1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Array where
import qualified Data.Array.RankedU as U
import Data.Kind
import Data.Proxy
import Data.Type.Equality
import qualified Data.Vector.Unboxed as VU
import GHC.TypeLits
import Unsafe.Coerce (unsafeCoerce)
data Dict c a where
Dict :: c a => Dict c a
type family l1 ++ l2 where
'[] ++ l2 = l2
(x : xs) ++ l2 = x : xs ++ l2
lemAppNil :: l ++ '[] :~: l
lemAppNil = unsafeCoerce Refl
lemAppAssoc :: Proxy a -> Proxy b -> Proxy c -> (a ++ b) ++ c :~: a ++ (b ++ c)
lemAppAssoc _ _ _ = unsafeCoerce Refl
type IxX :: [Maybe Nat] -> Type
data IxX sh where
IZX :: IxX '[]
(::@) :: Int -> IxX sh -> IxX (Just n : sh)
(::?) :: Int -> IxX sh -> IxX (Nothing : sh)
deriving instance Show (IxX sh)
type StaticShapeX :: [Maybe Nat] -> Type
data StaticShapeX sh where
SZX :: StaticShapeX '[]
(:$@) :: SNat n -> StaticShapeX sh -> StaticShapeX (Just n : sh)
(:$?) :: () -> StaticShapeX sh -> StaticShapeX (Nothing : sh)
type KnownShapeX :: [Maybe Nat] -> Constraint
class KnownShapeX sh where
knownShapeX :: StaticShapeX sh
instance KnownShapeX '[] where
knownShapeX = SZX
instance (KnownNat n, KnownShapeX sh) => KnownShapeX (Just n : sh) where
knownShapeX = natSing @n :$@ knownShapeX
instance KnownShapeX sh => KnownShapeX (Nothing : sh) where
knownShapeX = () :$? knownShapeX
type family Rank sh where
Rank '[] = 0
Rank (_ : sh) = 1 + Rank sh
type XArray :: [Maybe Nat] -> Type -> Type
data XArray sh a = XArray (U.Array (Rank sh) a)
zeroIdx :: StaticShapeX sh -> IxX sh
zeroIdx SZX = IZX
zeroIdx (_ :$@ ssh) = 0 ::@ zeroIdx ssh
zeroIdx (_ :$? ssh) = 0 ::? zeroIdx ssh
zeroIdx' :: IxX sh -> IxX sh
zeroIdx' IZX = IZX
zeroIdx' (_ ::@ sh) = 0 ::@ zeroIdx' sh
zeroIdx' (_ ::? sh) = 0 ::? zeroIdx' sh
ixAppend :: IxX sh -> IxX sh' -> IxX (sh ++ sh')
ixAppend IZX idx' = idx'
ixAppend (i ::@ idx) idx' = i ::@ ixAppend idx idx'
ixAppend (i ::? idx) idx' = i ::? ixAppend idx idx'
ixDrop :: IxX (sh ++ sh') -> IxX sh -> IxX sh'
ixDrop sh IZX = sh
ixDrop (_ ::@ sh) (_ ::@ idx) = ixDrop sh idx
ixDrop (_ ::? sh) (_ ::? idx) = ixDrop sh idx
ssxAppend :: StaticShapeX sh -> StaticShapeX sh' -> StaticShapeX (sh ++ sh')
ssxAppend SZX idx' = idx'
ssxAppend (n :$@ idx) idx' = n :$@ ssxAppend idx idx'
ssxAppend (() :$? idx) idx' = () :$? ssxAppend idx idx'
shapeSize :: IxX sh -> Int
shapeSize IZX = 1
shapeSize (n ::@ sh) = n * shapeSize sh
shapeSize (n ::? sh) = n * shapeSize sh
fromLinearIdx :: IxX sh -> Int -> IxX sh
fromLinearIdx = \sh i -> case go sh i of
(idx, 0) -> idx
_ -> error $ "fromLinearIdx: out of range (" ++ show i ++
" in array of shape " ++ show sh ++ ")"
where
-- returns (index in subarray, remaining index in enclosing array)
go :: IxX sh -> Int -> (IxX sh, Int)
go IZX i = (IZX, i)
go (n ::@ sh) i =
let (idx, i') = go sh i
(upi, locali) = i' `quotRem` n
in (locali ::@ idx, upi)
go (n ::? sh) i =
let (idx, i') = go sh i
(upi, locali) = i' `quotRem` n
in (locali ::? idx, upi)
toLinearIdx :: IxX sh -> IxX sh -> Int
toLinearIdx = \sh i -> fst (go sh i)
where
-- returns (index in subarray, size of subarray)
go :: IxX sh -> IxX sh -> (Int, Int)
go IZX IZX = (0, 1)
go (n ::@ sh) (i ::@ ix) =
let (lidx, sz) = go sh ix
in (sz * i + lidx, n * sz)
go (n ::? sh) (i ::? ix) =
let (lidx, sz) = go sh ix
in (sz * i + lidx, n * sz)
enumShape :: IxX sh -> [IxX sh]
enumShape = \sh -> go 0 sh id []
where
go :: Int -> IxX sh -> (IxX sh -> a) -> [a] -> [a]
go _ IZX _ = id
go i (n ::@ sh) f
| i < n = go (i + 1) (n ::@ sh) f . go 0 sh (f . (i ::@))
| otherwise = id
go i (n ::? sh) f
| i < n = go (i + 1) (n ::? sh) f . go 0 sh (f . (i ::?))
