1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-|
TODO:
* We should be more consistent in whether functions take a 'StaticShapeX'
argument or a 'KnownShapeX' constraint.
* Document the choice of using 'INat' for ranks and 'Nat' for shapes. Point
being that we need to do induction over the former, but the latter need to be
able to get large.
-}
module Data.Array.Nested.Internal where
import Prelude hiding (mappend)
import Control.Monad (forM_, when)
import Control.Monad.ST
import qualified Data.Array.RankedS as S
import Data.Bifunctor (first)
import Data.Coerce (coerce, Coercible)
import Data.Foldable (toList)
import Data.Kind
import Data.List.NonEmpty (NonEmpty)
import Data.Proxy
import Data.Type.Equality
import qualified Data.Vector.Storable as VS
import qualified Data.Vector.Storable.Mutable as VSM
import Foreign.Storable (Storable)
import GHC.TypeLits
import Data.Array.Mixed (XArray, IxX(..), KnownShapeX(..), StaticShapeX(..), type (++), pattern GHC_SNat)
import qualified Data.Array.Mixed as X
import Data.INat
-- Invariant in the API
-- ====================
--
-- In the underlying XArray, there is some shape for elements of an empty
-- array. For example, for this array:
--
-- arr :: Ranked I3 (Ranked I2 Int, Ranked I1 Float)
-- rshape arr == 0 ::: 0 ::: 0 ::: IZR
--
-- the two underlying XArrays have a shape, and those shapes might be anything.
-- The invariant is that these element shapes are unobservable in the API.
-- (This is possible because you ought to not be able to get to such an element
-- without indexing out of bounds.)
--
-- Note, though, that the converse situation may arise: the outer array might
-- be nonempty but then the inner arrays might. This is fine, an invariant only
-- applies if the _outer_ array is empty.
--
-- TODO: can we enforce that the elements of an empty (nested) array have
-- all-zero shape?
-- -> no, because mlift and also any kind of internals probing from outsiders
type family Replicate n a where
Replicate Z a = '[]
Replicate (S n) a = a : Replicate n a
type family MapJust l where
MapJust '[] = '[]
MapJust (x : xs) = Just x : MapJust xs
lemKnownReplicate :: forall n. KnownINat n => Proxy n -> Dict KnownShapeX (Replicate n Nothing)
lemKnownReplicate _ = X.lemKnownShapeX (go (inatSing @n))
where
go :: SINat m -> StaticShapeX (Replicate m Nothing)
go SZ = SZX
go (SS n) = () :$? go n
lemRankReplicate :: forall n. KnownINat n => Proxy n -> X.Rank (Replicate n (Nothing @Nat)) :~: n
lemRankReplicate _ = go (inatSing @n)
where
go :: SINat m -> X.Rank (Replicate m (Nothing @Nat)) :~: m
go SZ = Refl
go (SS n) | Refl <- go n = Refl
lemReplicatePlusApp :: forall n m a. KnownINat n => Proxy n -> Proxy m -> Proxy a
-> Replicate (n +! m) a :~: Replicate n a ++ Replicate m a
lemReplicatePlusApp _ _ _ = go (inatSing @n)
where
go :: SINat n' -> Replicate (n' +! m) a :~: Replicate n' a ++ Replicate m a
go SZ = Refl
go (SS n) | Refl <- go n = Refl
ixAppSplit :: Proxy sh' -> StaticShapeX sh -> IxX (sh ++ sh') -> (IxX sh, IxX sh')
ixAppSplit _ SZX idx = (IZX, idx)
ixAppSplit p (_ :$@ ssh) (i ::@ idx) = first (i ::@) (ixAppSplit p ssh idx)
ixAppSplit p (_ :$? ssh) (i ::? idx) = first (i ::?) (ixAppSplit p ssh idx)
-- | Wrapper type used as a tag to attach instances on. The instances on arrays
-- of @'Primitive' a@ are more polymorphic than the direct instances for arrays
-- of scalars; this means that if @orthotope@ supports an element type @T@ that
-- this library does not (directly), it may just work if you use an array of
-- @'Primitive' T@ instead.
newtype Primitive a = Primitive a
-- | Mixed arrays: some dimensions are size-typed, some are not. Distributes
-- over product-typed elements using a data family so that the full array is
-- always in struct-of-arrays format.
--
-- Built on top of 'XArray' which is built on top of @orthotope@, meaning that
-- dimension permutations (e.g. 'mtranspose') are typically free.
--
-- Many of the methods for working on 'Mixed' arrays come from the 'Elt' type
-- class.
type Mixed :: [Maybe Nat] -> Type -> Type
data family Mixed sh a
-- NOTE: When opening up the Mixed abstraction, you might see dimension sizes
-- that you're not supposed to see. In particular, an empty array may have
-- elements with nonempty sizes, but then the whole array is still empty.
newtype instance Mixed sh (Primitive a) = M_Primitive (XArray sh a)
deriving (Show)
newtype instance Mixed sh Int = M_Int (XArray sh Int)
deriving (Show)
newtype instance Mixed sh Double = M_Double (XArray sh Double)
deriving (Show)
newtype instance Mixed sh () = M_Nil (XArray sh ()) -- no content, orthotope optimises this (via Vector)
deriving (Show)
-- etc.
data instance Mixed sh (a, b) = M_Tup2 !(Mixed sh a) !(Mixed sh b)
deriving instance (Show (Mixed sh a), Show (Mixed sh b)) => Show (Mixed sh (a, b))
-- etc.
newtype instance Mixed sh1 (Mixed sh2 a) = M_Nest (Mixed (sh1 ++ sh2) a)
deriving instance Show (Mixed (sh1 ++ sh2) a) => Show (Mixed sh1 (Mixed sh2 a))
-- | Internal helper data family mirrorring 'Mixed' that consists of mutable
-- vectors instead of 'XArray's.
type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type
data family MixedVecs s sh a
newtype instance MixedVecs s sh (Primitive a) = MV_Primitive (VS.MVector s a)
newtype instance MixedVecs s sh Int = MV_Int (VS.MVector s Int)
newtype instance MixedVecs s sh Double = MV_Double (VS.MVector s Double)
newtype instance MixedVecs s sh () = MV_Nil (VS.MVector s ()) -- no content, MVector optimises this
-- etc.
data instance MixedVecs s sh (a, b) = MV_Tup2 !(MixedVecs s sh a) !(MixedVecs s sh b)
-- etc.
