1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeAbstractions #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-# OPTIONS -Wno-unused-imports #-}
{-|
TODO:
* Allow downtyping certain dimensions, and write conversions between Mixed,
Ranked and Shaped
* Mikolaj wants these:
About your wishlist of operations: these are already there
OR.index
OR.append
OR.transpose
These can be easily lifted from the definition for XArray (5min work):
OR.scalar
OR.unScalar
OR.constant
These should not be hard:
OR.fromList
ORB.toList . OR.unravel
OR.ravel . ORB.fromList
OR.slice
OR.rev
OR.reshape
though it's a bit unfortunate that we end up needing toList. Looking in
horde-ad I see that you seem to need them to do certain operations in Haskell
that orthotope doesn't support?
For this one we'll need to see to what extent you really need it, and what API
you'd need precisely:
OR.rerank
and for these we have an API design question:
OR.toVector
OR.fromVector
-}
module Data.Array.Nested.Internal where
import Prelude hiding (mappend)
import Control.Monad (forM_, when)
import Control.Monad.ST
import qualified Data.Array.RankedS as S
import Data.Bifunctor (first)
import Data.Coerce (coerce, Coercible)
import Data.Foldable (toList)
import Data.Functor.Const
import Data.Kind
import Data.List.NonEmpty (NonEmpty(..))
import Data.Proxy
import Data.Type.Equality
import qualified Data.Vector.Storable as VS
import qualified Data.Vector.Storable.Mutable as VSM
import Foreign.Storable (Storable)
import GHC.TypeLits
import qualified GHC.TypeNats as TypeNats
import Unsafe.Coerce
import Data.Array.Mixed
import qualified Data.Array.Mixed as X
-- Invariant in the API
-- ====================
--
-- In the underlying XArray, there is some shape for elements of an empty
-- array. For example, for this array:
--
-- arr :: Ranked I3 (Ranked I2 Int, Ranked I1 Float)
-- rshape arr == 0 :.: 0 :.: 0 :.: ZIR
--
-- the two underlying XArrays have a shape, and those shapes might be anything.
-- The invariant is that these element shapes are unobservable in the API.
-- (This is possible because you ought to not be able to get to such an element
-- without indexing out of bounds.)
--
-- Note, though, that the converse situation may arise: the outer array might
-- be nonempty but then the inner arrays might. This is fine, an invariant only
-- applies if the _outer_ array is empty.
--
-- TODO: can we enforce that the elements of an empty (nested) array have
-- all-zero shape?
-- -> no, because mlift and also any kind of internals probing from outsiders
-- Primitive element types
-- =======================
--
-- There are a few primitive element types; arrays containing elements of such
-- type are a newtype over an XArray, which it itself a newtype over a Vector.
-- Unfortunately, the setup of the library requires us to list these primitive
-- element types multiple times; to aid in extending the list, all these lists
-- have been marked with [PRIMITIVE ELEMENT TYPES LIST].
type family MapJust l where
MapJust '[] = '[]
MapJust (x : xs) = Just x : MapJust xs
-- Stupid things that the type checker should be able to figure out in-line, but can't
subst1 :: forall f a b. a :~: b -> f a :~: f b
subst1 Refl = Refl
subst2 :: forall f c a b. a :~: b -> f a c :~: f b c
subst2 Refl = Refl
lemAppLeft :: Proxy l -> a :~: b -> a ++ l :~: b ++ l
lemAppLeft _ Refl = Refl
knownNatSucc :: KnownNat n => Dict KnownNat (n + 1)
knownNatSucc = Dict
lemKnownShX :: StaticShX sh -> Dict KnownShX sh
lemKnownShX ZKX = Dict
lemKnownShX (SKnown GHC_SNat :!% ssh) | Dict <- lemKnownShX ssh = Dict
lemKnownShX (SUnknown () :!% ssh) | Dict <- lemKnownShX ssh = Dict
ssxFromSNat :: SNat n -> StaticShX (Replicate n Nothing)
ssxFromSNat SZ = ZKX
ssxFromSNat (SS (n :: SNat nm1)) | Refl <- X.lemReplicateSucc @(Nothing @Nat) @nm1 = SUnknown () :!% ssxFromSNat n
lemKnownReplicate :: SNat n -> Dict KnownShX (Replicate n Nothing)
lemKnownReplicate sn = lemKnownShX (ssxFromSNat sn)
lemRankReplicate :: SNat n -> X.Rank (Replicate n (Nothing @Nat)) :~: n
lemRankReplicate SZ = Refl
lemRankReplicate (SS (n :: SNat nm1))
| Refl <- X.lemReplicateSucc @(Nothing @Nat) @nm1
, Refl <- lemRankReplicate n
= Refl
lemRankMapJust :: forall sh. ShS sh -> X.Rank (MapJust sh) :~: X.Rank sh
lemRankMapJust ZSS = Refl
lemRankMapJust (_ :$$ sh') | Refl <- lemRankMapJust sh' = Refl
lemReplicatePlusApp :: forall n m a. SNat n -> Proxy m -> Proxy a
-> Replicate (n + m) a :~: Replicate n a ++ Replicate m a
lemReplicatePlusApp sn _ _ = go sn
where
go :: SNat n' -> Replicate (n' + m) a :~: Replicate n' a ++ Replicate m a
go SZ = Refl
go (SS (n :: SNat n'm1))
| Refl <- X.lemReplicateSucc @a @n'm1
, Refl <- go n
= sym (X.lemReplicateSucc @a @(n'm1 + m))
-- === NEW INDEX TYPES === --
type role ListR nominal representational
type ListR :: Nat -> Type -> Type
data ListR n i where
ZR :: ListR 0 i
(:::) :: forall n {i}. i -> ListR n i -> ListR (n + 1) i
deriving instance Show i => Show (ListR n i)
deriving instance Eq i => Eq (ListR n i)
deriving instance Ord i => Ord (ListR n i)
deriving instance Functor (ListR n)
deriving instance Foldable (ListR n)
infixr 3 :::
data UnconsListRRes i n1 =
forall n. (n + 1 ~ n1) => UnconsListRRes (ListR n i) i
unconsListR :: ListR n1 i -> Maybe (UnconsListRRes i n1)
unconsListR (i ::: sh') = Just (UnconsListRRes sh' i)
unconsListR ZR = Nothing
-- | An index into a rank-typed array.
type role IxR nominal representational
type IxR :: Nat -> Type -> Type
newtype IxR n i = IxR (ListR n i)
deriving (Show, Eq, Ord)
deriving newtype (Functor, Foldable)
pattern ZIR :: forall n i. () => n ~ 0 => IxR n i
pattern ZIR = IxR ZR
pattern (:.:)
:: forall {n1} {i}.