| otherwise = id
shapeLshape :: IxX sh -> U.ShapeL
shapeLshape IZX = []
shapeLshape (n ::@ sh) = n : shapeLshape sh
shapeLshape (n ::? sh) = n : shapeLshape sh
lemKnownNatRank :: IxX sh -> Dict KnownNat (Rank sh)
lemKnownNatRank IZX = Dict
lemKnownNatRank (_ ::@ sh) | Dict <- lemKnownNatRank sh = Dict
lemKnownNatRank (_ ::? sh) | Dict <- lemKnownNatRank sh = Dict
lemKnownShapeX :: StaticShapeX sh -> Dict KnownShapeX sh
lemKnownShapeX SZX = Dict
lemKnownShapeX (SNat :$@ ssh) | Dict <- lemKnownShapeX ssh = Dict
lemKnownShapeX (() :$? ssh) | Dict <- lemKnownShapeX ssh = Dict
lemKnownShapeX (_ :$@ _) = error "SNat does not have a COMPLETE pragma"
lemAppKnownShapeX :: StaticShapeX sh1 -> StaticShapeX sh2 -> Dict KnownShapeX (sh1 ++ sh2)
lemAppKnownShapeX SZX ssh' = lemKnownShapeX ssh'
lemAppKnownShapeX (SNat :$@ ssh) ssh' | Dict <- lemAppKnownShapeX ssh ssh' = Dict
lemAppKnownShapeX (() :$? ssh) ssh' | Dict <- lemAppKnownShapeX ssh ssh' = Dict
lemAppKnownShapeX (_ :$@ _) _ = error "SNat does not have a COMPLETE pragma"
shape :: forall sh a. KnownShapeX sh => XArray sh a -> IxX sh
shape (XArray arr) = go (knownShapeX @sh) (U.shapeL arr)
where
go :: StaticShapeX sh' -> [Int] -> IxX sh'
go SZX [] = IZX
go (n :$@ ssh) (_ : l) = fromIntegral (fromSNat n) ::@ go ssh l
go (() :$? ssh) (n : l) = n ::? go ssh l
go _ _ = error "Invalid shapeL"
fromVector :: U.Unbox a => IxX sh -> VU.Vector a -> XArray sh a
fromVector sh v | Dict <- lemKnownNatRank sh = XArray (U.fromVector (shapeLshape sh) v)
toVector :: U.Unbox a => XArray sh a -> VU.Vector a
toVector (XArray arr) = U.toVector arr
generate :: U.Unbox a => IxX sh -> (IxX sh -> a) -> XArray sh a
generate sh f = fromVector sh $ VU.generate (shapeSize sh) (f . fromLinearIdx sh)
-- generateM :: (Monad m, U.Unbox a) => IxX sh -> (IxX sh -> m a) -> m (XArray sh a)
-- generateM sh f | Dict <- lemKnownNatRank sh =
-- XArray . U.fromVector (shapeLshape sh)
-- <$> VU.generateM (shapeSize sh) (f . fromLinearIdx sh)
indexPartial :: U.Unbox a => XArray (sh ++ sh') a -> IxX sh -> XArray sh' a
indexPartial (XArray arr) IZX = XArray arr
indexPartial (XArray arr) (i ::@ idx) = indexPartial (XArray (U.index arr i)) idx
indexPartial (XArray arr) (i ::? idx) = indexPartial (XArray (U.index arr i)) idx
index :: forall sh a. U.Unbox a => XArray sh a -> IxX sh -> a
index xarr i
| Refl <- lemAppNil @sh
= let XArray arr' = indexPartial xarr i :: XArray '[] a
in U.unScalar arr'
|