diff options
author | Tom Smeding <tom@tomsmeding.com> | 2024-03-26 23:55:18 +0100 |
---|---|---|
committer | Tom Smeding <tom@tomsmeding.com> | 2024-03-26 23:55:18 +0100 |
commit | 4918bbe4c5b560917c3cb53619838ead1ea53b9e (patch) | |
tree | 0f702a20b1802065d701e677a8dd853881239394 /src |
Initial
Diffstat (limited to 'src')
-rw-r--r-- | src/Array.hs | 195 | ||||
-rw-r--r-- | src/Fancy.hs | 237 |
2 files changed, 432 insertions, 0 deletions
diff --git a/src/Array.hs b/src/Array.hs new file mode 100644 index 0000000..25db19e --- /dev/null +++ b/src/Array.hs @@ -0,0 +1,195 @@ +{-# LANGUAGE DataKinds #-} +{-# LANGUAGE FlexibleInstances #-} +{-# LANGUAGE GADTs #-} +{-# LANGUAGE PolyKinds #-} +{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE StandaloneDeriving #-} +{-# LANGUAGE StandaloneKindSignatures #-} +{-# LANGUAGE TypeApplications #-} +{-# LANGUAGE TypeFamilies #-} +{-# LANGUAGE TypeOperators #-} +{-# LANGUAGE UndecidableInstances #-} +{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} +module Array where + +import qualified Data.Array.RankedU as U +import Data.Kind +import Data.Proxy +import Data.Type.Equality +import qualified Data.Vector.Unboxed as VU +import GHC.TypeLits +import Unsafe.Coerce (unsafeCoerce) + + +data Dict c a where + Dict :: c a => Dict c a + +type family l1 ++ l2 where + '[] ++ l2 = l2 + (x : xs) ++ l2 = x : xs ++ l2 + +lemAppNil :: l ++ '[] :~: l +lemAppNil = unsafeCoerce Refl + +lemAppAssoc :: Proxy a -> Proxy b -> Proxy c -> (a ++ b) ++ c :~: a ++ (b ++ c) +lemAppAssoc _ _ _ = unsafeCoerce Refl + + +type IxX :: [Maybe Nat] -> Type +data IxX sh where + IZX :: IxX '[] + (::@) :: Int -> IxX sh -> IxX (Just n : sh) + (::?) :: Int -> IxX sh -> IxX (Nothing : sh) +deriving instance Show (IxX sh) + +type StaticShapeX :: [Maybe Nat] -> Type +data StaticShapeX sh where + SZX :: StaticShapeX '[] + (:$@) :: SNat n -> StaticShapeX sh -> StaticShapeX (Just n : sh) + (:$?) :: () -> StaticShapeX sh -> StaticShapeX (Nothing : sh) + +type KnownShapeX :: [Maybe Nat] -> Constraint +class KnownShapeX sh where + knownShapeX :: StaticShapeX sh +instance KnownShapeX '[] where + knownShapeX = SZX +instance (KnownNat n, KnownShapeX sh) => KnownShapeX (Just n : sh) where + knownShapeX = natSing @n :$@ knownShapeX +instance KnownShapeX sh => KnownShapeX (Nothing : sh) where + knownShapeX = () :$? knownShapeX + +type family Rank sh where + Rank '[] = 0 + Rank (_ : sh) = 1 + Rank sh + +type XArray :: [Maybe Nat] -> Type -> Type +data XArray sh a = XArray (U.Array (Rank sh) a) + +zeroIdx :: StaticShapeX sh -> IxX sh +zeroIdx SZX = IZX +zeroIdx (_ :$@ ssh) = 0 ::@ zeroIdx ssh +zeroIdx (_ :$? ssh) = 0 ::? zeroIdx ssh + +zeroIdx' :: IxX sh -> IxX sh +zeroIdx' IZX = IZX +zeroIdx' (_ ::@ sh) = 0 ::@ zeroIdx' sh +zeroIdx' (_ ::? sh) = 0 ::? zeroIdx' sh + +ixAppend :: IxX sh -> IxX sh' -> IxX (sh ++ sh') +ixAppend IZX idx' = idx' +ixAppend (i ::@ idx) idx' = i ::@ ixAppend idx idx' +ixAppend (i ::? idx) idx' = i ::? ixAppend idx idx' + +ixDrop :: IxX (sh ++ sh') -> IxX sh -> IxX sh' +ixDrop sh IZX = sh +ixDrop (_ ::@ sh) (_ ::@ idx) = ixDrop sh idx +ixDrop (_ ::? sh) (_ ::? idx) = ixDrop sh idx + +ssxAppend :: StaticShapeX sh -> StaticShapeX sh' -> StaticShapeX (sh ++ sh') +ssxAppend SZX idx' = idx' +ssxAppend (n :$@ idx) idx' = n :$@ ssxAppend idx idx' +ssxAppend (() :$? idx) idx' = () :$? ssxAppend idx idx' + +shapeSize :: IxX sh -> Int +shapeSize IZX = 1 +shapeSize (n ::@ sh) = n * shapeSize sh +shapeSize (n ::? sh) = n * shapeSize sh + +fromLinearIdx :: IxX sh -> Int -> IxX sh +fromLinearIdx = \sh i -> case go sh i of + (idx, 0) -> idx + _ -> error $ "fromLinearIdx: out of range (" ++ show i ++ + " in array of shape " ++ show sh ++ ")" + where + -- returns (index in subarray, remaining index in enclosing array) + go :: IxX sh -> Int -> (IxX sh, Int) + go IZX i = (IZX, i) + go (n ::@ sh) i = + let (idx, i') = go sh i + (upi, locali) = i' `quotRem` n + in (locali ::@ idx, upi) + go (n ::? sh) i = + let (idx, i') = go sh i + (upi, locali) = i' `quotRem` n + in (locali ::? idx, upi) + +toLinearIdx :: IxX sh -> IxX sh -> Int +toLinearIdx = \sh i -> fst (go sh i) + where + -- returns (index in subarray, size of subarray) + go :: IxX sh -> IxX sh -> (Int, Int) + go IZX IZX = (0, 1) + go (n ::@ sh) (i ::@ ix) = + let (lidx, sz) = go sh ix + in (sz * i + lidx, n * sz) + go (n ::? sh) (i ::? ix) = + let (lidx, sz) = go sh ix + in (sz * i + lidx, n * sz) + +enumShape :: IxX sh -> [IxX sh] +enumShape = \sh -> go 0 sh id [] + where + go :: Int -> IxX sh -> (IxX sh -> a) -> [a] -> [a] + go _ IZX _ = id + go i (n ::@ sh) f + | i < n = go (i + 1) (n ::@ sh) f . go 0 sh (f . (i ::@)) + | otherwise = id + go i (n ::? sh) f + | i < n = go (i + 1) (n ::? sh) f . go 0 sh (f . (i ::?)) + | otherwise = id + +shapeLshape :: IxX sh -> U.ShapeL +shapeLshape IZX = [] +shapeLshape (n ::@ sh) = n : shapeLshape sh +shapeLshape (n ::? sh) = n : shapeLshape sh + +lemKnownNatRank :: IxX sh -> Dict KnownNat (Rank sh) +lemKnownNatRank IZX = Dict +lemKnownNatRank (_ ::@ sh) | Dict <- lemKnownNatRank sh = Dict +lemKnownNatRank (_ ::? sh) | Dict <- lemKnownNatRank sh = Dict + +lemKnownShapeX :: StaticShapeX sh -> Dict KnownShapeX sh +lemKnownShapeX SZX = Dict +lemKnownShapeX (SNat :$@ ssh) | Dict <- lemKnownShapeX ssh = Dict +lemKnownShapeX (() :$? ssh) | Dict <- lemKnownShapeX ssh = Dict +lemKnownShapeX (_ :$@ _) = error "SNat does not have a COMPLETE pragma" + +lemAppKnownShapeX :: StaticShapeX sh1 -> StaticShapeX sh2 -> Dict KnownShapeX (sh1 ++ sh2) +lemAppKnownShapeX SZX ssh' = lemKnownShapeX ssh' +lemAppKnownShapeX (SNat :$@ ssh) ssh' | Dict <- lemAppKnownShapeX ssh ssh' = Dict +lemAppKnownShapeX (() :$? ssh) ssh' | Dict <- lemAppKnownShapeX ssh ssh' = Dict +lemAppKnownShapeX (_ :$@ _) _ = error "SNat does not have a COMPLETE pragma" + +shape :: forall sh a. KnownShapeX sh => XArray sh a -> IxX sh +shape (XArray arr) = go (knownShapeX @sh) (U.shapeL arr) + where + go :: StaticShapeX sh' -> [Int] -> IxX sh' + go SZX [] = IZX + go (n :$@ ssh) (_ : l) = fromIntegral (fromSNat n) ::@ go ssh l + go (() :$? ssh) (n : l) = n ::? go ssh l + go _ _ = error "Invalid shapeL" + +fromVector :: U.Unbox a => IxX sh -> VU.Vector a -> XArray sh a +fromVector sh v | Dict <- lemKnownNatRank sh = XArray (U.fromVector (shapeLshape sh) v) + +toVector :: U.Unbox a => XArray sh a -> VU.Vector a +toVector (XArray arr) = U.toVector arr + +generate :: U.Unbox a => IxX sh -> (IxX sh -> a) -> XArray sh a +generate sh f = fromVector sh $ VU.generate (shapeSize sh) (f . fromLinearIdx sh) + +-- generateM :: (Monad m, U.Unbox a) => IxX sh -> (IxX sh -> m a) -> m (XArray sh