forall n. (n + 1 ~ n1)
=> i -> IxR n i -> IxR n1 i
pattern i :.: sh <- IxR (unconsListR -> Just (UnconsListRRes (IxR -> sh) i))
where i :.: IxR sh = IxR (i ::: sh)
infixr 3 :.:
{-# COMPLETE ZIR, (:.:) #-}
type IIxR n = IxR n Int
type role ShR nominal representational
type ShR :: Nat -> Type -> Type
newtype ShR n i = ShR (ListR n i)
deriving (Show, Eq, Ord)
deriving newtype (Functor, Foldable)
type IShR n = ShR n Int
pattern ZSR :: forall n i. () => n ~ 0 => ShR n i
pattern ZSR = ShR ZR
pattern (:$:)
:: forall {n1} {i}.
forall n. (n + 1 ~ n1)
=> i -> ShR n i -> ShR n1 i
pattern i :$: sh <- ShR (unconsListR -> Just (UnconsListRRes (ShR -> sh) i))
where i :$: (ShR sh) = ShR (i ::: sh)
infixr 3 :$:
{-# COMPLETE ZSR, (:$:) #-}
type role ListS nominal representational
type ListS :: [Nat] -> (Nat -> Type) -> Type
data ListS sh f where
ZS :: ListS '[] f
(::$) :: forall n sh {f}. f n -> ListS sh f -> ListS (n : sh) f
deriving instance (forall n. Show (f n)) => Show (ListS sh f)
deriving instance (forall n. Eq (f n)) => Eq (ListS sh f)
deriving instance (forall n. Ord (f n)) => Ord (ListS sh f)
infixr 3 ::$
data UnconsListSRes f sh1 =
forall n sh. (n : sh ~ sh1) => UnconsListSRes (ListS sh f) (f n)
unconsListS :: ListS sh1 f -> Maybe (UnconsListSRes f sh1)
unconsListS (x ::$ sh') = Just (UnconsListSRes sh' x)
unconsListS ZS = Nothing
fmapListS :: (forall n. f n -> g n) -> ListS sh f -> ListS sh g
fmapListS _ ZS = ZS
fmapListS f (x ::$ xs) = f x ::$ fmapListS f xs
foldListS :: Monoid m => (forall n. f n -> m) -> ListS sh f -> m
foldListS _ ZS = mempty
foldListS f (x ::$ xs) = f x <> foldListS f xs
-- | An index into a shape-typed array.
--
-- For convenience, this contains regular 'Int's instead of bounded integers
-- (traditionally called \"@Fin@\"). Note that because the shape of a
-- shape-typed array is known statically, you can also retrieve the array shape
-- from a 'KnownShape' dictionary.
type role IxS nominal representational
type IxS :: [Nat] -> Type -> Type
newtype IxS sh i = IxS (ListS sh (Const i))
deriving (Show, Eq, Ord)
pattern ZIS :: forall sh i. () => sh ~ '[] => IxS sh i
pattern ZIS = IxS ZS
pattern (:.$)
:: forall {sh1} {i}.
forall n sh. (n : sh ~ sh1)
=> i -> IxS sh i -> IxS sh1 i
pattern i :.$ shl <- IxS (unconsListS -> Just (UnconsListSRes (IxS -> shl) (getConst -> i)))
where i :.$ IxS shl = IxS (Const i ::$ shl)
infixr 3 :.$
{-# COMPLETE ZIS, (:.$) #-}
type IIxS sh = IxS sh Int
instance Functor (IxS sh) where
fmap f (IxS l) = IxS (fmapListS (Const . f . getConst) l)
instance Foldable (IxS sh) where
foldMap f (IxS l) = foldListS (f . getConst) l
-- | The shape of a shape-typed array given as a list of 'SNat' values.
type role ShS nominal
type ShS :: [Nat] -> Type
newtype ShS sh = ShS (ListS sh SNat)
deriving (Show, Eq, Ord)
pattern ZSS :: forall sh. () => sh ~ '[] => ShS sh
pattern ZSS = ShS ZS
pattern (:$$)
:: forall {sh1}.
forall n sh. (n : sh ~ sh1)
=> SNat n -> ShS sh -> ShS sh1
pattern i :$$ shl <- ShS (unconsListS -> Just (UnconsListSRes (ShS -> shl) i))
where i :$$ ShS shl = ShS (i ::$ shl)
infixr 3 :$$
{-# COMPLETE ZSS, (:$$) #-}
-- | Wrapper type used as a tag to attach instances on. The instances on arrays
-- of @'Primitive' a@ are more polymorphic than the direct instances for arrays
-- of scalars; this means that if @orthotope@ supports an element type @T@ that
-- this library does not (directly), it may just work if you use an array of
-- @'Primitive' T@ instead.
newtype Primitive a = Primitive a
-- | Element types that are primitive; arrays of these types are just a newtype
-- wrapper over an array.
class PrimElt a where
fromPrimitive :: Mixed sh (Primitive a) -> Mixed sh a
toPrimitive :: Mixed sh a -> Mixed sh (Primitive a)
default fromPrimitive :: Coercible (Mixed sh a) (Mixed sh (Primitive a)) => Mixed sh (Primitive a) -> Mixed sh a
fromPrimitive = coerce
default toPrimitive :: Coercible (Mixed sh (Primitive a)) (Mixed sh a) => Mixed sh a -> Mixed sh (Primitive a)
toPrimitive = coerce
-- [PRIMITIVE ELEMENT TYPES LIST]
instance PrimElt Int
instance PrimElt Double
instance PrimElt ()
-- | Mixed arrays: some dimensions are size-typed, some are not. Distributes
-- over product-typed elements using a data family so that the full array is
-- always in struct-of-arrays format.
--
-- Built on top of 'XArray' which is built on top of @orthotope@, meaning that
-- dimension permutations (e.g. 'mtranspose') are typically free.