data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest !(IxX sh2) !(MixedVecs s (sh1 ++ sh2) a)
-- | Tree giving the shape of every array component.
type family ShapeTree a where
ShapeTree (Primitive _) = ()
ShapeTree Int = ()
ShapeTree Double = ()
ShapeTree () = ()
ShapeTree (a, b) = (ShapeTree a, ShapeTree b)
ShapeTree (Mixed sh a) = (IxX sh, ShapeTree a)
ShapeTree (Ranked n a) = (IxR n, ShapeTree a)
ShapeTree (Shaped sh a) = (IxS sh, ShapeTree a)
-- | Allowable scalar types in a mixed array, and by extension in a 'Ranked' or
-- 'Shaped' array. Note the polymorphic instance for 'Elt' of @'Primitive'
-- a@; see the documentation for 'Primitive' for more details.
class Elt a where
-- ====== PUBLIC METHODS ====== --
mshape :: KnownShapeX sh => Mixed sh a -> IxX sh
mindex :: Mixed sh a -> IxX sh -> a
mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IxX sh -> Mixed sh' a
mscalar :: a -> Mixed '[] a
-- | All arrays in the list, even subarrays inside @a@, must have the same
-- shape; if they do not, a runtime error will be thrown. See the
-- documentation of 'mgenerate' for more information about this restriction.
-- Furthermore, the length of the list must correspond with @n@: if @n@ is
-- @Just m@ and @m@ does not equal the length of the list, a runtime error is
-- thrown.
--
-- If you want a single-dimensional array from your list, map 'mscalar'
-- first.
mfromList :: forall n sh. KnownShapeX (n : sh) => NonEmpty (Mixed sh a) -> Mixed (n : sh) a
-- | Note: this library makes no particular guarantees about the shapes of
-- arrays "inside" an empty array. With 'mlift' and 'mlift2' you can see the
-- full 'XArray' and as such you can distinguish different empty arrays by
-- the "shapes" of their elements. This information is meaningless, so you
-- should not use it.
mlift :: forall sh1 sh2. KnownShapeX sh2
=> (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 a -> Mixed sh2 a
-- | See the documentation for 'mlift'.
mlift2 :: forall sh1 sh2 sh3. (KnownShapeX sh2, KnownShapeX sh3)
=> (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 a -> Mixed sh2 a -> Mixed sh3 a
-- ====== PRIVATE METHODS ====== --
-- Remember I said that this module needed better management of exports?
-- | Create an empty array. The given shape must have size zero; this may or may not be checked.
memptyArray :: IxX sh -> Mixed sh a
mshapeTree :: a -> ShapeTree a
mshapeTreeZero :: Proxy a -> ShapeTree a
mshapeTreeEq :: Proxy a -> ShapeTree a -> ShapeTree a -> Bool
mshapeTreeEmpty :: Proxy a -> ShapeTree a -> Bool
mshowShapeTree :: Proxy a -> ShapeTree a -> String
-- | Create uninitialised vectors for this array type, given the shape of
-- this vector and an example for the contents.
mvecsUnsafeNew :: IxX sh -> a -> ST s (MixedVecs s sh a)
mvecsNewEmpty :: Proxy a -> ST s (MixedVecs s sh a)
-- | Given the shape of this array, an index and a value, write the value at
-- that index in the vectors.
mvecsWrite :: IxX sh -> IxX sh -> a -> MixedVecs s sh a -> ST s ()
-- | Given the shape of this array, an index and a value, write the value at
-- that index in the vectors.
mvecsWritePartial :: KnownShapeX sh' => IxX (sh ++ sh') -> IxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s ()
-- | Given the shape of this array, finalise the vectors into 'XArray's.
mvecsFreeze :: IxX sh -> MixedVecs s sh a -> ST s (Mixed sh a)
-- Arrays of scalars are basically just arrays of scalars.
instance Storable a => Elt (Primitive a) where
mshape (M_Primitive a) = X.shape a
mindex (M_Primitive a) i = Primitive (X.index a i)
mindexPartial (M_Primitive a) i = M_Primitive (X.indexPartial a i)
mscalar (Primitive x) = M_Primitive (X.scalar x)
mfromList l = M_Primitive (X.fromList knownShapeX [x | M_Primitive x <- toList l])
mlift :: forall sh1 sh2.
(Proxy '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a)
-> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a)
mlift f (M_Primitive a)
| Refl <- X.lemAppNil @sh1
, Refl <- X.lemAppNil @sh2
= M_Primitive (f Proxy a)
mlift2 :: forall sh1 sh2 sh3.
(Proxy '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a -> XArray (sh3 ++ '[]) a)
-> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) -> Mixed sh3 (Primitive a)
mlift2 f (M_Primitive a) (M_Primitive b)
| Refl <- X.lemAppNil @sh1
, Refl <- X.lemAppNil @sh2
, Refl <- X.lemAppNil @sh3
= M_Primitive (f Proxy a b)
memptyArray sh = M_Primitive (X.generate sh (error $ "memptyArray Int: shape was not empty (" ++ show sh ++ ")"))
mshapeTree _ = ()
mshapeTreeZero _ = ()
mshapeTreeEq _ () () = True
mshapeTreeEmpty _ () = False
mshowShapeTree _ () = "()"
mvecsUnsafeNew sh _ = MV_Primitive <$> VSM.unsafeNew (X.shapeSize sh)
mvecsNewEmpty _ = MV_Primitive <$> VSM.unsafeNew 0
mvecsWrite sh i (Primitive x) (MV_Primitive v) = VSM.write v (X.toLinearIdx sh i) x
-- TODO: this use of toVector is suboptimal
mvecsWritePartial
:: forall sh' sh s. KnownShapeX sh'
=> IxX (sh ++ sh') -> IxX sh -> Mixed sh' (Primitive a) -> MixedVecs s (sh ++ sh') (Primitive a) -> ST s ()
mvecsWritePartial sh i (M_Primitive arr) (MV_Primitive v) = do
let offset = X.toLinearIdx sh (X.ixAppend i (X.zeroIxX' (X.shape arr)))
VS.copy (VSM.slice offset (X.shapeSize (X.shape arr)) v) (X.toVector arr)
mvecsFreeze sh (MV_Primitive v) = M_Primitive . X.fromVector sh <$> VS.freeze v
deriving via Primitive Int instance Elt Int
deriving via Primitive Double instance Elt Double
deriving via Primitive () instance Elt ()
-- Arrays of pairs are pairs of arrays.
