summaryrefslogtreecommitdiff
path: root/src/Data/Array/Mixed.hs
blob: 17b0ab46075106730bf830f2d7d3702ae43625ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Data.Array.Mixed where

import qualified Data.Array.RankedS as S
import Data.Kind
import Data.Proxy
import Data.Type.Equality
import qualified Data.Vector.Storable as VS
import Foreign.Storable (Storable)
import GHC.TypeLits
import Unsafe.Coerce (unsafeCoerce)

import Data.INat


-- | The 'SNat' pattern synonym is complete, but it doesn't have a
-- @COMPLETE@ pragma. This copy of it does.
pattern GHC_SNat :: () => KnownNat n => SNat n
pattern GHC_SNat = SNat
{-# COMPLETE GHC_SNat #-}


-- | Type-level list append.
type family l1 ++ l2 where
  '[] ++ l2 = l2
  (x : xs) ++ l2 = x : xs ++ l2

lemAppNil :: l ++ '[] :~: l
lemAppNil = unsafeCoerce Refl

lemAppAssoc :: Proxy a -> Proxy b -> Proxy c -> (a ++ b) ++ c :~: a ++ (b ++ c)
lemAppAssoc _ _ _ = unsafeCoerce Refl


type IxX :: [Maybe Nat] -> Type
data IxX sh where
  IZX :: IxX '[]
  (::@) :: Int -> IxX sh -> IxX (Just n : sh)
  (::?) :: Int -> IxX sh -> IxX (Nothing : sh)
deriving instance Show (IxX sh)
deriving instance Eq (IxX sh)
infixr 5 ::@
infixr 5 ::?

-- | The part of a shape that is statically known.
type StaticShapeX :: [Maybe Nat] -> Type
data StaticShapeX sh where
  SZX :: StaticShapeX '[]
  (:$@) :: SNat n -> StaticShapeX sh -> StaticShapeX (Just n : sh)
  (:$?) :: () -> StaticShapeX sh -> StaticShapeX (Nothing : sh)
deriving instance Show (StaticShapeX sh)
infixr 5 :$@
infixr 5 :$?

-- | Evidence for the static part of a shape.
type KnownShapeX :: [Maybe Nat] -> Constraint
class KnownShapeX sh where
  knownShapeX :: StaticShapeX sh
instance KnownShapeX '[] where
  knownShapeX = SZX
instance (KnownNat n, KnownShapeX sh) => KnownShapeX (Just n : sh) where
  knownShapeX = natSing :$@ knownShapeX
instance KnownShapeX sh => KnownShapeX (Nothing : sh) where
  knownShapeX = () :$? knownShapeX

type family Rank sh where
  Rank '[] = Z
  Rank (_ : sh) = S (Rank sh)

type XArray :: [Maybe Nat] -> Type -> Type
newtype XArray sh a = XArray (S.Array (FromINat (Rank sh)) a)
  deriving (Show)

zeroIxX :: StaticShapeX sh -> IxX sh
zeroIxX SZX = IZX
zeroIxX (_ :$@ ssh) = 0 ::@ zeroIxX ssh
zeroIxX (_ :$? ssh) = 0 ::? zeroIxX ssh

zeroIxX' :: IxX sh -> IxX sh
zeroIxX' IZX = IZX
zeroIxX' (_ ::@ sh) = 0 ::@ zeroIxX' sh
zeroIxX' (_ ::? sh) = 0 ::? zeroIxX' sh

ixAppend :: IxX sh -> IxX sh' -> IxX (sh ++ sh')
ixAppend IZX idx' = idx'
ixAppend (i ::@ idx) idx' = i ::@ ixAppend idx idx'
ixAppend (i ::? idx) idx' = i ::? ixAppend idx idx'

ixDrop :: IxX (sh ++ sh') -> IxX sh -> IxX sh'
ixDrop sh IZX = sh
ixDrop (_ ::@ sh) (_ ::@ idx) = ixDrop sh idx
ixDrop (_ ::? sh) (_ ::? idx) = ixDrop sh idx

ssxAppend :: StaticShapeX sh -> StaticShapeX sh' -> StaticShapeX (sh ++ sh')
ssxAppend SZX sh' = sh'
ssxAppend (n :$@ sh) sh' = n :$@ ssxAppend sh sh'
ssxAppend (() :$? sh) sh' = () :$? ssxAppend sh sh'

shapeSize :: IxX sh -> Int
shapeSize IZX = 1
shapeSize (n ::@ sh) = n * shapeSize sh
shapeSize (n ::? sh) = n * shapeSize sh

