diff options
| author | Tom Smeding <tom@tomsmeding.com> | 2024-05-14 23:30:53 +0200 | 
|---|---|---|
| committer | Tom Smeding <tom@tomsmeding.com> | 2024-05-14 23:30:53 +0200 | 
| commit | 43ddff2e7f1e9f4d8855f573384e26b63d34f697 (patch) | |
| tree | 86b6989d4a1b935fd6f6338b4699d8e5c0083a2c /src/Data/Array/Nested | |
| parent | 77ab86ede90938fa43f7f9988ac10f7026440a1c (diff) | |
WIP GHC nats
Diffstat (limited to 'src/Data/Array/Nested')
| -rw-r--r-- | src/Data/Array/Nested/Internal.hs | 219 | 
1 files changed, 144 insertions, 75 deletions
| diff --git a/src/Data/Array/Nested/Internal.hs b/src/Data/Array/Nested/Internal.hs index d041aff..54b567a 100644 --- a/src/Data/Array/Nested/Internal.hs +++ b/src/Data/Array/Nested/Internal.hs @@ -20,16 +20,51 @@  {-# LANGUAGE TypeOperators #-}  {-# LANGUAGE UndecidableInstances #-}  {-# LANGUAGE ViewPatterns #-} +{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}  {-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} +{-# OPTIONS_GHC -Wno-unused-imports #-}  {-|  TODO:  * We should be more consistent in whether functions take a 'StaticShX'    argument or a 'KnownShapeX' constraint. -* Document the choice of using 'INat' for ranks and 'Nat' for shapes. Point -  being that we need to do induction over the former, but the latter need to be -  able to get large. +* Mikolaj wants these: + +    About your wishlist of operations: these are already there + +      OR.index +      OR.append +      OR.transpose + +    These can be easily lifted from the definition for XArray (5min work): + +      OR.scalar +      OR.unScalar +      OR.constant + +    These should not be hard: + +      OR.fromList +      ORB.toList . OR.unravel +      OR.ravel . ORB.fromList +      OR.slice +      OR.rev +      OR.reshape + +    though it's a bit unfortunate that we end up needing toList. Looking in +    horde-ad I see that you seem to need them to do certain operations in Haskell +    that orthotope doesn't support? + +    For this one we'll need to see to what extent you really need it, and what API +    you'd need precisely: + +      OR.rerank + +    and for these we have an API design question: + +      OR.toVector +      OR.fromVector  -} @@ -51,10 +86,10 @@ import qualified Data.Vector.Storable as VS  import qualified Data.Vector.Storable.Mutable as VSM  import Foreign.Storable (Storable)  import GHC.TypeLits +import Unsafe.Coerce (unsafeCoerce) -import Data.Array.Mixed (XArray, IxX(..), IIxX, ShX(..), IShX, KnownShapeX(..), StaticShX(..), type (++), pattern GHC_SNat) +import Data.Array.Mixed (XArray, IxX(..), IIxX, ShX(..), IShX, KnownShapeX(..), StaticShX(..), type (++), pattern GHC_SNat, Dict(..))  