instance (Elt a, Elt b) => Elt (a, b) where
mshape (M_Tup2 a _) = mshape a
mindex (M_Tup2 a b) i = (mindex a i, mindex b i)
mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i)
mscalar (x, y) = M_Tup2 (mscalar x) (mscalar y)
mfromList l = M_Tup2 (mfromList ((\(M_Tup2 x _) -> x) <$> l))
(mfromList ((\(M_Tup2 _ y) -> y) <$> l))
mlift f (M_Tup2 a b) = M_Tup2 (mlift f a) (mlift f b)
mlift2 f (M_Tup2 a b) (M_Tup2 x y) = M_Tup2 (mlift2 f a x) (mlift2 f b y)
memptyArray sh = M_Tup2 (memptyArray sh) (memptyArray sh)
mshapeTree (x, y) = (mshapeTree x, mshapeTree y)
mshapeTreeZero _ = (mshapeTreeZero (Proxy @a), mshapeTreeZero (Proxy @b))
mshapeTreeEq _ (t1, t2) (t1', t2') = mshapeTreeEq (Proxy @a) t1 t1' && mshapeTreeEq (Proxy @b) t2 t2'
mshapeTreeEmpty _ (t1, t2) = mshapeTreeEmpty (Proxy @a) t1 && mshapeTreeEmpty (Proxy @b) t2
mshowShapeTree _ (t1, t2) = "(" ++ mshowShapeTree (Proxy @a) t1 ++ ", " ++ mshowShapeTree (Proxy @b) t2 ++ ")"
mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y
mvecsNewEmpty _ = MV_Tup2 <$> mvecsNewEmpty (Proxy @a) <*> mvecsNewEmpty (Proxy @b)
mvecsWrite sh i (x, y) (MV_Tup2 a b) = do
mvecsWrite sh i x a
mvecsWrite sh i y b
mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do
mvecsWritePartial sh i x a
mvecsWritePartial sh i y b
mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b
-- Arrays of arrays are just arrays, but with more dimensions.
instance (Elt a, KnownShapeX sh') => Elt (Mixed sh' a) where
-- TODO: this is quadratic in the nesting depth because it repeatedly
-- truncates the shape vector to one a little shorter. Fix with a
-- moverlongShape method, a prefix of which is mshape.
mshape :: forall sh. KnownShapeX sh => Mixed sh (Mixed sh' a) -> IxX sh
mshape (M_Nest arr)
| Dict <- X.lemAppKnownShapeX (knownShapeX @sh) (knownShapeX @sh')
= fst (ixAppSplit (Proxy @sh') (knownShapeX @sh) (mshape arr))
mindex (M_Nest arr) i = mindexPartial arr i
mindexPartial :: forall sh1 sh2.
Mixed (sh1 ++ sh2) (Mixed sh' a) -> IxX sh1 -> Mixed sh2 (Mixed sh' a)
mindexPartial (M_Nest arr) i
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
= M_Nest (mindexPartial @a @sh1 @(sh2 ++ sh') arr i)
mscalar x = M_Nest x
mfromList :: forall n sh. KnownShapeX (n : sh)
=> NonEmpty (Mixed sh (Mixed sh' a)) -> Mixed (n : sh) (Mixed sh' a)
mfromList l
| Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @(n : sh)) (knownShapeX @sh'))
= M_Nest (mfromList ((\(M_Nest x) -> x) <$> l))
mlift :: forall sh1 sh2. KnownShapeX sh2
=> (forall shT b. (KnownShapeX shT, Storable b) => Proxy shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b)
-> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a)
mlift f (M_Nest arr)
| Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh2) (knownShapeX @sh'))
= M_Nest (mlift f' arr)
where
f' :: forall shT b. (KnownShapeX shT, Storable b) => Proxy shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b
f' _
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
, Refl <- X.lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
, Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh') (knownShapeX @shT))
= f (Proxy @(sh' ++ shT))
mlift2 :: forall sh1 sh2 sh3. (KnownShapeX sh2, KnownShapeX sh3)
=> (forall shT b. (KnownShapeX shT, Storable b) => Proxy shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b -> XArray (sh3 ++ shT) b)
-> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) -> Mixed sh3 (Mixed sh' a)
mlift2 f (M_Nest arr1) (M_Nest arr2)
| Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh2) (knownShapeX @sh'))
, Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh3) (knownShapeX @sh'))
= M_Nest (mlift2 f' arr1 arr2)
where
f' :: forall shT b. (KnownShapeX shT, Storable b) => Proxy shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b -> XArray ((sh3 ++ sh') ++ shT) b
f' _
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
, Refl <- X.lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
, Refl <- X.lemAppAssoc (Proxy @sh3) (Proxy @sh') (Proxy @shT)
, Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh') (knownShapeX @shT))
= f (Proxy @(sh' ++ shT))
memptyArray sh = M_Nest (memptyArray (X.ixAppend sh (X.zeroIxX (knownShapeX @sh'))))
mshapeTree arr = (mshape arr, mshapeTree (mindex arr (X.zeroIxX (knownShapeX @sh'))))
mshapeTreeZero _ = (X.zeroIxX (knownShapeX @sh'), mshapeTreeZero (Proxy @a))
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = X.shapeSize sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsUnsafeNew sh example
| X.shapeSize sh' == 0 = mvecsNewEmpty (Proxy @(Mixed sh' a))
| otherwise = MV_Nest sh' <$> mvecsUnsafeNew (X.ixAppend sh (mshape example))
(mindex example (X.zeroIxX (knownShapeX @sh')))
where
sh' = mshape example
mvecsNewEmpty _ = MV_Nest (X.zeroIxX (knownShapeX @sh')) <$> mvecsNewEmpty (Proxy @a)
mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (X.ixAppend sh sh') idx val vecs
mvecsWritePartial :: forall sh1 sh2 s. KnownShapeX sh2
=> IxX (sh1 ++ sh2) -> IxX sh1 -> Mixed sh2 (Mixed sh' a)
-> MixedVecs s (sh1 ++ sh2) (Mixed sh' a)
-> ST s ()
mvecsWritePartial sh12 idx (M_Nest arr) (MV_Nest sh' vecs)
| Dict <- X.lemKnownShapeX (X.ssxAppend (knownShapeX @sh2) (knownShapeX @sh'))
, Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
= mvecsWritePartial @a @(sh2 ++ sh') @sh1 (X.ixAppend sh12 sh') idx arr vecs
mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest <$> mvecsFreeze (X.ixAppend sh sh') vecs
-- | Check whether a given shape corresponds on the statically-known components of the shape.
checkBounds :: IxX sh' -> StaticShapeX sh' -> Bool
checkBounds IZX SZX = True
checkBounds (n ::@ sh') (n' :$@ ssh') = n == fromIntegral (fromSNat n') && checkBounds sh' ssh'
checkBounds (_ ::? sh') (() :$? ssh') = checkBounds sh' ssh'
-- | Create an array given a size and a function that computes the element at a
-- given index.