-- | This may fail if @sh@ has @Nothing@s in it.
ssxToShape' :: StaticShapeX sh -> Maybe (IxX sh)
ssxToShape' SZX = Just IZX
ssxToShape' (n :$@ sh) = (fromIntegral (fromSNat n) ::@) <$> ssxToShape' sh
ssxToShape' (_ :$? _) = Nothing

fromLinearIdx :: IxX sh -> Int -> IxX sh
fromLinearIdx = \sh i -> case go sh i of
  (idx, 0) -> idx
  _ -> error $ "fromLinearIdx: out of range (" ++ show i ++
               " in array of shape " ++ show sh ++ ")"
  where
    -- returns (index in subarray, remaining index in enclosing array)
    go :: IxX sh -> Int -> (IxX sh, Int)
    go IZX i = (IZX, i)
    go (n ::@ sh) i =
      let (idx, i') = go sh i
          (upi, locali) = i' `quotRem` n
      in (locali ::@ idx, upi)
    go (n ::? sh) i =
      let (idx, i') = go sh i
          (upi, locali) = i' `quotRem` n
      in (locali ::? idx, upi)

toLinearIdx :: IxX sh -> IxX sh -> Int
toLinearIdx = \sh i -> fst (go sh i)
  where
    -- returns (index in subarray, size of subarray)
    go :: IxX sh -> IxX sh -> (Int, Int)
    go IZX IZX = (0, 1)
    go (n ::@ sh) (i ::@ ix) =
      let (lidx, sz) = go sh ix
      in (sz * i + lidx, n * sz)
    go (n ::? sh) (i ::? ix) =
      let (lidx, sz) = go sh ix
      in (sz * i + lidx, n * sz)

enumShape :: IxX sh -> [IxX sh]
enumShape = \sh -> go sh id []
  where
    go :: IxX sh -> (IxX sh -> a) -> [a] -> [a]
    go IZX f = (f IZX :)
    go (n ::@ sh) f = foldr (.) id [go sh (f . (i ::@)) | i <- [0 .. n-1]]
    go (n ::? sh) f = foldr (.) id [go sh (f . (i ::?)) | i <- [0 .. n-1]]

shapeLshape :: IxX sh -> S.ShapeL
shapeLshape IZX = []
shapeLshape (n ::@ sh) = n : shapeLshape sh
shapeLshape (n ::? sh) = n : shapeLshape sh

ssxLength :: StaticShapeX sh -> Int
ssxLength SZX = 0
ssxLength (_ :$@ ssh) = 1 + ssxLength ssh
ssxLength (_ :$? ssh) = 1 + ssxLength ssh

ssxIotaFrom :: Int -> StaticShapeX sh -> [Int]
ssxIotaFrom _ SZX = []
ssxIotaFrom i (_ :$@ ssh) = i : ssxIotaFrom (i+1) ssh
ssxIotaFrom i (_ :$? ssh) = i : ssxIotaFrom (i+1) ssh

lemRankApp :: StaticShapeX sh1 -> StaticShapeX sh2
           -> FromINat (Rank (sh1 ++ sh2)) :~: FromINat (Rank sh1) + FromINat (Rank sh2)
lemRankApp _ _ = unsafeCoerce Refl  -- TODO improve this

lemRankAppComm :: StaticShapeX sh1 -> StaticShapeX sh2
               -> FromINat (Rank (sh1 ++ sh2)) :~: FromINat (Rank (sh2 ++ sh1))
lemRankAppComm _ _ = unsafeCoerce Refl  -- TODO improve this

lemKnownINatRank :: IxX sh -> Dict KnownINat (Rank sh)
lemKnownINatRank IZX = Dict
lemKnownINatRank (_ ::@ sh) | Dict <- lemKnownINatRank sh = Dict
lemKnownINatRank (_ ::? sh) | Dict <- lemKnownINatRank sh = Dict

lemKnownINatRankSSX :: StaticShapeX sh -> Dict KnownINat (Rank sh)
lemKnownINatRankSSX SZX = Dict
lemKnownINatRankSSX (_ :$@ ssh) | Dict <- lemKnownINatRankSSX ssh = Dict
lemKnownINatRankSSX (_ :$? ssh) | Dict <- lemKnownINatRankSSX ssh = Dict

lemKnownShapeX :: StaticShapeX sh -> Dict KnownShapeX sh
lemKnownShapeX SZX = Dict
lemKnownShapeX (GHC_SNat :$@ ssh) | Dict <- lemKnownShapeX ssh = Dict
lemKnownShapeX (() :$? ssh) | Dict <- lemKnownShapeX ssh = Dict