--
-- Many of the methods for working on 'Mixed' arrays come from the 'Elt' type
-- class.
type Mixed :: [Maybe Nat] -> Type -> Type
data family Mixed sh a
-- NOTE: When opening up the Mixed abstraction, you might see dimension sizes
-- that you're not supposed to see. In particular, you might see (nonempty)
-- sizes of the elements of an empty array, which is information that should
-- ostensibly not exist; the full array is still empty.
data instance Mixed sh (Primitive a) = M_Primitive !(IShX sh) !(XArray sh a)
deriving (Show)
-- [PRIMITIVE ELEMENT TYPES LIST]
newtype instance Mixed sh Int = M_Int (Mixed sh (Primitive Int))
deriving (Show)
newtype instance Mixed sh Double = M_Double (Mixed sh (Primitive Double))
deriving (Show)
newtype instance Mixed sh () = M_Nil (Mixed sh (Primitive ())) -- no content, orthotope optimises this (via Vector)
deriving (Show)
-- etc.
data instance Mixed sh (a, b) = M_Tup2 !(Mixed sh a) !(Mixed sh b)
deriving instance (Show (Mixed sh a), Show (Mixed sh b)) => Show (Mixed sh (a, b))
-- etc.
data instance Mixed sh1 (Mixed sh2 a) = M_Nest !(IShX sh1) !(Mixed (sh1 ++ sh2) a)
deriving instance Show (Mixed (sh1 ++ sh2) a) => Show (Mixed sh1 (Mixed sh2 a))
-- | Internal helper data family mirroring 'Mixed' that consists of mutable
-- vectors instead of 'XArray's.
type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type
data family MixedVecs s sh a
newtype instance MixedVecs s sh (Primitive a) = MV_Primitive (VS.MVector s a)
-- [PRIMITIVE ELEMENT TYPES LIST]
newtype instance MixedVecs s sh Int = MV_Int (VS.MVector s Int)
newtype instance MixedVecs s sh Double = MV_Double (VS.MVector s Double)
newtype instance MixedVecs s sh () = MV_Nil (VS.MVector s ()) -- no content, MVector optimises this
-- etc.
data instance MixedVecs s sh (a, b) = MV_Tup2 !(MixedVecs s sh a) !(MixedVecs s sh b)
-- etc.
data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest !(IShX sh2) !(MixedVecs s (sh1 ++ sh2) a)
-- | Tree giving the shape of every array component.
type family ShapeTree a where
ShapeTree (Primitive _) = ()
-- [PRIMITIVE ELEMENT TYPES LIST]
ShapeTree Int = ()
ShapeTree Double = ()
ShapeTree () = ()
ShapeTree (a, b) = (ShapeTree a, ShapeTree b)
ShapeTree (Mixed sh a) = (IShX sh, ShapeTree a)
ShapeTree (Ranked n a) = (IShR n, ShapeTree a)
ShapeTree (Shaped sh a) = (ShS sh, ShapeTree a)
-- | Allowable element types in a mixed array, and by extension in a 'Ranked' or
-- 'Shaped' array. Note the polymorphic instance for 'Elt' of @'Primitive'
-- a@; see the documentation for 'Primitive' for more details.
class Elt a where
-- ====== PUBLIC METHODS ====== --
mshape :: Mixed sh a -> IShX sh
mindex :: Mixed sh a -> IIxX sh -> a
mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IIxX sh -> Mixed sh' a
mscalar :: a -> Mixed '[] a
-- | All arrays in the list, even subarrays inside @a@, must have the same
-- shape; if they do not, a runtime error will be thrown. See the
-- documentation of 'mgenerate' for more information about this restriction.
-- Furthermore, the length of the list must correspond with @n@: if @n@ is
-- @Just m@ and @m@ does not equal the length of the list, a runtime error is
-- thrown.
--
-- If you want a single-dimensional array from your list, map 'mscalar'
-- first.
mfromList1 :: forall sh. NonEmpty (Mixed sh a) -> Mixed (Nothing : sh) a
mtoList1 :: Mixed (n : sh) a -> [Mixed sh a]
-- | Note: this library makes no particular guarantees about the shapes of
-- arrays "inside" an empty array. With 'mlift' and 'mlift2' you can see the
-- full 'XArray' and as such you can distinguish different empty arrays by
-- the "shapes" of their elements. This information is meaningless, so you
-- should not use it.
mlift :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 a -> Mixed sh2 a
-- | See the documentation for 'mlift'.
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 a -> Mixed sh2 a -> Mixed sh3 a
mcast :: forall sh1 sh2 sh'. X.Rank sh1 ~ X.Rank sh2
=> StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') a -> Mixed (sh2 ++ sh') a
-- ====== PRIVATE METHODS ====== --
mshapeTree :: a -> ShapeTree a
mshapeTreeEq :: Proxy a -> ShapeTree a -> ShapeTree a -> Bool
mshapeTreeEmpty :: Proxy a -> ShapeTree a -> Bool
mshowShapeTree :: Proxy a -> ShapeTree a -> String
-- | Given the shape of this array, an index and a value, write the value at
-- that index in the vectors.
mvecsWrite :: IShX sh -> IIxX sh -> a -> MixedVecs s sh a -> ST s ()
-- | Given the shape of this array, an index and a value, write the value at
-- that index in the vectors.
mvecsWritePartial :: IShX (sh ++ sh') -> IIxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s ()
-- | Given the shape of this array, finalise the vectors into 'XArray's.
mvecsFreeze :: IShX sh -> MixedVecs s sh a -> ST s (Mixed sh a)
-- | Element types for which we have evidence of the (static part of the) shape
-- in a type class constraint. Compare the instance contexts of the instances
-- of this class with those of 'Elt': some instances have an additional
-- "known-shape" constraint.
--
-- This class is (currently) only required for 'mgenerate' / 'rgenerate' /
-- 'sgenerate'.
class Elt a => KnownElt a where
-- | Create an empty array. The given shape must have size zero; this may or may not be checked.
memptyArray :: IShX sh -> Mixed sh a
-- | Create uninitialised vectors for this array type, given the shape of
-- this vector and an example for the contents.
mvecsUnsafeNew :: IShX sh -> a -> ST s (MixedVecs s sh a)
mvecsNewEmpty :: Proxy a -> ST s (MixedVecs s sh a)
-- Arrays of scalars are basically just arrays of scalars.
instance Storable a => Elt (Primitive a) where
mshape (M_Primitive sh _) = sh
mindex (M_Primitive _ a) i = Primitive (X.index a i)
mindexPartial (M_Primitive sh a) i = M_Primitive (X.shDropIx sh i) (X.indexPartial a i)
mscalar (Primitive x) = M_Primitive ZSX (X.scalar x)
mfromList1 l@(arr1 :| _) =
let sh = SUnknown (length l) :$% mshape arr1
in M_Primitive sh (X.fromList1 (X.staticShapeFrom sh) (map (\(M_Primitive _ a) -> a) (toList l)))
mtoList1 (M_Primitive sh arr) = map (M_Primitive (X.shTail sh)) (X.toList1 arr)
mlift :: forall sh1 sh2.