--
-- __WARNING__: It is required that every @a@ returned by the argument to
-- 'mgenerate' has the same shape. For example, the following will throw a
-- runtime error:
--
-- > foo :: Mixed [Nothing] (Mixed [Nothing] Double)
-- > foo = mgenerate (10 ::: IZR) $ \(i ::: IZR) ->
-- > mgenerate (i ::: IZR) $ \(j ::: IZR) ->
-- > ...
--
-- because the size of the inner 'mgenerate' is not always the same (it depends
-- on @i@). Nested arrays in @ox-arrays@ are always stored fully flattened, so
-- the entire hierarchy (after distributing out tuples) must be a rectangular
-- array. The type of 'mgenerate' allows this requirement to be broken very
-- easily, hence the runtime check.
mgenerate :: forall sh a. (KnownShapeX sh, Elt a) => IxX sh -> (IxX sh -> a) -> Mixed sh a
mgenerate sh f
-- TODO: Do we need this checkBounds check elsewhere as well?
| not (checkBounds sh (knownShapeX @sh)) =
error $ "mgenerate: Shape " ++ show sh ++ " not valid for shape type " ++ show (knownShapeX @sh)
-- If the shape is empty, there is no first element, so we should not try to
-- generate it.
| X.shapeSize sh == 0 = memptyArray sh
| otherwise =
let firstidx = X.zeroIxX' sh
firstelem = f (X.zeroIxX' sh)
shapetree = mshapeTree firstelem
in if mshapeTreeEmpty (Proxy @a) shapetree
then memptyArray sh
else runST $ do
vecs <- mvecsUnsafeNew sh firstelem
mvecsWrite sh firstidx firstelem vecs
-- TODO: This is likely fine if @a@ is big, but if @a@ is a
-- scalar this array copying inefficient. Should improve this.
forM_ (tail (X.enumShape sh)) $ \idx -> do
let val = f idx
when (not (mshapeTreeEq (Proxy @a) (mshapeTree val) shapetree)) $
error "Data.Array.Nested mgenerate: generated values do not have equal shapes"
mvecsWrite sh idx val vecs
mvecsFreeze sh vecs
mtranspose :: forall sh a. (KnownShapeX sh, Elt a) => [Int] -> Mixed sh a -> Mixed sh a
mtranspose perm =
mlift (\(Proxy @sh') -> X.rerankTop (knownShapeX @sh) (knownShapeX @sh) (knownShapeX @sh')
(X.transpose perm))
mappend :: forall n m sh a. (KnownShapeX sh, KnownShapeX (n : sh), KnownShapeX (m : sh), KnownShapeX (X.AddMaybe n m : sh), Elt a)
=> Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (X.AddMaybe n m : sh) a
mappend = mlift2 go
where go :: forall sh' b. (KnownShapeX sh', Storable b)
=> Proxy sh' -> XArray (n : sh ++ sh') b -> XArray (m : sh ++ sh') b -> XArray (X.AddMaybe n m : sh ++ sh') b
go Proxy | Dict <- X.lemAppKnownShapeX (knownShapeX @sh) (knownShapeX @sh') = X.append
mfromVector :: forall sh a. (KnownShapeX sh, Storable a) => IxX sh -> VS.Vector a -> Mixed sh (Primitive a)
mfromVector sh v
| not (checkBounds sh (knownShapeX @sh)) =
error $ "mfromVector: Shape " ++ show sh ++ " not valid for shape type " ++ show (knownShapeX @sh)
| otherwise =
M_Primitive (X.fromVector sh v)
munScalar :: Elt a => Mixed '[] a -> a
munScalar arr = mindex arr IZX
mconstantP :: forall sh a. (KnownShapeX sh, Storable a) => IxX sh -> a -> Mixed sh (Primitive a)
mconstantP sh x
| not (checkBounds sh (knownShapeX @sh)) =
error $ "mconstant: Shape " ++ show sh ++ " not valid for shape type " ++ show (knownShapeX @sh)
| otherwise =
M_Primitive (X.constant sh x)
-- | This 'Coercible' constraint holds for the scalar types for which 'Mixed'
-- is defined.
mconstant :: forall sh a. (KnownShapeX sh, Storable a, Coercible (Mixed sh (Primitive a)) (Mixed sh a))
=> IxX sh -> a -> Mixed sh a
mconstant sh x = coerce (mconstantP sh x)
mliftPrim :: (KnownShapeX sh, Storable a)
=> (a -> a)
-> Mixed sh (Primitive a) -> Mixed sh (Primitive a)
mliftPrim f (M_Primitive (X.XArray arr)) = M_Primitive (X.XArray (S.mapA f arr))
mliftPrim2 :: (KnownShapeX sh, Storable a)
=> (a -> a -> a)
-> Mixed sh (Primitive a) -> Mixed sh (Primitive a) -> Mixed sh (Primitive a)
mliftPrim2 f (M_Primitive (X.XArray arr1)) (M_Primitive (X.XArray arr2)) =
M_Primitive (X.XArray (S.zipWithA f arr1 arr2))
instance (KnownShapeX sh, Storable a, Num a) => Num (Mixed sh (Primitive a)) where
(+) = mliftPrim2 (+)
(-) = mliftPrim2 (-)
(*) = mliftPrim2 (*)
negate = mliftPrim negate
abs = mliftPrim abs
signum = mliftPrim signum
fromInteger n =
case X.ssxToShape' (knownShapeX @sh) of
Just sh -> M_Primitive (X.constant sh (fromInteger n))
Nothing -> error "Data.Array.Nested.fromIntegral: \
\Unknown components in shape, use explicit mconstant"
deriving via Mixed sh (Primitive Int) instance KnownShapeX sh => Num (Mixed sh Int)
deriving via Mixed sh (Primitive Double) instance KnownShapeX sh => Num (Mixed sh Double)
-- | A rank-typed array: the number of dimensions of the array (its /rank/) is
-- represented on the type level as a 'INat'.