lemAppKnownShapeX :: StaticShapeX sh1 -> StaticShapeX sh2 -> Dict KnownShapeX (sh1 ++ sh2)
lemAppKnownShapeX SZX ssh' = lemKnownShapeX ssh'
lemAppKnownShapeX (GHC_SNat :$@ ssh) ssh'
  | Dict <- lemAppKnownShapeX ssh ssh'
  = Dict
lemAppKnownShapeX (() :$? ssh) ssh'
  | Dict <- lemAppKnownShapeX ssh ssh'
  = Dict

shape :: forall sh a. KnownShapeX sh => XArray sh a -> IxX sh
shape (XArray arr) = go (knownShapeX @sh) (S.shapeL arr)
  where
    go :: StaticShapeX sh' -> [Int] -> IxX sh'
    go SZX [] = IZX
    go (n :$@ ssh) (_ : l) = fromIntegral (fromSNat n) ::@ go ssh l
    go (() :$? ssh) (n : l) = n ::? go ssh l
    go _ _ = error "Invalid shapeL"

fromVector :: forall sh a. Storable a => IxX sh -> VS.Vector a -> XArray sh a
fromVector sh v
  | Dict <- lemKnownINatRank sh
  , Dict <- knownNatFromINat (Proxy @(Rank sh))
  = XArray (S.fromVector (shapeLshape sh) v)

toVector :: Storable a => XArray sh a -> VS.Vector a
toVector (XArray arr) = S.toVector arr

scalar :: Storable a => a -> XArray '[] a
scalar = XArray . S.scalar

unScalar :: Storable a => XArray '[] a -> a
unScalar (XArray a) = S.unScalar a

constant :: forall sh a. Storable a => IxX sh -> a -> XArray sh a
constant sh x
  | Dict <- lemKnownINatRank sh
  , Dict <- knownNatFromINat (Proxy @(Rank sh))
  = XArray (S.constant (shapeLshape sh) x)

generate :: Storable a => IxX sh -> (IxX sh -> a) -> XArray sh a
generate sh f = fromVector sh $ VS.generate (shapeSize sh) (f . fromLinearIdx sh)

-- generateM :: (Monad m, Storable a) => IxX sh -> (IxX sh -> m a) -> m (XArray sh a)
-- generateM sh f | Dict <- lemKnownINatRank sh =
--   XArray . S.fromVector (shapeLshape sh)
--     <$> VS.generateM (shapeSize sh) (f . fromLinearIdx sh)

indexPartial :: Storable a => XArray (sh ++ sh') a -> IxX sh -> XArray sh' a
indexPartial (XArray arr) IZX = XArray arr
indexPartial (XArray arr) (i ::@ idx) = indexPartial (XArray (S.index arr i)) idx
indexPartial (XArray arr) (i ::? idx) = indexPartial (XArray (S.index arr i)) idx

index :: forall sh a. Storable a => XArray sh a -> IxX sh -> a
index xarr i
  | Refl <- lemAppNil @sh
  = let XArray arr' = indexPartial xarr i :: XArray '[] a
    in S.unScalar arr'

type family AddMaybe n m where
  AddMaybe Nothing _ = Nothing
  AddMaybe (Just _) Nothing = Nothing
  AddMaybe (Just n) (Just m) = Just (n + m)

append :: forall n m sh a. (KnownShapeX sh, Storable a)
       => XArray (n : sh) a -> XArray (m : sh) a -> XArray (AddMaybe n m : sh) a
append (XArray a) (XArray b)
  | Dict <- lemKnownINatRankSSX (knownShapeX @sh)
  , Dict <- knownNatFromINat (Proxy @(Rank sh))
  = XArray (S.append a b)

rerank :: forall sh sh1 sh2 a b.
          (Storable a, Storable b)
       => StaticShapeX sh -> StaticShapeX sh1 -> StaticShapeX sh2
       -> (XArray sh1 a -> XArray sh2 b)
       -> XArray (sh ++ sh1) a -> XArray (sh ++ sh2) b
rerank ssh ssh1 ssh2 f (XArray arr)
  | Dict <- lemKnownINatRankSSX ssh
  , Dict <- knownNatFromINat (Proxy @(Rank sh))
  , Dict <- lemKnownINatRankSSX ssh2
  , Dict <- knownNatFromINat (Proxy @(Rank sh2))
  , Refl <- lemRankApp ssh ssh1
  , Refl <- lemRankApp ssh ssh2
  , Dict <- lemKnownINatRankSSX (ssxAppend ssh ssh2)      -- these two should be redundant but the
  , Dict <- knownNatFromINat (Proxy @(Rank (sh ++ sh2)))  -- solver is not clever enough
  = XArray (S.rerank @(FromINat (Rank sh)) @(FromINat (Rank sh1)) @(FromINat (Rank sh2))
                (\a -> unXArray (f (XArray a)))
                arr)
  where
    unXArray (XArray a) = a