a) +-- generateM sh f | Dict <- lemKnownNatRank sh = +-- XArray . U.fromVector (shapeLshape sh) +-- <$> VU.generateM (shapeSize sh) (f . fromLinearIdx sh) + +indexPartial :: U.Unbox a => XArray (sh ++ sh') a -> IxX sh -> XArray sh' a +indexPartial (XArray arr) IZX = XArray arr +indexPartial (XArray arr) (i ::@ idx) = indexPartial (XArray (U.index arr i)) idx +indexPartial (XArray arr) (i ::? idx) = indexPartial (XArray (U.index arr i)) idx + +index :: forall sh a. U.Unbox a => XArray sh a -> IxX sh -> a +index xarr i + | Refl <- lemAppNil @sh + = let XArray arr' = indexPartial xarr i :: XArray '[] a + in U.unScalar arr' diff --git a/src/Fancy.hs b/src/Fancy.hs new file mode 100644 index 0000000..821073e --- /dev/null +++ b/src/Fancy.hs @@ -0,0 +1,237 @@ +{-# LANGUAGE DataKinds #-} +{-# LANGUAGE GADTs #-} +{-# LANGUAGE InstanceSigs #-} +{-# LANGUAGE PolyKinds #-} +{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE StandaloneKindSignatures #-} +{-# LANGUAGE TypeFamilies #-} +{-# LANGUAGE TypeOperators #-} +{-# LANGUAGE UndecidableInstances #-} +{-# LANGUAGE TypeApplications #-} +{-# LANGUAGE FlexibleInstances #-} +module Fancy where + +import Control.Monad (forM_) +import Control.Monad.ST +import Data.Kind +import Data.Proxy +import Data.Type.Equality +import qualified Data.Vector.Unboxed as VU +import qualified Data.Vector.Unboxed.Mutable as VUM +import GHC.TypeLits + +import Array (XArray, IxX(..), KnownShapeX(..), StaticShapeX(..), type (++)) +import qualified Array as X + + +type family Replicate n a where + Replicate 0 a = '[] + Replicate n a = a : Replicate (n - 1) a + +type family MapJust l where + MapJust '[] = '[] + MapJust (x : xs) = Just x : MapJust xs + + +type Mixed :: [Maybe Nat] -> Type -> Type +data family Mixed sh a + +newtype instance Mixed sh Int = M_Int (XArray sh Int) +newtype instance Mixed sh Double = M_Double (XArray sh Double) +-- etc. + +newtype instance Mixed sh () = M_Nil (IxX sh) -- store the shape +data instance Mixed sh (a, b) = M_Tup2 (Mixed sh a) (Mixed sh b) +data instance Mixed sh (a, b, c) = M_Tup3 (Mixed sh a) (Mixed sh b) (Mixed sh c) +data instance Mixed sh (a, b, c, d) = M_Tup4 (Mixed sh a) (Mixed sh b) (Mixed sh c) (Mixed sh d) + +newtype instance Mixed sh1 (Mixed sh2 a) = M_Nest (Mixed (sh1 ++ sh2) a) + + +type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type +data family MixedVecs s sh a + +newtype instance MixedVecs s sh Int = MV_Int (VU.MVector s Int) +newtype instance MixedVecs s sh Double = MV_Double (VU.MVector s Double) +-- etc. + +data instance MixedVecs s sh () = MV_Nil +data instance MixedVecs s sh (a, b) = MV_Tup2 (MixedVecs s sh a) (MixedVecs s sh b) +data instance MixedVecs s sh (a, b, c) = MV_Tup3 (MixedVecs s sh a) (MixedVecs s sh b) (MixedVecs s sh c) +data instance MixedVecs s sh (a, b, c, d) = MV_Tup4 (MixedVecs s sh a) (MixedVecs s sh b) (MixedVecs s sh c) (MixedVecs s sh d) + +data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest (IxX sh2) (MixedVecs s (sh1 ++ sh2) a) + + +class GMixed a where + mshape :: KnownShapeX sh => Mixed sh a -> IxX sh + mindex :: Mixed sh a -> IxX sh -> a + mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IxX sh -> Mixed sh' a + + -- | Create an empty array. The given shape must have size zero; this may or may not be checked. + memptyArray :: IxX sh -> Mixed sh