--
-- Valid elements of a ranked arrays are described by the 'Elt' type class.
-- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are
-- supported (and are represented as a single, flattened, struct-of-arrays
-- array internally).
--
-- Note that this 'INat' is not a "GHC.TypeLits" natural, because we want a
-- type-level natural that supports induction.
--
-- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's.
type Ranked :: INat -> Type -> Type
newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a)
deriving instance Show (Mixed (Replicate n Nothing) a) => Show (Ranked n a)
-- | A shape-typed array: the full shape of the array (the sizes of its
-- dimensions) is represented on the type level as a list of 'Nat's. Note that
-- these are "GHC.TypeLits" naturals, because we do not need induction over
-- them and we want very large arrays to be possible.
--
-- Like for 'Ranked', the valid elements are described by the 'Elt' type class,
-- and 'Shaped' itself is again an instance of 'Elt' as well.
--
-- 'Shaped' is a newtype around a 'Mixed' of 'Just's.
type Shaped :: [Nat] -> Type -> Type
newtype Shaped sh a = Shaped (Mixed (MapJust sh) a)
deriving instance Show (Mixed (MapJust sh) a) => Show (Shaped sh a)
-- just unwrap the newtype and defer to the general instance for nested arrays
newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a))
deriving instance Show (Mixed sh (Mixed (Replicate n Nothing) a)) => Show (Mixed sh (Ranked n a))
newtype instance Mixed sh (Shaped sh' a) = M_Shaped (Mixed sh (Mixed (MapJust sh' ) a))
deriving instance Show (Mixed sh (Mixed (MapJust sh' ) a)) => Show (Mixed sh (Shaped sh' a))
newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a))
newtype instance MixedVecs s sh (Shaped sh' a) = MV_Shaped (MixedVecs s sh (Mixed (MapJust sh' ) a))
-- 'Ranked' and 'Shaped' can already be used at the top level of an array nest;
-- these instances allow them to also be used as elements of arrays, thus
-- making them first-class in the API.
instance (Elt a, KnownINat n) => Elt (Ranked n a) where
mshape (M_Ranked arr) | Dict <- lemKnownReplicate (Proxy @n) = mshape arr
mindex (M_Ranked arr) i | Dict <- lemKnownReplicate (Proxy @n) = Ranked (mindex arr i)
mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IxX sh -> Mixed sh' (Ranked n a)
mindexPartial (M_Ranked arr) i
| Dict <- lemKnownReplicate (Proxy @n)
= coerce @(Mixed sh' (Mixed (Replicate n Nothing) a)) @(Mixed sh' (Ranked n a)) $
mindexPartial arr i
mscalar (Ranked x) = M_Ranked (M_Nest x)
mfromList :: forall m sh. KnownShapeX (m : sh)
=> NonEmpty (Mixed sh (Ranked n a)) -> Mixed (m : sh) (Ranked n a)
mfromList l
| Dict <- lemKnownReplicate (Proxy @n)
= M_Ranked (mfromList ((\(M_Ranked x) -> x) <$> l))
mlift :: forall sh1 sh2. KnownShapeX sh2
=> (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a)
mlift f (M_Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n)
= coerce @(Mixed sh2 (Mixed (Replicate n Nothing) a)) @(Mixed sh2 (Ranked n a)) $
mlift f arr
mlift2 :: forall sh1 sh2 sh3. (KnownShapeX sh2, KnownShapeX sh3)
=> (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) -> Mixed sh3 (Ranked n a)
mlift2 f (M_Ranked arr1) (M_Ranked arr2)
| Dict <- lemKnownReplicate (Proxy @n)
= coerce @(Mixed sh3 (Mixed (Replicate n Nothing) a)) @(Mixed sh3 (Ranked n a)) $
mlift2 f arr1 arr2
memptyArray :: forall sh. IxX sh -> Mixed sh (Ranked n a)
memptyArray i
| Dict <- lemKnownReplicate (Proxy @n)
= coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) $
memptyArray i
mshapeTree (Ranked arr)
| Refl <- lemRankReplicate (Proxy @n)
, Dict <- lemKnownReplicate (Proxy @n)
= first ixCvtXR (mshapeTree arr)
mshapeTreeZero _ = (zeroIxR (inatSing @n), mshapeTreeZero (Proxy @a))
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = shapeSizeR sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsUnsafeNew idx (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n)
= MV_Ranked <$> mvecsUnsafeNew idx arr
mvecsNewEmpty _
| Dict <- lemKnownReplicate (Proxy @n)
= MV_Ranked <$> mvecsNewEmpty (Proxy @(Mixed (Replicate n Nothing) a))
mvecsWrite :: forall sh s. IxX sh -> IxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s ()
mvecsWrite sh idx (Ranked arr) vecs
| Dict <- lemKnownReplicate (Proxy @n)
= mvecsWrite sh idx arr
(coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a))
vecs)
mvecsWritePartial :: forall sh sh' s. KnownShapeX sh'
=> IxX (sh ++ sh') -> IxX sh -> Mixed sh' (Ranked n a)
-> MixedVecs s (sh ++ sh') (Ranked n a)
-> ST s ()
mvecsWritePartial sh idx arr vecs
| Dict <- lemKnownReplicate (Proxy @n)
= mvecsWritePartial sh idx
(coerce @(Mixed sh' (Ranked n a))
@(Mixed sh' (Mixed (Replicate n Nothing) a))
arr)
(coerce @(MixedVecs s (sh ++ sh') (Ranked n a))
@(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a))
vecs)
mvecsFreeze :: forall sh s. IxX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a))
mvecsFreeze sh vecs
| Dict <- lemKnownReplicate (Proxy @n)
= coerce @(Mixed sh (Mixed (Replicate n Nothing) a))
@(Mixed sh (Ranked n a))
<$> mvecsFreeze sh
(coerce @(MixedVecs s sh (Ranked n a))
@(MixedVecs s sh (Mixed (Replicate n Nothing) a))
vecs)
-- | The shape of a shape-typed array given as a list of 'SNat' values.