import qualified Data.Array.Mixed as X -import Data.INat  -- Invariant in the API @@ -91,34 +126,71 @@ import Data.INat  type family Replicate n a where -  Replicate Z a = '[] -  Replicate (S n) a = a : Replicate n a +  Replicate 0 a = '[] +  Replicate n a = a : Replicate (n - 1) a  type family MapJust l where    MapJust '[] = '[]    MapJust (x : xs) = Just x : MapJust xs -lemKnownReplicate :: forall n. KnownINat n => Proxy n -> Dict KnownShapeX (Replicate n Nothing) -lemKnownReplicate _ = X.lemKnownShapeX (go (inatSing @n)) +pattern SZ :: () => (n ~ 0) => SNat n +pattern SZ <- ((\sn -> testEquality sn (SNat @0)) -> Just Refl) +  where SZ = SNat + +pattern SS :: forall np1. () => forall n. (n + 1 ~ np1) => SNat n -> SNat np1 +pattern SS sn <- (snatPred -> Just (SNatPredResult sn Refl)) +  where SS = snatSucc + +{-# COMPLETE SZ, SS #-} + +snatSucc :: SNat n -> SNat (n + 1) +snatSucc SNat = SNat + +data SNatPredResult np1 = forall n. SNatPredResult (SNat n) (n + 1 :~: np1) +snatPred :: forall np1. SNat np1 -> Maybe (SNatPredResult np1) +snatPred snp1 = +  withKnownNat snp1 $ +    case cmpNat (Proxy @1) (Proxy @np1) of +      LTI -> Just (SNatPredResult (SNat @(np1 - 1)) Refl) +      EQI -> Just (SNatPredResult (SNat @(np1 - 1)) Refl) +      GTI -> Nothing + +subst1 :: forall f a b. a :~: b -> f a :~: f b +subst1 Refl = Refl + +subst2 :: forall f c a b. a :~: b -> f a c :~: f b c +subst2 Refl = Refl + +lemReplicateSucc :: (a : Replicate n a) :~: Replicate (n + 1) a +lemReplicateSucc = unsafeCoerce Refl + +lemKnownReplicate :: forall n. KnownNat n => Proxy n -> Dict KnownShapeX (Replicate n Nothing) +lemKnownReplicate _ = X.lemKnownShapeX (go (natSing @n))    where -    go :: SINat m -> StaticShX (Replicate m Nothing) +    go :: SNat m -> StaticShX (Replicate m Nothing)      go SZ = ZKSX -    go (SS n) = () :!$? go n +    go (SS (n :: SNat nm1)) | Refl <- lemReplicateSucc @(Nothing @Nat) @nm1 = () :!$? go n -lemRankReplicate :: forall n. KnownINat n => Proxy n -> X.Rank (Replicate n (Nothing @Nat)) :~: n -lemRankReplicate _ = go (inatSing @n) +lemRankReplicate :: forall n. KnownNat n => Proxy n -> X.Rank (Replicate n (Nothing @Nat)) :~: n +lemRankReplicate _ = go (natSing @n)    where -    go :: SINat m -> X.Rank (Replicate m (Nothing @Nat)) :~: m +    go :: forall m. SNat m -> X.Rank (Replicate m (Nothing @Nat)) :~: m      go SZ = Refl -    go (SS n) | Refl <- go n = Refl +    go (SS (n :: SNat nm1)) +      | Refl <- lemReplicateSucc @(Nothing @Nat) @nm1 +      , Refl <- go n +      = Refl -lemReplicatePlusApp :: forall n m a. KnownINat n => Proxy n -> Proxy m -> Proxy a -                    -> Replicate (n +! m) a :~: Replicate n a ++ Replicate m a -lemReplicatePlusApp _ _ _ = go (inatSing @n) +lemReplicatePlusApp :: forall n m a. KnownNat n => Proxy n -> Proxy m -> Proxy a +                    -> Replicate (n + m) a :~: Replicate n a ++ Replicate m a +lemReplicatePlusApp _ _ _ = go (natSing @n)    where -    go :: SINat n' -> Replicate (n' +! m) a :~: Replicate n' a ++ Replicate m a +    go :: SNat n' -> Replicate (n' + m) a :~: Replicate n' a ++ Replicate m a      go SZ = Refl -    go (SS n) | Refl <- go n = Refl +    go (SS (n :: SNat n'm1)) +      | Refl <- lemReplicateSucc @a @n'm1 +      , Refl <- go n +      = sym (lemReplicateSucc @a @(n'm1 + m))  shAppSplit :: Proxy sh' -> StaticShX sh -> IShX (sh ++ sh') -> (IShX sh, IShX sh')  shAppSplit _ ZKSX idx = (ZSX, idx) @@ -575,18 +647,15 @@ deriving via Mixed sh (Primitive Double) instance KnownShapeX sh => Num (Mixed s  -- | A rank-typed array: the number of dimensions of the array (its /rank/) is --- represented on the type level as a 'INat'. +-- represented on the type level as a 'Nat'.  --  -- Valid elements of a ranked arrays are described by the 'Elt' type class.  -- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are  -- supported (and are represented as a single, flattened, struct-of-arrays  -- array internally).  -- --- Note that this 'INat' is not a "GHC.TypeLits" natural, because we want a --- type-level natural that supports induction. ---  -- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's. -type Ranked :: INat -> Type -> Type +type Ranked :: Nat -> Type -> Type  newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a)  deriving instance Show (Mixed (Replicate n Nothing) a) => Show (Ranked n a) @@ -616,7 +685,7 @@ newtype instance MixedVecs s sh (Shaped sh' a) = MV_Shaped (MixedVecs s sh (Mixe  -- 'Ranked' and 'Shaped' can already be used at the top level of an array nest;  -- these instances allow them to also be used as elements of arrays, thus  -- making them first-class in the API. -instance (Elt a, KnownINat n) => Elt (Ranked n a) where +instance (Elt a, KnownNat n) => Elt (Ranked n a) where    mshape (M_Ranked arr) | Dict <- lemKnownReplicate (Proxy @n) = mshape arr    mindex (M_Ranked arr) i | Dict <- lemKnownReplicate (Proxy @n) = Ranked (mindex arr i) @@ -848,37 +917,37 @@ rewriteMixed Refl x = x  -- ====== API OF RANKED ARRAYS ====== -- -arithPromoteRanked :: forall n a. KnownINat n +arithPromoteRanked :: forall n a. KnownNat n                     => (forall sh. KnownShapeX sh => Mixed sh a -> Mixed sh a)                     -> Ranked n a -> Ranked n a  arithPromoteRanked | Dict <- lemKnownReplicate (Proxy @n) = coerce -arithPromoteRanked2 :: forall n a. KnownINat n +arithPromoteRanked2 :: forall n a. KnownNat n                      => (forall sh. KnownShapeX sh => Mixed sh a -> Mixed sh a -> Mixed sh a)                      -> Ranked n a -> Ranked n a -> Ranked n a  arithPromoteRanked2 | Dict <- lemKnownReplicate (Proxy @n) = coerce -instance (KnownINat n, Storable a, Num a) => Num (Ranked n (Primitive a)) where +instance (KnownNat n, Storable a, Num a) => Num (Ranked n (Primitive a)) where    (+) = arithPromoteRanked2 (+)    (-) = arithPromoteRanked2 (-)    (*) = arithPromoteRanked2 (*)    negate = arithPromoteRanked negate    abs = arithPromoteRanked abs    signum = arithPromoteRanked signum -  fromInteger n = case inatSing @n of +  fromInteger n = case natSing @n of                      SZ -> Ranked (M_Primitive (X.scalar (fromInteger n))) -                    SS _ -> error "Data.Array.Nested.fromIntegral(Ranked): \ -                                  \Rank non-zero, use explicit mconstant" +                    _ -> error "Data.Array.Nested.fromIntegral(Ranked): \ +                               \Rank non-zero, use explicit mconstant"  -- [PRIMITIVE ELEMENT TYPES LIST] (really, a partial list of just the numeric types) -deriving