StaticShX sh2
-> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a)
-> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a)
mlift ssh2 f (M_Primitive _ a)
| Refl <- X.lemAppNil @sh1
, Refl <- X.lemAppNil @sh2
, let result = f ZKX a
= M_Primitive (X.shape ssh2 result) result
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a -> XArray (sh3 ++ '[]) a)
-> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) -> Mixed sh3 (Primitive a)
mlift2 ssh3 f (M_Primitive _ a) (M_Primitive _ b)
| Refl <- X.lemAppNil @sh1
, Refl <- X.lemAppNil @sh2
, Refl <- X.lemAppNil @sh3
, let result = f ZKX a b
= M_Primitive (X.shape ssh3 result) result
mcast :: forall sh1 sh2 sh'. X.Rank sh1 ~ X.Rank sh2
=> StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') (Primitive a) -> Mixed (sh2 ++ sh') (Primitive a)
mcast ssh1 sh2 _ (M_Primitive sh1' arr) =
let (_, sh') = shAppSplit (Proxy @sh') ssh1 sh1'
in M_Primitive (shAppend sh2 sh') (X.cast ssh1 sh2 (X.staticShapeFrom sh') arr)
mshapeTree _ = ()
mshapeTreeEq _ () () = True
mshapeTreeEmpty _ () = False
mshowShapeTree _ () = "()"
mvecsWrite sh i (Primitive x) (MV_Primitive v) = VSM.write v (X.toLinearIdx sh i) x
-- TODO: this use of toVector is suboptimal
mvecsWritePartial
:: forall sh' sh s.
IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Primitive a) -> MixedVecs s (sh ++ sh') (Primitive a) -> ST s ()
mvecsWritePartial sh i (M_Primitive sh' arr) (MV_Primitive v) = do
let arrsh = X.shape (X.staticShapeFrom sh') arr
offset = X.toLinearIdx sh (X.ixAppend i (X.zeroIxX' arrsh))
VS.copy (VSM.slice offset (X.shapeSize arrsh) v) (X.toVector arr)
mvecsFreeze sh (MV_Primitive v) = M_Primitive sh . X.fromVector sh <$> VS.freeze v
-- [PRIMITIVE ELEMENT TYPES LIST]
deriving via Primitive Int instance Elt Int
deriving via Primitive Double instance Elt Double
deriving via Primitive () instance Elt ()
instance Storable a => KnownElt (Primitive a) where
memptyArray sh = M_Primitive sh (X.empty sh)
mvecsUnsafeNew sh _ = MV_Primitive <$> VSM.unsafeNew (X.shapeSize sh)
mvecsNewEmpty _ = MV_Primitive <$> VSM.unsafeNew 0
-- [PRIMITIVE ELEMENT TYPES LIST]
deriving via Primitive Int instance KnownElt Int
deriving via Primitive Double instance KnownElt Double
deriving via Primitive () instance KnownElt ()
-- Arrays of pairs are pairs of arrays.
instance (Elt a, Elt b) => Elt (a, b) where
mshape (M_Tup2 a _) = mshape a
mindex (M_Tup2 a b) i = (mindex a i, mindex b i)
mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i)
mscalar (x, y) = M_Tup2 (mscalar x) (mscalar y)
mfromList1 l =
M_Tup2 (mfromList1 ((\(M_Tup2 x _) -> x) <$> l))
(mfromList1 ((\(M_Tup2 _ y) -> y) <$> l))
mtoList1 (M_Tup2 a b) = zipWith M_Tup2 (mtoList1 a) (mtoList1 b)
mlift ssh2 f (M_Tup2 a b) = M_Tup2 (mlift ssh2 f a) (mlift ssh2 f b)
mlift2 ssh3 f (M_Tup2 a b) (M_Tup2 x y) = M_Tup2 (mlift2 ssh3 f a x) (mlift2 ssh3 f b y)
mcast ssh1 sh2 psh' (M_Tup2 a b) =
M_Tup2 (mcast ssh1 sh2 psh' a) (mcast ssh1 sh2 psh' b)
mshapeTree (x, y) = (mshapeTree x, mshapeTree y)
mshapeTreeEq _ (t1, t2) (t1', t2') = mshapeTreeEq (Proxy @a) t1 t1' && mshapeTreeEq (Proxy @b) t2 t2'
mshapeTreeEmpty _ (t1, t2) = mshapeTreeEmpty (Proxy @a) t1 && mshapeTreeEmpty (Proxy @b) t2
mshowShapeTree _ (t1, t2) = "(" ++ mshowShapeTree (Proxy @a) t1 ++ ", " ++ mshowShapeTree (Proxy @b) t2 ++ ")"
mvecsWrite sh i (x, y) (MV_Tup2 a b) = do
mvecsWrite sh i x a
mvecsWrite sh i y b
mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do
mvecsWritePartial sh i x a
mvecsWritePartial sh i y b
mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b
instance (KnownElt a, KnownElt b) => KnownElt (a, b) where
memptyArray sh = M_Tup2 (memptyArray sh) (memptyArray sh)
mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y
mvecsNewEmpty _ = MV_Tup2 <$> mvecsNewEmpty (Proxy @a) <*> mvecsNewEmpty (Proxy @b)
-- Arrays of arrays are just arrays, but with more dimensions.
instance Elt a => Elt (Mixed sh' a) where
-- TODO: this is quadratic in the nesting depth because it repeatedly
-- truncates the shape vector to one a little shorter. Fix with a
-- moverlongShape method, a prefix of which is mshape.
mshape :: forall sh. Mixed sh (Mixed sh' a) -> IShX sh
mshape (M_Nest sh arr)
= fst (shAppSplit (Proxy @sh') (X.staticShapeFrom sh) (mshape arr))
mindex :: Mixed sh (Mixed sh' a) -> IIxX sh -> Mixed sh' a
mindex (M_Nest _ arr) i = mindexPartial arr i
mindexPartial :: forall sh1 sh2.
Mixed (sh1 ++ sh2) (Mixed sh' a) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
mindexPartial (M_Nest sh arr) i
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
= M_Nest (X.shDropIx sh i) (mindexPartial @a @sh1 @(sh2 ++ sh') arr i)
mscalar = M_Nest ZSX
mfromList1 :: forall sh. NonEmpty (Mixed sh (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a)
mfromList1 l@(arr :| _) =
M_Nest (SUnknown (length l) :$% mshape arr)
(mfromList1 ((\(M_Nest _ a) -> a) <$> l))
mtoList1 (M_Nest sh arr) = map (M_Nest (X.shTail sh)) (mtoList1 arr)
mlift :: forall sh1 sh2.