data SShape sh where
ShNil :: SShape '[]
ShCons :: SNat n -> SShape sh -> SShape (n : sh)
deriving instance Show (SShape sh)
infixr 5 `ShCons`
-- | A statically-known shape of a shape-typed array.
class KnownShape sh where knownShape :: SShape sh
instance KnownShape '[] where knownShape = ShNil
instance (KnownNat n, KnownShape sh) => KnownShape (n : sh) where knownShape = ShCons natSing knownShape
sshapeKnown :: SShape sh -> Dict KnownShape sh
sshapeKnown ShNil = Dict
sshapeKnown (ShCons GHC_SNat sh) | Dict <- sshapeKnown sh = Dict
lemKnownMapJust :: forall sh. KnownShape sh => Proxy sh -> Dict KnownShapeX (MapJust sh)
lemKnownMapJust _ = X.lemKnownShapeX (go (knownShape @sh))
where
go :: SShape sh' -> StaticShapeX (MapJust sh')
go ShNil = SZX
go (ShCons n sh) = n :$@ go sh
lemMapJustPlusApp :: forall sh1 sh2. KnownShape sh1 => Proxy sh1 -> Proxy sh2
-> MapJust (sh1 ++ sh2) :~: MapJust sh1 ++ MapJust sh2
lemMapJustPlusApp _ _ = go (knownShape @sh1)
where
go :: SShape sh1' -> MapJust (sh1' ++ sh2) :~: MapJust sh1' ++ MapJust sh2
go ShNil = Refl
go (ShCons _ sh) | Refl <- go sh = Refl
instance (Elt a, KnownShape sh) => Elt (Shaped sh a) where
mshape (M_Shaped arr) | Dict <- lemKnownMapJust (Proxy @sh) = mshape arr
mindex (M_Shaped arr) i | Dict <- lemKnownMapJust (Proxy @sh) = Shaped (mindex arr i)
mindexPartial :: forall sh1 sh2. Mixed (sh1 ++ sh2) (Shaped sh a) -> IxX sh1 -> Mixed sh2 (Shaped sh a)
mindexPartial (M_Shaped arr) i
| Dict <- lemKnownMapJust (Proxy @sh)
= coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $
mindexPartial arr i
mscalar (Shaped x) = M_Shaped (M_Nest x)
mfromList :: forall n sh'. KnownShapeX (n : sh')
=> NonEmpty (Mixed sh' (Shaped sh a)) -> Mixed (n : sh') (Shaped sh a)
mfromList l
| Dict <- lemKnownMapJust (Proxy @sh)
= M_Shaped (mfromList ((\(M_Shaped x) -> x) <$> l))
mlift :: forall sh1 sh2. KnownShapeX sh2
=> (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a)
mlift f (M_Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
= coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $
mlift f arr
mlift2 :: forall sh1 sh2 sh3. (KnownShapeX sh2, KnownShapeX sh3)
=> (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a) -> Mixed sh3 (Shaped sh a)
mlift2 f (M_Shaped arr1) (M_Shaped arr2)
| Dict <- lemKnownMapJust (Proxy @sh)
= coerce @(Mixed sh3 (Mixed (MapJust sh) a)) @(Mixed sh3 (Shaped sh a)) $
mlift2 f arr1 arr2
memptyArray :: forall sh'. IxX sh' -> Mixed sh' (Shaped sh a)
memptyArray i
| Dict <- lemKnownMapJust (Proxy @sh)
= coerce @(Mixed sh' (Mixed (MapJust sh) a)) @(Mixed sh' (Shaped sh a)) $
memptyArray i
mshapeTree (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
= first (ixCvtXS (knownShape @sh)) (mshapeTree arr)
mshapeTreeZero _ = (zeroIxS (knownShape @sh), mshapeTreeZero (Proxy @a))
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = shapeSizeS sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsUnsafeNew idx (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
= MV_Shaped <$> mvecsUnsafeNew idx arr
mvecsNewEmpty _
| Dict <- lemKnownMapJust (Proxy @sh)
= MV_Shaped <$> mvecsNewEmpty (Proxy @(Mixed (MapJust sh) a))
mvecsWrite :: forall sh' s. IxX sh' -> IxX sh' -> Shaped sh a -> MixedVecs s sh' (Shaped sh a) -> ST s ()
mvecsWrite sh idx (Shaped arr) vecs
| Dict <- lemKnownMapJust (Proxy @sh)
= mvecsWrite sh idx arr
(coerce @(MixedVecs s sh' (Shaped sh a)) @(MixedVecs s sh' (Mixed (MapJust sh) a))
vecs)
mvecsWritePartial :: forall sh1 sh2 s. KnownShapeX sh2
=> IxX (sh1 ++ sh2) -> IxX sh1 -> Mixed sh2 (Shaped sh a)
-> MixedVecs s (sh1 ++ sh2) (Shaped sh a)
-> ST s ()
mvecsWritePartial sh idx arr vecs
| Dict <- lemKnownMapJust (Proxy @sh)
= mvecsWritePartial sh idx
(coerce @(Mixed sh2 (Shaped sh a))
@(Mixed sh2 (Mixed (MapJust sh) a))
arr)
(coerce @(MixedVecs s (sh1 ++ sh2) (Shaped sh a))
@(MixedVecs s (sh1 ++ sh2) (Mixed (MapJust sh) a))
vecs)
mvecsFreeze :: forall sh' s. IxX sh' -> MixedVecs s sh' (Shaped sh a) -> ST s (Mixed sh' (Shaped sh a))
mvecsFreeze sh vecs
| Dict <- lemKnownMapJust (Proxy @sh)
= coerce @(Mixed sh' (Mixed (MapJust sh) a))
@(Mixed sh' (Shaped sh a))
<$> mvecsFreeze sh
(coerce @(MixedVecs s sh' (Shaped sh a))
@(MixedVecs s sh' (Mixed (MapJust sh) a))
vecs)
-- Utility functions to satisfy the type checker sometimes
rewriteMixed :: sh1 :~: sh2 -> Mixed sh1 a -> Mixed sh2 a
rewriteMixed Refl x = x
coerceMixedXArray :: Coercible (Mixed sh a) (XArray sh a) => XArray sh a -> Mixed sh a
coerceMixedXArray = coerce
-- ====== API OF RANKED ARRAYS ====== --
arithPromoteRanked :: forall n a. KnownINat n
=> (forall sh. KnownShapeX sh => Mixed sh a -> Mixed sh a)
-> Ranked n a -> Ranked n a
arithPromoteRanked | Dict <- lemKnownReplicate (Proxy @n) = coerce
arithPromoteRanked2 :: forall n a. KnownINat n
=> (forall sh. KnownShapeX sh => Mixed sh a -> Mixed sh a -> Mixed sh a)
-> Ranked n a -> Ranked n a -> Ranked n a
arithPromoteRanked2 | Dict <- lemKnownReplicate (Proxy @n) = coerce
instance (KnownINat n, Storable a, Num a) => Num (Ranked n (Primitive a)) where
(+) = arithPromoteRanked2 (+)
(-) = arithPromoteRanked2 (-)
(*) = arithPromoteRanked2 (*)
negate = arithPromoteRanked negate
abs = arithPromoteRanked abs
signum = arithPromoteRanked signum
fromInteger n = case inatSing @n of
SZ -> Ranked (M_Primitive (X.scalar (fromInteger n)))
SS _ -> error "Data.Array.Nested.fromIntegral(Ranked): \
\Rank non-zero, use explicit mconstant"
deriving via Ranked n (Primitive Int) instance KnownINat n => Num (Ranked n Int)
deriving via Ranked n (Primitive Double) instance KnownINat n => Num (Ranked n Double)
-- | An index into a rank-typed array.