via Ranked n (Primitive Int) instance KnownINat n => Num (Ranked n Int) -deriving via Ranked n (Primitive Double) instance KnownINat n => Num (Ranked n Double) +deriving via Ranked n (Primitive Int) instance KnownNat n => Num (Ranked n Int) +deriving via Ranked n (Primitive Double) instance KnownNat n => Num (Ranked n Double)  type role ListR nominal representational -type ListR :: INat -> Type -> Type +type ListR :: Nat -> Type -> Type  data ListR n i where -  ZR :: ListR Z i -  (:::) :: forall n {i}. i -> ListR n i -> ListR (S n) i +  ZR :: ListR 0 i +  (:::) :: forall n {i}. i -> ListR n i -> ListR (1 + n) i  deriving instance Show i => Show (ListR n i)  deriving instance Eq i => Eq (ListR n i)  deriving instance Ord i => Ord (ListR n i) @@ -892,23 +961,23 @@ listRToList :: ListR n i -> [i]  listRToList ZR = []  listRToList (i ::: is) = i : listRToList is -knownListR :: ListR n i -> Dict KnownINat n +knownListR :: ListR n i -> Dict KnownNat n  knownListR ZR = Dict  knownListR (_ ::: l) | Dict <- knownListR l = Dict  -- | An index into a rank-typed array.  type role IxR nominal representational -type IxR :: INat -> Type -> Type +type IxR :: Nat -> Type -> Type  newtype IxR n i = IxR (ListR n i)    deriving (Show, Eq, Ord)    deriving newtype (Functor, Foldable) -pattern ZIR :: forall n i. () => n ~ Z => IxR n i +pattern ZIR :: forall n i. () => n ~ 0 => IxR n i  pattern ZIR = IxR ZR  pattern (:.:)    :: forall {n1} {i}. -     forall n. (S n ~ n1) +     forall n. (1 + n ~ n1)    => i -> IxR n i -> IxR n1 i  pattern i :.: sh <- (unconsIxR -> Just (UnconsIxRRes sh i))    where i :.: IxR sh = IxR (i ::: sh) @@ -916,30 +985,30 @@ pattern i :.: sh <- (unconsIxR -> Just (UnconsIxRRes sh i))  infixr 3 :.:  data UnconsIxRRes i n1 = -  forall n. ((S n) ~ n1) => UnconsIxRRes (IxR n i) i +  forall n. (1 + n ~ n1) => UnconsIxRRes (IxR n i) i  unconsIxR :: IxR n1 i -> Maybe (UnconsIxRRes i n1)  unconsIxR (IxR (i ::: sh')) = Just (UnconsIxRRes (IxR sh') i)  unconsIxR (IxR ZR) = Nothing  type IIxR n = IxR n Int -knownIxR :: IxR n i -> Dict KnownINat n +knownIxR :: IxR n i -> Dict KnownNat n  knownIxR (IxR sh) = knownListR sh  type role ShR nominal representational -type ShR :: INat -> Type -> Type +type ShR :: Nat -> Type -> Type  newtype ShR n i = ShR (ListR n i)    deriving (Show, Eq, Ord)    deriving newtype (Functor, Foldable)  type IShR n = ShR n Int -pattern ZSR :: forall n i. () => n ~ Z => ShR n i +pattern ZSR :: forall n i. () => n ~ 0 => ShR n i  pattern ZSR = ShR ZR  pattern (:$:)    :: forall {n1} {i}. -     forall n. (S n ~ n1) +     forall n. (1 + n ~ n1)    => i -> ShR n i -> ShR n1 i  pattern i :$: sh <- (unconsShR -> Just (UnconsShRRes sh i))    where i :$: (ShR sh) = ShR (i ::: sh) @@ -947,15 +1016,15 @@ pattern i :$: sh <- (unconsShR -> Just (UnconsShRRes sh i))  infixr 3 :$:  data UnconsShRRes i n1 = -  forall n. S n ~ n1 => UnconsShRRes (ShR n i) i +  forall n. 1 + n ~ n1 => UnconsShRRes (ShR n i) i  unconsShR :: ShR n1 i -> Maybe (UnconsShRRes i n1)  unconsShR (ShR (i ::: sh')) = Just (UnconsShRRes (ShR