diff options
author | Tom Smeding <t.j.smeding@uu.nl> | 2024-05-15 13:29:10 +0200 |
---|---|---|
committer | Tom Smeding <t.j.smeding@uu.nl> | 2024-05-15 13:30:36 +0200 |
commit | bd11ee13d58c512f1a9cc0ef06b36c722653ff6f (patch) | |
tree | a9354a9c1874bd4aea77a217db7981708707d60e /src/Data/INat.hs | |
parent | 43ddff2e7f1e9f4d8855f573384e26b63d34f697 (diff) |
The code compiles with only GHC nats
Diffstat (limited to 'src/Data/INat.hs')
-rw-r--r-- | src/Data/INat.hs | 121 |
1 files changed, 0 insertions, 121 deletions
diff --git a/src/Data/INat.hs b/src/Data/INat.hs deleted file mode 100644 index af8f18b..0000000 --- a/src/Data/INat.hs +++ /dev/null @@ -1,121 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE GADTs #-} -{-# LANGUAGE PatternSynonyms #-} -{-# LANGUAGE PolyKinds #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE StandaloneDeriving #-} -{-# LANGUAGE TypeAbstractions #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeFamilies #-} -{-# LANGUAGE TypeOperators #-} -{-# LANGUAGE UndecidableInstances #-} -{-# LANGUAGE ViewPatterns #-} -{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} -module Data.INat where - -import Data.Proxy -import Data.Type.Equality ((:~:) (Refl)) -import Numeric.Natural -import GHC.TypeLits -import Unsafe.Coerce (unsafeCoerce) - --- | Evidence for the constraint @c a@. -data Dict c a where - Dict :: c a => Dict c a - --- | An inductive peano natural number. Intended to be used at the type level. -data INat = Z | S INat - deriving (Show) - --- | Singleton for a 'INat'. -data SINat n where - SZ :: SINat Z - SS :: SINat n -> SINat (S n) -deriving instance Show (SINat n) - --- | A singleton 'SINat' corresponding to @n@. -class KnownINat n where inatSing :: SINat n -instance KnownINat Z where inatSing = SZ -instance KnownINat n => KnownINat (S n) where inatSing = SS inatSing - --- | Explicitly bidirectional pattern synonym that converts between a singleton --- 'SINat' and evidence of a 'KnownINat' constraint. Analogous to 'GHC.SNat'. -pattern SINat' :: () => KnownINat n => SINat n -pattern SINat' <- (snatKnown -> Dict) - where SINat' = inatSing - --- | A 'KnownINat' dictionary is just a singleton natural, so we can create --- evidence of 'KnownINat' given an 'SINat'. -snatKnown :: SINat n -> Dict KnownINat n -snatKnown SZ = Dict -snatKnown (SS n) | Dict <- snatKnown n = Dict - --- | Convert a 'INat' to a normal number. -fromINat :: INat -> Natural -fromINat Z = 0 -fromINat (S n) = 1 + fromINat n - --- | Convert an 'SINat' to a normal number. -fromSINat :: SINat n -> Natural -fromSINat SZ = 0 -fromSINat (SS n) = 1 + fromSINat n - --- | The value of a known inductive natural as a value-level integer. -inatVal :: forall n. KnownINat n => Proxy n -> Natural -inatVal _ = fromSINat (inatSing @n) - --- | Add two 'INat's -type family n +! m where - Z +! m = m - S n +! m = S (n +! m) - --- | Convert a 'INat' to a "GHC.TypeLits" 'G.Nat'. -type family FromINat n where - FromINat Z = 0 - FromINat (S n) = 1 + FromINat n - --- | Convert a "GHC.TypeLits" 'G.Nat' to a 'INat'. -type family ToINat (n :: Nat) where - ToINat 0 = Z - ToINat n = S (ToINat (n - 1)) - -lemInjectiveFromINat :: n :~: ToINat (FromINat n) -lemInjectiveFromINat = unsafeCoerce Refl - -lemSuccFromINat :: Proxy n -> 1 + FromINat n :~: FromINat (S n) -lemSuccFromINat _ = unsafeCoerce Refl - -lemAddFromINat :: Proxy m -> Proxy n - -> FromINat m + FromINat n :~: FromINat (m +! n) -lemAddFromINat _ = unsafeCoerce Refl - -lemInjectiveToINat :: n :~: FromINat (ToINat n) -lemInjectiveToINat = unsafeCoerce Refl - -lemSuccToINat :: Proxy n -> ToINat (1 + n) :~: S (ToINat n) -lemSuccToINat _ = unsafeCoerce Refl - -lemAddToINat :: Proxy m -> Proxy n -> ToINat (m + n) :~: ToINat m +! ToINat n -lemAddToINat _ _ = unsafeCoerce Refl - --- | If an inductive 'INat' is known, then the corresponding "GHC.TypeLits" --- 'G.Nat' is also known. -knownNatFromINat :: KnownINat n => Proxy n -> Dict KnownNat (FromINat n) -knownNatFromINat (Proxy @n) = go (SINat' @n) - where - go :: SINat m -> Dict KnownNat (FromINat m) - go SZ = Dict - go (SS n) | Dict <- go n = Dict - --- * Some type-level inductive naturals - -type I0 = Z -type I1 = S I0 -type I2 = S I1 -type I3 = S I2 -type I4 = S I3 -type I5 = S I4 -type I6 = S I5 -type I7 = S I6 -type I8 = S I7 -type I9 = S I8 |