type IxR :: INat -> Type
data IxR n where
IZR :: IxR Z
(:::) :: Int -> IxR n -> IxR (S n)
deriving instance Show (IxR n)
deriving instance Eq (IxR n)
infixr 5 :::
zeroIxR :: SINat n -> IxR n
zeroIxR SZ = IZR
zeroIxR (SS n) = 0 ::: zeroIxR n
ixCvtXR :: IxX sh -> IxR (X.Rank sh)
ixCvtXR IZX = IZR
ixCvtXR (n ::@ idx) = n ::: ixCvtXR idx
ixCvtXR (n ::? idx) = n ::: ixCvtXR idx
ixCvtRX :: IxR n -> IxX (Replicate n Nothing)
ixCvtRX IZR = IZX
ixCvtRX (n ::: idx) = n ::? ixCvtRX idx
knownIxR :: IxR n -> Dict KnownINat n
knownIxR IZR = Dict
knownIxR (_ ::: idx) | Dict <- knownIxR idx = Dict
shapeSizeR :: IxR n -> Int
shapeSizeR IZR = 1
shapeSizeR (n ::: sh) = n * shapeSizeR sh
rshape :: forall n a. (KnownINat n, Elt a) => Ranked n a -> IxR n
rshape (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n)
, Refl <- lemRankReplicate (Proxy @n)
= ixCvtXR (mshape arr)
rindex :: Elt a => Ranked n a -> IxR n -> a
rindex (Ranked arr) idx = mindex arr (ixCvtRX idx)
rindexPartial :: forall n m a. (KnownINat n, Elt a) => Ranked (n +! m) a -> IxR n -> Ranked m a
rindexPartial (Ranked arr) idx =
Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing)
(rewriteMixed (lemReplicatePlusApp (Proxy @n) (Proxy @m) (Proxy @Nothing)) arr)
(ixCvtRX idx))
-- | __WARNING__: All values returned from the function must have equal shape.
-- See the documentation of 'mgenerate' for more details.
rgenerate :: forall n a. Elt a => IxR n -> (IxR n -> a) -> Ranked n a
rgenerate sh f
| Dict <- knownIxR sh
, Dict <- lemKnownReplicate (Proxy @n)
, Refl <- lemRankReplicate (Proxy @n)
= Ranked (mgenerate (ixCvtRX sh) (f . ixCvtXR))
-- | See the documentation of 'mlift'.
rlift :: forall n1 n2 a. (KnownINat n2, Elt a)
=> (forall sh' b. KnownShapeX sh' => Proxy sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)
-> Ranked n1 a -> Ranked n2 a
rlift f (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n2)
= Ranked (mlift f arr)
rsumOuter1 :: forall n a.
(Storable a, Num a, KnownINat n, forall sh. Coercible (Mixed sh a) (XArray sh a))
=> Ranked (S n) a -> Ranked n a
rsumOuter1 (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n)
= Ranked
. coerceMixedXArray
. X.sumOuter (() :$? SZX) (knownShapeX @(Replicate n Nothing))
. coerce @(Mixed (Replicate (S n) Nothing) a) @(XArray (Replicate (S n) Nothing) a)
$ arr
rtranspose :: forall n a. (KnownINat n, Elt a) => [Int] -> Ranked n a -> Ranked n a
rtranspose perm (Ranked arr)
| Dict <- lemKnownReplicate (Proxy @n)
= Ranked (mtranspose perm arr)
rappend :: forall n a. (KnownINat n, Elt a)
=> Ranked (S n) a -> Ranked (S n) a -> Ranked (S n) a
rappend | Dict <- lemKnownReplicate (Proxy @n) = coerce mappend
rscalar :: Elt a => a -> Ranked I0 a
rscalar x = Ranked (mscalar x)
rfromVector :: forall n a. (KnownINat n, Storable a) => IxR n -> VS.Vector a -> Ranked n (Primitive a)
rfromVector sh v
| Dict <- lemKnownReplicate (Proxy @n)
= Ranked (mfromVector (ixCvtRX sh) v)
runScalar :: Elt a => Ranked I0 a -> a
runScalar arr = rindex arr IZR
rconstantP :: forall n a. (KnownINat n, Storable a) => IxR n -> a -> Ranked n (Primitive a)
rconstantP sh x
| Dict <- lemKnownReplicate (Proxy @n)
= Ranked (mconstantP (ixCvtRX sh) x)
rconstant :: forall n a. (KnownINat n, Storable a, Coercible (Mixed (Replicate n Nothing) (Primitive a)) (Mixed (Replicate n Nothing) a))
=> IxR n -> a -> Ranked n a
rconstant sh x = coerce (rconstantP sh x)
rfromList :: forall n a. (KnownINat n, Elt a) => NonEmpty (Ranked n a) -> Ranked (S n) a
rfromList l
| Dict <- lemKnownReplicate (Proxy @n)
= Ranked (mfromList ((\(Ranked x) -> x) <$> l))
-- ====== API OF SHAPED ARRAYS ====== --
arithPromoteShaped :: forall sh a. KnownShape sh
=> (forall shx. KnownShapeX shx => Mixed shx a -> Mixed shx a)
-> Shaped sh a -> Shaped sh a
arithPromoteShaped | Dict <- lemKnownMapJust (Proxy @sh) = coerce
arithPromoteShaped2 :: forall sh a. KnownShape sh
=> (forall shx. KnownShapeX shx => Mixed shx a -> Mixed shx a -> Mixed shx a)
-> Shaped sh a -> Shaped sh a -> Shaped sh a
arithPromoteShaped2 | Dict <- lemKnownMapJust (Proxy @sh) = coerce
instance (KnownShape sh, Storable a, Num a) => Num (Shaped sh (Primitive a)) where
(+) = arithPromoteShaped2 (+)
(-) = arithPromoteShaped2 (-)
(*) = arithPromoteShaped2 (*)
negate = arithPromoteShaped negate
abs = arithPromoteShaped abs
signum = arithPromoteShaped signum
fromInteger n = sconstantP (fromInteger n)
deriving via Shaped sh (Primitive Int) instance KnownShape sh => Num (Shaped sh Int)
deriving via Shaped sh (Primitive Double) instance KnownShape sh => Num (Shaped sh Double)
-- | An index into a shape-typed array.