StaticShX sh2
-> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b)
-> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a)
mlift ssh2 f (M_Nest sh1 arr) =
let result = mlift (X.ssxAppend ssh2 ssh') f' arr
(sh2, _) = shAppSplit (Proxy @sh') ssh2 (mshape result)
in M_Nest sh2 result
where
ssh' = X.staticShapeFrom (snd (shAppSplit (Proxy @sh') (X.staticShapeFrom sh1) (mshape arr)))
f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b
f' sshT
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
, Refl <- X.lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
= f (X.ssxAppend ssh' sshT)
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b -> XArray (sh3 ++ shT) b)
-> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) -> Mixed sh3 (Mixed sh' a)
mlift2 ssh3 f (M_Nest sh1 arr1) (M_Nest _ arr2) =
let result = mlift2 (X.ssxAppend ssh3 ssh') f' arr1 arr2
(sh3, _) = shAppSplit (Proxy @sh') ssh3 (mshape result)
in M_Nest sh3 result
where
ssh' = X.staticShapeFrom (snd (shAppSplit (Proxy @sh') (X.staticShapeFrom sh1) (mshape arr1)))
f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b -> XArray ((sh3 ++ sh') ++ shT) b
f' sshT
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
, Refl <- X.lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
, Refl <- X.lemAppAssoc (Proxy @sh3) (Proxy @sh') (Proxy @shT)
= f (X.ssxAppend ssh' sshT)
mcast :: forall sh1 sh2 shT. X.Rank sh1 ~ X.Rank sh2
=> StaticShX sh1 -> IShX sh2 -> Proxy shT -> Mixed (sh1 ++ shT) (Mixed sh' a) -> Mixed (sh2 ++ shT) (Mixed sh' a)
mcast ssh1 sh2 _ (M_Nest sh1T arr)
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @shT) (Proxy @sh')
, Refl <- X.lemAppAssoc (Proxy @sh2) (Proxy @shT) (Proxy @sh')
= let (_, shT) = shAppSplit (Proxy @shT) ssh1 sh1T
in M_Nest (shAppend sh2 shT) (mcast ssh1 sh2 (Proxy @(shT ++ sh')) arr)
mshapeTree :: Mixed sh' a -> ShapeTree (Mixed sh' a)
mshapeTree arr = (mshape arr, mshapeTree (mindex arr (X.zeroIxX (X.staticShapeFrom (mshape arr)))))
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = X.shapeSize sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (X.shAppend sh sh') idx val vecs
mvecsWritePartial :: forall sh1 sh2 s.
IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
-> MixedVecs s (sh1 ++ sh2) (Mixed sh' a)
-> ST s ()
mvecsWritePartial sh12 idx (M_Nest _ arr) (MV_Nest sh' vecs)
| Refl <- X.lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
= mvecsWritePartial (X.shAppend sh12 sh') idx arr vecs
mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest sh <$> mvecsFreeze (X.shAppend sh sh') vecs
-- | Evidence for the static part of a shape. This pops up only when you are
-- polymorphic in the element type of an array.
type KnownShX :: [Maybe Nat] -> Constraint
class KnownShX sh where knownShX :: StaticShX sh
instance KnownShX '[] where knownShX = ZKX
instance (KnownNat n, KnownShX sh) => KnownShX (Just n : sh) where knownShX = SKnown natSing :!% knownShX
instance KnownShX sh => KnownShX (Nothing : sh) where knownShX = SUnknown () :!% knownShX
instance (KnownShX sh', KnownElt a) => KnownElt (Mixed sh' a) where
memptyArray sh = M_Nest sh (memptyArray (X.shAppend sh (X.completeShXzeros (knownShX @sh'))))
mvecsUnsafeNew sh example
| X.shapeSize sh' == 0 = mvecsNewEmpty (Proxy @(Mixed sh' a))
| otherwise = MV_Nest sh' <$> mvecsUnsafeNew (X.shAppend sh sh') (mindex example (X.zeroIxX (X.staticShapeFrom sh')))
where
sh' = mshape example
mvecsNewEmpty _ = MV_Nest (X.completeShXzeros (knownShX @sh')) <$> mvecsNewEmpty (Proxy @a)
-- | Create an array given a size and a function that computes the element at a
-- given index.
--
-- __WARNING__: It is required that every @a@ returned by the argument to
-- 'mgenerate' has the same shape. For example, the following will throw a
-- runtime error:
--
-- > foo :: Mixed [Nothing] (Mixed [Nothing] Double)
-- > foo = mgenerate (10 :.: ZIR) $ \(i :.: ZIR) ->
-- > mgenerate (i :.: ZIR) $ \(j :.: ZIR) ->
-- > ...
--
-- because the size of the inner 'mgenerate' is not always the same (it depends
-- on @i@). Nested arrays in @ox-arrays@ are always stored fully flattened, so
-- the entire hierarchy (after distributing out tuples) must be a rectangular
-- array. The type of 'mgenerate' allows this requirement to be broken very
-- easily, hence the runtime check.
mgenerate :: forall sh a. KnownElt a => IShX sh -> (IIxX sh -> a) -> Mixed sh a
mgenerate sh f = case X.enumShape sh of
[] -> memptyArray sh
firstidx : restidxs ->
let firstelem = f (X.zeroIxX' sh)
shapetree = mshapeTree firstelem
in if mshapeTreeEmpty (Proxy @a) shapetree
then memptyArray sh
else runST $ do
vecs <- mvecsUnsafeNew sh firstelem
mvecsWrite sh firstidx firstelem vecs
-- TODO: This is likely fine if @a@ is big, but if @a@ is a
-- scalar this array copying inefficient. Should improve this.