rerankTop :: forall sh sh1 sh2 a b.
             (Storable a, Storable b)
          => StaticShapeX sh1 -> StaticShapeX sh2 -> StaticShapeX sh
          -> (XArray sh1 a -> XArray sh2 b)
          -> XArray (sh1 ++ sh) a -> XArray (sh2 ++ sh) b
rerankTop ssh1 ssh2 ssh f = transpose2 ssh ssh2 . rerank ssh ssh1 ssh2 f . transpose2 ssh1 ssh

rerank2 :: forall sh sh1 sh2 a b c.
           (Storable a, Storable b, Storable c)
        => StaticShapeX sh -> StaticShapeX sh1 -> StaticShapeX sh2
        -> (XArray sh1 a -> XArray sh1 b -> XArray sh2 c)
        -> XArray (sh ++ sh1) a -> XArray (sh ++ sh1) b -> XArray (sh ++ sh2) c
rerank2 ssh ssh1 ssh2 f (XArray arr1) (XArray arr2)
  | Dict <- lemKnownINatRankSSX ssh
  , Dict <- knownNatFromINat (Proxy @(Rank sh))
  , Dict <- lemKnownINatRankSSX ssh2
  , Dict <- knownNatFromINat (Proxy @(Rank sh2))
  , Refl <- lemRankApp ssh ssh1
  , Refl <- lemRankApp ssh ssh2
  , Dict <- lemKnownINatRankSSX (ssxAppend ssh ssh2)      -- these two should be redundant but the
  , Dict <- knownNatFromINat (Proxy @(Rank (sh ++ sh2)))  -- solver is not clever enough
  = XArray (S.rerank2 @(FromINat (Rank sh)) @(FromINat (Rank sh1)) @(FromINat (Rank sh2))
                (\a b -> unXArray (f (XArray a) (XArray b)))
                arr1 arr2)
  where
    unXArray (XArray a) = a

-- | The list argument gives indices into the original dimension list.
transpose :: forall sh a. KnownShapeX sh => [Int] -> XArray sh a -> XArray sh a 
transpose perm (XArray arr)
  | Dict <- lemKnownINatRankSSX (knownShapeX @sh)
  , Dict <- knownNatFromINat (Proxy @(Rank sh))
  = XArray (S.transpose perm arr)

transpose2 :: forall sh1 sh2 a.
              StaticShapeX sh1 -> StaticShapeX sh2
           -> XArray (sh1 ++ sh2) a -> XArray (sh2 ++ sh1) a
transpose2 ssh1 ssh2 (XArray arr)
  | Refl <- lemRankApp ssh1 ssh2
  , Refl <- lemRankApp ssh2 ssh1
  , Dict <- lemKnownINatRankSSX (ssxAppend ssh1 ssh2)
  , Dict <- knownNatFromINat (Proxy @(Rank (sh1 ++ sh2)))
  , Dict <- lemKnownINatRankSSX (ssxAppend ssh2 ssh1)
  , Dict <- knownNatFromINat (Proxy @(Rank (sh2 ++ sh1)))
  , Refl <- lemRankAppComm ssh1 ssh2
  , let n1 = ssxLength ssh1
  = XArray (S.transpose (ssxIotaFrom n1 ssh2 ++ ssxIotaFrom 0 ssh1) arr)

sumFull :: (Storable a, Num a) => XArray sh a -> a
sumFull (XArray arr) = S.sumA arr

sumInner :: forall sh sh' a. (Storable a, Num a)
         => StaticShapeX sh -> StaticShapeX sh' -> XArray (sh ++ sh') a -> XArray sh a
sumInner ssh ssh'
  | Refl <- lemAppNil @sh
  = rerank ssh ssh' SZX (scalar . sumFull)

sumOuter :: forall sh sh' a. (Storable a, Num a)
         => StaticShapeX sh -> StaticShapeX sh' -> XArray (sh ++ sh') a -> XArray sh' a
sumOuter ssh ssh'
  | Refl <- lemAppNil @sh
  = sumInner ssh' ssh . transpose2 ssh ssh'