sh') i)  unconsShR (ShR ZR) = Nothing -knownShR :: ShR n i -> Dict KnownINat n +knownShR :: ShR n i -> Dict KnownNat n  knownShR (ShR sh) = knownListR sh -zeroIxR :: SINat n -> IIxR n +zeroIxR :: SNat n -> IIxR n  zeroIxR SZ = ZIR  zeroIxR (SS n) = 0 :.: zeroIxR n @@ -982,7 +1051,7 @@ shapeSizeR ZSR = 1  shapeSizeR (n :$: sh) = n * shapeSizeR sh -rshape :: forall n a. (KnownINat n, Elt a) => Ranked n a -> IShR n +rshape :: forall n a. (KnownNat n, Elt a) => Ranked n a -> IShR n  rshape (Ranked arr)    | Dict <- lemKnownReplicate (Proxy @n)    , Refl <- lemRankReplicate (Proxy @n) @@ -991,7 +1060,7 @@ rshape (Ranked arr)  rindex :: Elt a => Ranked n a -> IIxR n -> a  rindex (Ranked arr) idx = mindex arr (ixCvtRX idx) -rindexPartial :: forall n m a. (KnownINat n, Elt a) => Ranked (n +! m) a -> IIxR n -> Ranked m a +rindexPartial :: forall n m a. (KnownNat n, Elt a) => Ranked (n + m) a -> IIxR n -> Ranked m a  rindexPartial (Ranked arr) idx =    Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing)              (rewriteMixed (lemReplicatePlusApp (Proxy @n) (Proxy @m) (Proxy @Nothing)) arr) @@ -1007,7 +1076,7 @@ rgenerate sh f    = Ranked (mgenerate (shCvtRX sh) (f . ixCvtXR))  -- | See the documentation of 'mlift'. -rlift :: forall n1 n2 a. (KnownINat n2, Elt a) +rlift :: forall n1 n2 a. (KnownNat n2, Elt a)        => (forall sh' b. KnownShapeX sh' => Proxy sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)        -> Ranked n1 a -> Ranked n2 a  rlift f (Ranked arr) @@ -1015,39 +1084,39 @@ rlift f (Ranked arr)    = Ranked (mlift f arr)  rsumOuter1P :: forall n a. -               (Storable a, Num a, KnownINat n) -            => Ranked (S n) (Primitive a) -> Ranked n (Primitive a) +               (Storable a, Num a, KnownNat n, 1 <= n) +            => Ranked n (Primitive a) -> Ranked (n - 1) (Primitive a)  rsumOuter1P (Ranked arr)    | Dict <- lemKnownReplicate (Proxy @n)    = Ranked -    . coerce @(XArray (Replicate n 'Nothing) a) @(Mixed (Replicate n 'Nothing) (Primitive a)) -    . X.sumOuter (() :!$? ZKSX) (knownShapeX @(Replicate n Nothing)) -    . coerce @(Mixed (Replicate (S n) Nothing) (Primitive a)) @(XArray (Replicate (S n) Nothing) a) +    . coerce @(XArray (Replicate (n - 1) 'Nothing) a) @(Mixed (Replicate (n - 1) 'Nothing) (Primitive a)) +    . X.sumOuter (() :!$? ZKSX) (knownShapeX @(Replicate (n - 1) Nothing)) +    . coerce @(Mixed (Replicate n Nothing) (Primitive a)) @(XArray (Replicate n Nothing) a)      $ arr  rsumOuter1 :: forall n a. -              (Storable a, Num a, PrimElt a, KnownINat n) -           => Ranked (S n) a -> Ranked n a +  (Storable a, Num a, PrimElt a, KnownNat n, 1 <= n) +           => Ranked n a -> Ranked (n - 1) a  rsumOuter1 = coerce fromPrimitive . rsumOuter1P @n @a . coerce toPrimitive -rtranspose :: forall n a. (KnownINat n, Elt a) => [Int] -> Ranked n a -> Ranked n a +rtranspose :: forall n a. (KnownNat n, Elt a) => [Int] -> Ranked n a -> Ranked n a  rtranspose perm (Ranked arr)    | Dict <- lemKnownReplicate (Proxy @n)    = Ranked (mtranspose perm arr) -rappend :: forall n a. (KnownINat n, Elt a) -        => Ranked (S n) a -> Ranked (S n) a -> Ranked (S n) a +rappend :: forall n a. (KnownNat n, Elt a, 1 <= n) +        => Ranked n a -> Ranked n a -> Ranked n a  rappend | Dict <- lemKnownReplicate (Proxy @n) = coerce mappend -rscalar :: Elt a => a -> Ranked I0 a +rscalar :: Elt a => a -> Ranked 0 a  rscalar x = Ranked (mscalar x) -rfromVectorP :: forall n a. (KnownINat n, Storable a) => IShR n -> VS.Vector a -> Ranked n (Primitive a) +rfromVectorP :: forall n a. (KnownNat n, Storable a) => IShR n -> VS.Vector a -> Ranked n (Primitive a)  rfromVectorP sh v    | Dict <- lemKnownReplicate (Proxy @n)    = Ranked (mfromVectorP (shCvtRX sh) v) -rfromVector :: forall n a. (KnownINat n, Storable a, PrimElt a) => IShR n -> VS.Vector a -> Ranked n a +rfromVector :: forall n a. (KnownNat n, Storable a, PrimElt a) => IShR n -> VS.Vector a -> Ranked n a  rfromVector sh v = coerce fromPrimitive (rfromVectorP sh v)  rtoVectorP :: Storable a => Ranked n (Primitive a) -> VS.Vector a @@ -1056,39 +1125,39 @@ rtoVectorP = coerce mtoVectorP  rtoVector :: (Storable a, PrimElt a) => Ranked n a -> VS.Vector a  rtoVector = coerce mtoVector -rfromList1 :: forall n a. (KnownINat n, Elt a) => NonEmpty (Ranked n a) -> Ranked (S n) a +rfromList1 :: forall n a. (KnownNat n, Elt a) => NonEmpty (Ranked n a) -> Ranked (1 + n) a  rfromList1 l    | Dict <- lemKnownReplicate (Proxy @n)    = Ranked (mfromList1 (coerce l)) -rfromList :: Elt a => NonEmpty a -> Ranked I1 a +rfromList :: Elt a => NonEmpty a -> Ranked 1 a  rfromList = Ranked . mfromList1 . fmap mscalar -rtoList :: Elt a => Ranked (S n) a -> [Ranked n a] +rtoList :: Elt a => Ranked (1 + n) a -> [Ranked n a]  rtoList (Ranked arr) = coerce (mtoList1 arr) -rtoList1 :: Elt a => Ranked I1 a -> [a] +rtoList1 :: Elt a => Ranked 1 a -> [a]  rtoList1 = map runScalar . rtoList -runScalar :: Elt a => Ranked I0 a -> a +runScalar :: Elt a => Ranked 0 a -> a  runScalar arr = rindex arr ZIR -rconstantP :: forall n a. (KnownINat n, Storable a) => IShR n -> a -> Ranked n (Primitive a) +rconstantP :: forall n a. (KnownNat n, Storable a) => IShR n -> a -> Ranked n (Primitive a)  rconstantP sh x    | Dict <- lemKnownReplicate (Proxy @n)    = Ranked (mconstantP (shCvtRX sh) x) -rconstant :: forall n a. (KnownINat n, Storable a, PrimElt a) +rconstant :: forall n a. (KnownNat n, Storable a, PrimElt a)            => IShR n -> a -> Ranked n a  rconstant sh x = coerce fromPrimitive (rconstantP sh x) -rslice :: (KnownINat n, Elt a) => [(Int, Int)] -> Ranked n a -> Ranked n a +rslice :: (KnownNat n, Elt a) => [(Int, Int)] -> Ranked n a -> Ranked n a  rslice ivs = rlift $ \_ -> X.slice ivs -rrev1 :: (KnownINat n, Elt a) => Ranked (S n) a -> Ranked (S n) a +rrev1 :: (KnownNat n, Elt a, 1 <= n) => Ranked n a -> Ranked n a  rrev1 = rlift $ \_ -> X.rev1 -rreshape :: forall n n' a. (KnownINat n, KnownINat n', Elt a) +rreshape :: forall n n' a. (KnownNat n, KnownNat n', Elt a)           => IShR n' -> Ranked n a -> Ranked n' a  rreshape sh' (Ranked arr)    | Dict <- lemKnownReplicate (Proxy @n) | 