forM_ restidxs $ \idx -> do
let val = f idx
when (not (mshapeTreeEq (Proxy @a) (mshapeTree val) shapetree)) $
error "Data.Array.Nested mgenerate: generated values do not have equal shapes"
mvecsWrite sh idx val vecs
mvecsFreeze sh vecs
mtranspose :: forall is sh a. (X.Permutation is, X.Rank is <= X.Rank sh, Elt a)
=> HList SNat is -> Mixed sh a -> Mixed (X.PermutePrefix is sh) a
mtranspose perm arr =
let ssh = X.staticShapeFrom (mshape arr)
sshPP = X.ssxAppend (X.ssxPermute perm (X.ssxTakeLen perm ssh)) (X.ssxDropLen perm ssh)
in mlift sshPP (\ssh' -> X.rerankTop ssh sshPP ssh' (X.transpose ssh perm)) arr
mappend :: forall n m sh a. Elt a
=> Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (X.AddMaybe n m : sh) a
mappend arr1 arr2 = mlift2 (snm :!% ssh) f arr1 arr2
where
sn :$% sh = mshape arr1
sm :$% _ = mshape arr2
ssh = X.staticShapeFrom sh
snm :: SMayNat () SNat (X.AddMaybe n m)
snm = case (sn, sm) of
(SUnknown{}, _) -> SUnknown ()
(SKnown{}, SUnknown{}) -> SUnknown ()
(SKnown n, SKnown m) -> SKnown (X.plusSNat n m)
f :: forall sh' b. Storable b
=> StaticShX sh' -> XArray (n : sh ++ sh') b -> XArray (m : sh ++ sh') b -> XArray (X.AddMaybe n m : sh ++ sh') b
f ssh' = X.append (X.ssxAppend ssh ssh')
mfromVectorP :: forall sh a. Storable a => IShX sh -> VS.Vector a -> Mixed sh (Primitive a)
mfromVectorP sh v = M_Primitive sh (X.fromVector sh v)
mfromVector :: forall sh a. (Storable a, PrimElt a) => IShX sh -> VS.Vector a -> Mixed sh a
mfromVector sh v = fromPrimitive (mfromVectorP sh v)
mtoVectorP :: Storable a => Mixed sh (Primitive a) -> VS.Vector a
mtoVectorP (M_Primitive _ v) = X.toVector v
mtoVector :: (Storable a, PrimElt a) => Mixed sh a -> VS.Vector a
mtoVector arr = mtoVectorP (coerce toPrimitive arr)
mfromList :: Elt a => NonEmpty a -> Mixed '[Nothing] a
mfromList = mfromList1 . fmap mscalar
mtoList :: Elt a => Mixed '[n] a -> [a]
mtoList = map munScalar . mtoList1
munScalar :: Elt a => Mixed '[] a -> a
munScalar arr = mindex arr ZIX
mconstantP :: forall sh a. Storable a => IShX sh -> a -> Mixed sh (Primitive a)
mconstantP sh x = M_Primitive sh (X.constant sh x)
mconstant :: forall sh a. (Storable a, PrimElt a)
=> IShX sh -> a -> Mixed sh a
mconstant sh x = fromPrimitive (mconstantP sh x)
mslice :: Elt a => SNat i -> SNat n -> Mixed (Just (i + n + k) : sh) a -> Mixed (Just n : sh) a
mslice i n arr =
let _ :$% sh = mshape arr
in mlift (SKnown n :!% X.staticShapeFrom sh) (\_ -> X.slice i n) arr
msliceU :: Elt a => Int -> Int -> Mixed (Nothing : sh) a -> Mixed (Nothing : sh) a
msliceU i n arr = mlift (X.staticShapeFrom (mshape arr)) (\_ -> X.sliceU i n) arr
mrev1 :: Elt a => Mixed (n : sh) a -> Mixed (n : sh) a
mrev1 arr = mlift (X.staticShapeFrom (mshape arr)) (\_ -> X.rev1) arr
mreshape :: forall sh sh' a. Elt a => IShX sh' -> Mixed sh a -> Mixed sh' a
mreshape sh' arr =
mlift (X.staticShapeFrom sh')
(\sshIn -> X.reshapePartial (X.staticShapeFrom (mshape arr)) sshIn sh')
arr
masXArrayPrimP :: Mixed sh (Primitive a) -> (IShX sh, XArray sh a)
masXArrayPrimP (M_Primitive sh arr) = (sh, arr)
masXArrayPrim :: PrimElt a => Mixed sh a -> (IShX sh, XArray sh a)
masXArrayPrim = masXArrayPrimP . toPrimitive
mfromXArrayPrimP :: StaticShX sh -> XArray sh a -> Mixed sh (Primitive a)
mfromXArrayPrimP ssh arr = M_Primitive (X.shape ssh arr) arr
mfromXArrayPrim :: PrimElt a => StaticShX sh -> XArray sh a -> Mixed sh a
mfromXArrayPrim = (fromPrimitive .) . mfromXArrayPrimP
mliftPrim :: (Storable a, PrimElt a)
=> (a -> a)
-> Mixed sh a -> Mixed sh a
mliftPrim f (toPrimitive -> M_Primitive sh (X.XArray arr)) = fromPrimitive $ M_Primitive sh (X.XArray (S.mapA f arr))
mliftPrim2 :: (Storable a, PrimElt a)
=> (a -> a -> a)
-> Mixed sh a -> Mixed sh a -> Mixed sh a
mliftPrim2 f (toPrimitive -> M_Primitive sh (X.XArray arr1)) (toPrimitive -> M_Primitive _ (X.XArray arr2)) =
fromPrimitive $ M_Primitive sh (X.XArray (S.zipWithA f arr1 arr2))
instance (Storable a, Num a, PrimElt a) => Num (Mixed sh a) where
(+) = mliftPrim2 (+)
(-) = mliftPrim2 (-)
(*) = mliftPrim2 (*)
negate = mliftPrim negate
abs = mliftPrim abs
signum = mliftPrim signum
fromInteger _ = error "Data.Array.Nested.fromIntegral: No singletons available, use explicit mconstant"
-- | A rank-typed array: the number of dimensions of the array (its /rank/) is
-- represented on the type level as a 'Nat'.
--
-- Valid elements of a ranked arrays are described by the 'Elt' type class.
-- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are
-- supported (and are represented as a single, flattened, struct-of-arrays
-- array internally).
--
-- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's.
type Ranked :: Nat -> Type -> Type
newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a)
deriving instance Show (Mixed (Replicate n Nothing) a) => Show (Ranked n a)
-- | A shape-typed array: the full shape of the array (the sizes of its
-- dimensions) is represented on the type level as a list of 'Nat's. Note that
-- these are "GHC.TypeLits" naturals, because we do not need induction over
-- them and we want very large arrays to be possible.
--
-- Like for 'Ranked', the valid elements are described by the 'Elt' type class,
-- and 'Shaped' itself is again an instance of 'Elt' as well.
--
-- 'Shaped' is a newtype around a 'Mixed' of 'Just's.
type Shaped :: [Nat] -> Type -> Type
newtype Shaped sh a = Shaped (Mixed (MapJust sh) a)
deriving instance Show (Mixed (MapJust sh) a) => Show (Shaped sh a)
-- just unwrap the newtype and defer to the general instance for nested arrays
newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a))
deriving instance Show (Mixed sh (Mixed (Replicate n Nothing) a)) => Show (Mixed sh (Ranked n a))
newtype instance Mixed sh (Shaped sh' a) = M_Shaped (Mixed sh (Mixed (MapJust sh' ) a))
deriving instance Show (Mixed sh (Mixed (MapJust sh' ) a)) => Show (Mixed sh (Shaped sh' a))
newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a))
newtype instance MixedVecs s sh (Shaped sh' a) = MV_Shaped (MixedVecs s sh (Mixed (MapJust sh' ) a))
-- 'Ranked' and 'Shaped' can already be used at the top level of an array nest;
-- these instances allow them to also be used as elements of arrays, thus
-- making them first-class in the API.