a + + -- | Return the size of the individual (SoA) arrays in this value. If @a@ + -- does not contain tuples, this coincides with the total number of scalars + -- in the given value; if @a@ contains tuples, then it is some multiple of + -- this number of scalars. + mvecsNumElts :: a -> Int + + -- | Create uninitialised vectors for this array type, given the shape of + -- this vector and an example for the contents. The shape must not have size + -- zero; an error may be thrown otherwise. + mvecsUnsafeNew :: IxX sh -> a -> ST s (MixedVecs s sh a) + + -- | Given the shape of this array, an index and a value, write the value at + -- that index in the vectors. + mvecsWrite :: IxX sh -> IxX sh -> a -> MixedVecs s sh a -> ST s () + + -- | Given the shape of this array, an index and a value, write the value at + -- that index in the vectors. + mvecsWritePartial :: KnownShapeX sh' => IxX (sh ++ sh') -> IxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s () + + -- | Given the shape of this array, finalise the vectors into 'XArray's. + mvecsFreeze :: IxX sh -> MixedVecs s sh a -> ST s (Mixed sh a) + +-- TODO: this use of toVector is suboptimal +mvecsWritePartialPrimitive + :: forall sh' sh a s. (KnownShapeX sh', VU.Unbox a) + => IxX (sh ++ sh') -> IxX sh -> XArray sh' a -> VU.MVector s a -> ST s () +mvecsWritePartialPrimitive sh i arr v = do + let offset = X.toLinearIdx sh (X.ixAppend i (X.zeroIdx' (X.shape arr))) + VU.copy (VUM.slice offset (X.shapeSize (X.shape arr)) v) (X.toVector arr) + +instance GMixed Int where + mshape (M_Int a) = X.shape a + mindex (M_Int a) i = X.index a i + mindexPartial (M_Int a) i = M_Int (X.indexPartial a i) + memptyArray sh = M_Int (X.generate sh (error "memptyArray Int: shape was not empty")) + + mvecsNumElts _ = 1 + mvecsUnsafeNew sh _ = MV_Int <$> VUM.unsafeNew (X.shapeSize sh) + mvecsWrite sh i x (MV_Int v) = VUM.write v (X.toLinearIdx sh i) x + mvecsWritePartial sh i (M_Int @sh' arr) (MV_Int v) = mvecsWritePartialPrimitive @sh' sh i arr v + mvecsFreeze sh (MV_Int v) = M_Int . X.fromVector sh <$> VU.freeze v + +instance GMixed Double where + mshape (M_Double a) = X.shape a + mindex (M_Double a) i = X.index a i + mindexPartial (M_Double a) i = M_Double (X.indexPartial a i) + memptyArray sh = M_Double (X.generate sh (error "memptyArray Double: shape was not empty")) + + mvecsNumElts _ = 1 + mvecsUnsafeNew sh _ = MV_Double <$> VUM.unsafeNew (X.shapeSize sh) + mvecsWrite sh i x (MV_Double v) = VUM.write v (X.toLinearIdx sh i) x + mvecsWritePartial sh i (M_Double @sh' arr) (MV_Double v) = mvecsWritePartialPrimitive @sh' sh i arr v + mvecsFreeze sh (MV_Double v) = M_Double . X.fromVector sh <$> VU.freeze v + +instance GMixed () where + mshape (M_Nil sh) = sh + mindex _ _ = () + mindexPartial = \(M_Nil sh) i -> M_Nil (X.ixDrop sh i) + memptyArray sh = M_Nil sh + + mvecsNumElts _ = 1 + mvecsUnsafeNew _ _ = return MV_Nil + mvecsWrite _ _ _ _ = return () + mvecsWritePartial _ _ _ _ = return () + mvecsFreeze sh _ = return (M_Nil sh) + +instance (GMixed a, GMixed b) => GMixed (a, b) where + mshape (M_Tup2 a _) = mshape a + mindex (M_Tup2 a b) i = (mindex a i, mindex b i) + mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i) + memptyArray sh = M_Tup2 (memptyArray sh) (memptyArray sh) + + mvecsNumElts (x, y) = mvecsNumElts x * mvecsNumElts y + mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y + mvecsWrite sh i (x, y) (MV_Tup2 a b) = do + mvecsWrite sh i x a + mvecsWrite sh i y b + mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do + mvecsWritePartial sh i x a + mvecsWritePartial sh i y b + mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b + +instance (GMixed a, KnownShapeX sh') => GMixed (Mixed sh' a) where + -- TODO: this is quadratic in the nesting level + mshape :: forall sh. KnownShapeX sh => Mixed sh (Mixed sh' a) -> IxX sh + mshape (M_Nest arr) + | X.Dict <- X.lemAppKnownShapeX (knownShapeX @sh) (knownShapeX @sh') + = ixAppPrefix (knownShapeX @sh) (mshape arr) + where + ixAppPrefix :: StaticShapeX sh1 -> IxX (sh1 ++ sh') -> IxX sh1 + ixAppPrefix SZX _ = IZX + ixAppPrefix (_ :$@ ssh) (i ::@ idx) = i ::@ ixAppPrefix ssh idx + ixAppPrefix (_ :$? ssh) (i ::? idx) = i ::? ixAppPrefix ssh idx + + mindex (M_Nest arr) i = mindexPartial arr i + + mindexPartial :: forall sh1 sh2. + Mixed (sh1 ++ sh2) (Mixed sh' a) -> IxX sh1 -> Mixed sh2 (Mixed sh' a) + mindexPartial (M_Nest arr) i + | Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') + = M_Nest (mindexPartial @a @sh1 @(sh2 ++ sh') arr i) + + memptyArray sh = M_Nest (memptyArray (X.ixAppend sh (X.zeroIdx (knownShapeX @sh')))) + + mvecsNumElts arr = + let n = X.shapeSize (mshape arr) + in if n == 0 then 0 else n * mvecsNumElts (mindex arr (X.zeroIdx (knownShapeX @sh'))) + + mvecsUnsafeNew sh example + | X.shapeSize sh' == 0 = error "mvecsUnsafeNew: empty example" + | otherwise = MV_Nest sh' <$> mvecsUnsafeNew (X.ixAppend sh (mshape example)) + (mindex example (X.zeroIdx (knownShapeX @sh'))) + where + sh' = mshape example + + mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (X.ixAppend sh sh') idx val vecs + + mvecsWritePartial :: forall sh1 sh2 s. KnownShapeX sh2 + => IxX (sh1 ++ sh2) -> IxX sh1 -> Mixed sh2 (Mixed sh' a) + -> MixedVecs s (sh1 ++ sh2) (Mixed sh' a) + -> ST s () + mvecsWritePartial sh12 idx (M_Nest arr) (MV_Nest sh' vecs) + | X.Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh2) (knownShapeX @sh')) + , Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh') + = mvecsWritePartial @a @(sh2 ++ sh') @sh1 (X.ixAppend sh12 sh') idx arr vecs + + mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest <$> mvecsFreeze (X.ixAppend sh sh') vecs + +mgenerate :: GMixed a => IxX sh -> (IxX sh -> a) -> Mixed sh a +mgenerate sh f + -- We need to be very careful here to ensure that neither 'sh' nor + -- 'firstelem' that we pass to 'mvecsUnsafeNew' are empty. + | X.shapeSize sh == 0 = memptyArray sh + | otherwise = + let firstidx = X.zeroIdx' sh + firstelem = f (X.zeroIdx' sh) + in if mvecsNumElts firstelem == 0 + then memptyArray sh + else runST $ do + vecs <- mvecsUnsafeNew sh firstelem + mvecsWrite sh firstidx firstelem vecs + forM_ (tail (X.enumShape sh)) $ \idx -> + mvecsWrite sh idx (f idx) vecs + mvecsFreeze sh vecs + + +type Ranked :: Nat -> Type -> Type +newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a) + +type Shaped :: [Nat] -> Type -> Type +newtype Shaped sh a = Shaped (Mixed (MapJust sh) a) + + +type IxR :: Nat -> Type +data IxR n where + IZR :: IxR 0 + (:::) :: Int -> IxR n -> IxR (n + 1) + +type IxS :: [Nat] -> Type +data IxS sh where + IZS :: IxS '[] + (::$) :: Int -> IxS sh -> IxS (n : sh) + + |