--
-- For convenience, this contains regular 'Int's instead of bounded integers
-- (traditionally called \"@Fin@\"). Note that because the shape of a
-- shape-typed array is known statically, you can also retrieve the array shape
-- from a 'KnownShape' dictionary.
type IxS :: [Nat] -> Type
data IxS sh where
IZS :: IxS '[]
(::$) :: Int -> IxS sh -> IxS (n : sh)
deriving instance Show (IxS n)
deriving instance Eq (IxS n)
infixr 5 ::$
zeroIxS :: SShape sh -> IxS sh
zeroIxS ShNil = IZS
zeroIxS (ShCons _ sh) = 0 ::$ zeroIxS sh
cvtSShapeIxS :: SShape sh -> IxS sh
cvtSShapeIxS ShNil = IZS
cvtSShapeIxS (ShCons n sh) = fromIntegral (fromSNat n) ::$ cvtSShapeIxS sh
ixCvtXS :: SShape sh -> IxX (MapJust sh) -> IxS sh
ixCvtXS ShNil IZX = IZS
ixCvtXS (ShCons _ sh) (n ::@ idx) = n ::$ ixCvtXS sh idx
ixCvtSX :: IxS sh -> IxX (MapJust sh)
ixCvtSX IZS = IZX
ixCvtSX (n ::$ sh) = n ::@ ixCvtSX sh
shapeSizeS :: IxS sh -> Int
shapeSizeS IZS = 1
shapeSizeS (n ::$ sh) = n * shapeSizeS sh
-- | This does not touch the passed array, all information comes from 'KnownShape'.
sshape :: forall sh a. (KnownShape sh, Elt a) => Shaped sh a -> IxS sh
sshape _ = cvtSShapeIxS (knownShape @sh)
sindex :: Elt a => Shaped sh a -> IxS sh -> a
sindex (Shaped arr) idx = mindex arr (ixCvtSX idx)
sindexPartial :: forall sh1 sh2 a. (KnownShape sh1, Elt a) => Shaped (sh1 ++ sh2) a -> IxS sh1 -> Shaped sh2 a
sindexPartial (Shaped arr) idx =
Shaped (mindexPartial @a @(MapJust sh1) @(MapJust sh2)
(rewriteMixed (lemMapJustPlusApp (Proxy @sh1) (Proxy @sh2)) arr)
(ixCvtSX idx))
-- | __WARNING__: All values returned from the function must have equal shape.
-- See the documentation of 'mgenerate' for more details.
sgenerate :: forall sh a. (KnownShape sh, Elt a) => (IxS sh -> a) -> Shaped sh a
sgenerate f
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mgenerate (ixCvtSX (cvtSShapeIxS (knownShape @sh))) (f . ixCvtXS (knownShape @sh)))
-- | See the documentation of 'mlift'.
slift :: forall sh1 sh2 a. (KnownShape sh2, Elt a)
=> (forall sh' b. KnownShapeX sh' => Proxy sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b)
-> Shaped sh1 a -> Shaped sh2 a
slift f (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh2)
= Shaped (mlift f arr)
ssumOuter1 :: forall sh n a.
(Storable a, Num a, KnownNat n, KnownShape sh, forall sh'. Coercible (Mixed sh' a) (XArray sh' a))
=> Shaped (n : sh) a -> Shaped sh a
ssumOuter1 (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped
. coerceMixedXArray
. X.sumOuter (natSing @n :$@ SZX) (knownShapeX @(MapJust sh))
. coerce @(Mixed (Just n : MapJust sh) a) @(XArray (Just n : MapJust sh) a)
$ arr
stranspose :: forall sh a. (KnownShape sh, Elt a) => [Int] -> Shaped sh a -> Shaped sh a
stranspose perm (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mtranspose perm arr)
sappend :: forall n m sh a. (KnownNat n, KnownNat m, KnownShape sh, Elt a)
=> Shaped (n : sh) a -> Shaped (m : sh) a -> Shaped (n + m : sh) a
sappend | Dict <- lemKnownMapJust (Proxy @sh) = coerce mappend
sscalar :: Elt a => a -> Shaped '[] a
sscalar x = Shaped (mscalar x)
sfromVector :: forall sh a. (KnownShape sh, Storable a) => VS.Vector a -> Shaped sh (Primitive a)
sfromVector v
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mfromVector (ixCvtSX (cvtSShapeIxS (knownShape @sh))) v)
sunScalar :: Elt a => Shaped '[] a -> a
sunScalar arr = sindex arr IZS
sconstantP :: forall sh a. (KnownShape sh, Storable a) => a -> Shaped sh (Primitive a)
sconstantP x
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mconstantP (ixCvtSX (cvtSShapeIxS (knownShape @sh))) x)
sconstant :: forall sh a. (KnownShape sh, Storable a, Coercible (Mixed (MapJust sh) (Primitive a)) (Mixed (MapJust sh) a))
=> a -> Shaped sh a
sconstant x = coerce (sconstantP @sh x)
sfromList :: forall n sh a. (KnownNat n, KnownShape sh, Elt a)
=> NonEmpty (Shaped sh a) -> Shaped (n : sh) a
sfromList l
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mfromList ((\(Shaped x) -> x) <$> l))
|