instance Elt a => Elt (Ranked n a) where
mshape (M_Ranked arr) = mshape arr
mindex (M_Ranked arr) i = Ranked (mindex arr i)
mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IIxX sh -> Mixed sh' (Ranked n a)
mindexPartial (M_Ranked arr) i =
coerce @(Mixed sh' (Mixed (Replicate n Nothing) a)) @(Mixed sh' (Ranked n a)) $
mindexPartial arr i
mscalar (Ranked x) = M_Ranked (M_Nest ZSX x)
mfromList1 :: forall sh. NonEmpty (Mixed sh (Ranked n a)) -> Mixed (Nothing : sh) (Ranked n a)
mfromList1 l = M_Ranked (mfromList1 (coerce l))
mtoList1 :: forall m sh. Mixed (m : sh) (Ranked n a) -> [Mixed sh (Ranked n a)]
mtoList1 (M_Ranked arr) =
coerce @[Mixed sh (Mixed (Replicate n 'Nothing) a)] @[Mixed sh (Ranked n a)] (mtoList1 arr)
mlift :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a)
mlift ssh2 f (M_Ranked arr) =
coerce @(Mixed sh2 (Mixed (Replicate n Nothing) a)) @(Mixed sh2 (Ranked n a)) $
mlift ssh2 f arr
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) -> Mixed sh3 (Ranked n a)
mlift2 ssh3 f (M_Ranked arr1) (M_Ranked arr2) =
coerce @(Mixed sh3 (Mixed (Replicate n Nothing) a)) @(Mixed sh3 (Ranked n a)) $
mlift2 ssh3 f arr1 arr2
mcast ssh1 sh2 psh' (M_Ranked arr) = M_Ranked (mcast ssh1 sh2 psh' arr)
mshapeTree (Ranked arr) = first shCvtXR' (mshapeTree arr)
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = shapeSizeR sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsWrite :: forall sh s. IShX sh -> IIxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s ()
mvecsWrite sh idx (Ranked arr) vecs =
mvecsWrite sh idx arr
(coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a))
vecs)
mvecsWritePartial :: forall sh sh' s.
IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Ranked n a)
-> MixedVecs s (sh ++ sh') (Ranked n a)
-> ST s ()
mvecsWritePartial sh idx arr vecs =
mvecsWritePartial sh idx
(coerce @(Mixed sh' (Ranked n a))
@(Mixed sh' (Mixed (Replicate n Nothing) a))
arr)
(coerce @(MixedVecs s (sh ++ sh') (Ranked n a))
@(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a))
vecs)
mvecsFreeze :: forall sh s. IShX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a))
mvecsFreeze sh vecs =
coerce @(Mixed sh (Mixed (Replicate n Nothing) a))
@(Mixed sh (Ranked n a))
<$> mvecsFreeze sh
(coerce @(MixedVecs s sh (Ranked n a))
@(MixedVecs s sh (Mixed (Replicate n Nothing) a))
vecs)
instance (KnownNat n, KnownElt a) => KnownElt (Ranked n a) where
memptyArray :: forall sh. IShX sh -> Mixed sh (Ranked n a)
memptyArray i
| Dict <- lemKnownReplicate (SNat @n)
= coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) $
memptyArray i
mvecsUnsafeNew idx (Ranked arr)
| Dict <- lemKnownReplicate (SNat @n)
= MV_Ranked <$> mvecsUnsafeNew idx arr
mvecsNewEmpty _
| Dict <- lemKnownReplicate (SNat @n)
= MV_Ranked <$> mvecsNewEmpty (Proxy @(Mixed (Replicate n Nothing) a))
-- sshapeKnown :: ShS sh -> Dict KnownShape sh
-- sshapeKnown ZSS = Dict
-- sshapeKnown (GHC_SNat :$$ sh) | Dict <- sshapeKnown sh = Dict
lemCommMapJustApp :: forall sh1 sh2. ShS sh1 -> Proxy sh2
-> MapJust (sh1 ++ sh2) :~: MapJust sh1 ++ MapJust sh2
lemCommMapJustApp ZSS _ = Refl
lemCommMapJustApp (_ :$$ sh) p | Refl <- lemCommMapJustApp sh p = Refl
instance Elt a => Elt (Shaped sh a) where
mshape (M_Shaped arr) = mshape arr
mindex (M_Shaped arr) i = Shaped (mindex arr i)
mindexPartial :: forall sh1 sh2. Mixed (sh1 ++ sh2) (Shaped sh a) -> IIxX sh1 -> Mixed sh2 (Shaped sh a)
mindexPartial (M_Shaped arr) i =
coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $
mindexPartial arr i
mscalar (Shaped x) = M_Shaped (M_Nest ZSX x)
mfromList1 :: forall sh'. NonEmpty (Mixed sh' (Shaped sh a)) -> Mixed (Nothing : sh') (Shaped sh a)
mfromList1 l = M_Shaped (mfromList1 (coerce l))
mtoList1 :: forall n sh'. Mixed (n : sh') (Shaped sh a) -> [Mixed sh' (Shaped sh a)]
mtoList1 (M_Shaped arr)
= coerce @[Mixed sh' (Mixed (MapJust sh) a)] @[Mixed sh' (Shaped sh a)] (mtoList1 arr)
mlift :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a)
mlift ssh2 f (M_Shaped arr) =
coerce @(Mixed sh2 (Mixed (MapJust sh) a)) @(Mixed sh2 (Shaped sh a)) $
mlift ssh2 f arr
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 (Shaped sh a) -> Mixed sh2 (Shaped sh a) -> Mixed sh3 (Shaped sh a)
mlift2 ssh3 f (M_Shaped arr1) (M_Shaped arr2) =
coerce @(Mixed sh3 (Mixed (MapJust sh) a)) @(Mixed sh3 (Shaped sh a)) $
mlift2 ssh3 f arr1 arr2
mcast ssh1 sh2 psh' (M_Shaped arr) = M_Shaped (mcast ssh1 sh2 psh' arr)
mshapeTree (Shaped arr) = first shCvtXS' (mshapeTree arr)
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = shapeSizeS sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsWrite :: forall sh' s. IShX sh' -> IIxX sh' -> Shaped sh a -> MixedVecs s sh' (Shaped sh a) -> ST s ()
mvecsWrite sh idx (Shaped arr) vecs =
mvecsWrite sh idx arr
(coerce @(MixedVecs s sh' (Shaped sh a)) @(MixedVecs s sh' (Mixed (MapJust sh) a))
vecs)
mvecsWritePartial :: forall sh1 sh2 s.
IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Shaped sh a)
-> MixedVecs s (sh1 ++ sh2) (Shaped sh a)
-> ST s ()
mvecsWritePartial sh idx arr vecs =
mvecsWritePartial sh idx
(coerce @(Mixed sh2 (Shaped sh a))
@(Mixed sh2 (Mixed (MapJust sh) a))
arr)
(coerce @(MixedVecs s (sh1 ++ sh2) (Shaped sh a))
@(MixedVecs s (sh1 ++ sh2) (Mixed (MapJust sh) a))
vecs)
mvecsFreeze :: forall sh' s. IShX sh' -> MixedVecs s sh' (Shaped sh a) -> ST s (Mixed sh' (Shaped sh a))
mvecsFreeze sh vecs =
coerce @(Mixed sh' (Mixed (MapJust sh) a))
@(Mixed sh' (Shaped sh a))
<$> mvecsFreeze sh
(coerce @(MixedVecs s sh' (Shaped sh a))
@(MixedVecs s sh' (Mixed (MapJust sh) a))
vecs)
-- | Evidence for the static part of a shape. This pops up only when you are
-- polymorphic in the element type of an array.
type KnownShS :: [Nat] -> Constraint
class KnownShS sh where knownShS :: ShS sh
instance KnownShS '[] where knownShS = ZSS
instance (KnownNat n, KnownShS sh) => KnownShS (n : sh) where knownShS = natSing :$$ knownShS
lemKnownMapJust :: forall sh. KnownShS sh => Proxy sh -> Dict KnownShX (MapJust sh)
lemKnownMapJust _ = lemKnownShX (go (knownShS @sh))
where
go :: ShS sh' -> StaticShX (MapJust sh')
go ZSS = ZKX
go (n :$$ sh) = SKnown n :!% go sh
instance (KnownShS sh, KnownElt a) => KnownElt (Shaped sh a) where
memptyArray :: forall sh'. IShX sh' -> Mixed sh' (Shaped sh a)
memptyArray i
| Dict <- lemKnownMapJust (Proxy @sh)
= coerce @(Mixed sh' (Mixed (MapJust sh) a)) @(Mixed sh' (Shaped sh a)) $
memptyArray i
mvecsUnsafeNew idx (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
= MV_Shaped <$> mvecsUnsafeNew idx arr
mvecsNewEmpty _
| Dict <- lemKnownMapJust (Proxy @sh)
= MV_Shaped <$> mvecsNewEmpty (Proxy @(Mixed (MapJust sh) a))
-- ====== API OF RANKED ARRAYS ====== --
arithPromoteRanked :: forall n a. PrimElt a
=> (forall sh. Mixed sh a -> Mixed sh a)
-> Ranked n a -> Ranked n a
arithPromoteRanked = coerce
arithPromoteRanked2 :: forall n a. PrimElt a
=> (forall sh. Mixed sh a -> Mixed sh a -> Mixed sh a)
-> Ranked n a -> Ranked n a -> Ranked n a
arithPromoteRanked2 = coerce
instance (Storable a, Num a, PrimElt a) => Num (Ranked n a) where
(+) = arithPromoteRanked2 (+)
(-) = arithPromoteRanked2 (-)
(*) = arithPromoteRanked2 (*)
negate = arithPromoteRanked negate
abs = arithPromoteRanked abs
signum = arithPromoteRanked signum
fromInteger _ = error "Data.Array.Nested.fromIntegral: No singletons available, use explicit mconstant"
zeroIxR :: SNat n -> IIxR n
zeroIxR SZ = ZIR
zeroIxR (SS n) = 0 :.: zeroIxR n
ixCvtXR :: IIxX sh -> IIxR (X.Rank sh)
ixCvtXR ZIX = ZIR
ixCvtXR (n :.% idx) = n :.: ixCvtXR idx
shCvtXR' :: forall n. IShX (Replicate n Nothing) -> IShR n
shCvtXR' ZSX =
castWith (subst2 (unsafeCoerce Refl :: 0 :~: n))
ZSR
shCvtXR' (n :$% (idx :: IShX sh))
| Refl <- lemReplicateSucc @(Nothing @Nat) @(n - 1) =
castWith (subst2 (lem1 @sh Refl))
(X.fromSMayNat' n :$: shCvtXR' (castWith (subst2 (lem2 Refl)) idx))
where
lem1 :: forall sh' n' k.
k : sh' :~: Replicate n' Nothing
-> Rank sh' + 1 :~: n'
lem1 Refl = unsafeCoerce Refl
lem2 :: k : sh :~: Replicate n Nothing
-> sh :~: Replicate (Rank sh) Nothing
lem2 Refl = unsafeCoerce Refl
ixCvtRX :: IIxR n -> IIxX (Replicate n Nothing)
ixCvtRX ZIR = ZIX
ixCvtRX (n :.: (idx :: IxR m Int)) =
castWith (subst2 @IxX @Int (X.lemReplicateSucc @(Nothing @Nat) @m))
(n :.% ixCvtRX idx)
shCvtRX :: IShR n -> IShX (Replicate n Nothing)
shCvtRX ZSR = ZSX
shCvtRX (n :$: (idx :: ShR m Int)) =
castWith (subst2 @ShX @Int (X.lemReplicateSucc @(Nothing @Nat) @m))
(SUnknown n :$% shCvtRX idx)
shapeSizeR :: IShR n -> Int
shapeSizeR ZSR = 1
shapeSizeR (n :$: sh) = n * shapeSizeR sh
rshape :: forall n a. Elt a => Ranked n a -> IShR n
rshape (Ranked arr) = shCvtXR' (mshape arr)
rindex :: Elt a => Ranked n a -> IIxR n -> a
rindex (Ranked arr) idx = mindex arr (ixCvtRX idx)
snatFromListR :: ListR n i -> SNat n
snatFromListR ZR = SNat
snatFromListR (_ ::: (l :: ListR n i)) | SNat <- snatFromListR l, Dict <- knownNatSucc @n = SNat
snatFromIxR :: IxR n i -> SNat n
snatFromIxR (IxR sh) = snatFromListR sh
snatFromShR :: ShR n i -> SNat n
snatFromShR (ShR sh) = snatFromListR sh
rindexPartial :: forall n m a. Elt a => Ranked (n + m) a -> IIxR n -> Ranked m a
rindexPartial (Ranked arr) idx =
Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing)
(castWith (subst2 (lemReplicatePlusApp (snatFromIxR idx) (Proxy @m) (Proxy @Nothing))) arr)
(ixCvtRX idx))
-- | __WARNING__: All values returned from the function must have equal shape.
-- See the documentation of 'mgenerate' for more details.
rgenerate :: forall n a. KnownElt a => IShR n -> (IIxR n -> a) -> Ranked n a
rgenerate sh f
| sn@SNat <- snatFromShR sh
, Dict <- lemKnownReplicate sn
, Refl <- lemRankReplicate sn
= Ranked (mgenerate (shCvtRX sh) (f . ixCvtXR))
-- | See the documentation of 'mlift'.
rlift :: forall n1 n2 a. Elt a
=> SNat n2
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)
-> Ranked n1 a -> Ranked n2 a
rlift sn2 f (Ranked arr) = Ranked (mlift (ssxFromSNat sn2) f arr)
rsumOuter1P :: forall n a.
(Storable a, Num a)
=> Ranked (n + 1) (Primitive a) -> Ranked n (Primitive a)
rsumOuter1P (Ranked (M_Primitive sh arr))
| