shrToSNat sh)
- = Ranked (mreplicateScalP (shCvtRX sh) x)
-
-rreplicateScal :: forall n a. PrimElt a
- => IShR n -> a -> Ranked n a
-rreplicateScal sh x = rfromPrimitive (rreplicateScalP sh x)
-
-rslice :: forall n a. Elt a => Int -> Int -> Ranked (n + 1) a -> Ranked (n + 1) a
-rslice i n arr
- | Refl <- lemReplicateSucc @(Nothing @Nat) @n
- = rlift (shrToSNat (rshape arr))
- (\_ -> X.sliceU i n)
- arr
-
-rrev1 :: forall n a. Elt a => Ranked (n + 1) a -> Ranked (n + 1) a
-rrev1 arr =
- rlift (shrToSNat (rshape arr))
- (\(_ :: StaticShX sh') ->
- case lemReplicateSucc @(Nothing @Nat) @n of
- Refl -> X.rev1 @Nothing @(Replicate n Nothing ++ sh'))
- arr
-
-rreshape :: forall n n' a. Elt a
- => IShR n' -> Ranked n a -> Ranked n' a
-rreshape sh' rarr@(Ranked arr)
- | Dict <- lemKnownReplicate (shrToSNat (rshape rarr))
- , Dict <- lemKnownReplicate (shrToSNat sh')
- = Ranked (mreshape (shCvtRX sh') arr)
-
-riota :: (Enum a, PrimElt a, Elt a) => Int -> Ranked 1 a
-riota n = TN.withSomeSNat (fromIntegral n) $ mtoRanked . miota
-
-rasXArrayPrimP :: Ranked n (Primitive a) -> (IShR n, XArray (Replicate n Nothing) a)
-rasXArrayPrimP (Ranked arr) = first shCvtXR' (masXArrayPrimP arr)
-
-rasXArrayPrim :: PrimElt a => Ranked n a -> (IShR n, XArray (Replicate n Nothing) a)
-rasXArrayPrim (Ranked arr) = first shCvtXR' (masXArrayPrim arr)
-
-rfromXArrayPrimP :: SNat n -> XArray (Replicate n Nothing) a -> Ranked n (Primitive a)
-rfromXArrayPrimP sn arr = Ranked (mfromXArrayPrimP (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr)
-
-rfromXArrayPrim :: PrimElt a => SNat n -> XArray (Replicate n Nothing) a -> Ranked n a
-rfromXArrayPrim sn arr = Ranked (mfromXArrayPrim (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr)
-
-rfromPrimitive :: PrimElt a => Ranked n (Primitive a) -> Ranked n a
-rfromPrimitive (Ranked arr) = Ranked (fromPrimitive arr)
-
-rtoPrimitive :: PrimElt a => Ranked n a -> Ranked n (Primitive a)
-rtoPrimitive (Ranked arr) = Ranked (toPrimitive arr)
-
-mtoRanked :: forall sh a. Elt a => Mixed sh a -> Ranked (Rank sh) a
-mtoRanked arr
- | Refl <- lemAppNil @sh
- , Refl <- lemAppNil @(Replicate (Rank sh) (Nothing @Nat))
- , Refl <- lemRankReplicate (shxRank (mshape arr))
- = Ranked (mcast (ssxFromShape (mshape arr)) (convSh (mshape arr)) (Proxy @'[]) arr)
- where
- convSh :: IShX sh' -> IShX (Replicate (Rank sh') Nothing)
- convSh ZSX = ZSX
- convSh (smn :$% (sh :: IShX sh'T))
- | Refl <- lemReplicateSucc @(Nothing @Nat) @(Rank sh'T)
- = SUnknown (fromSMayNat' smn) :$% convSh sh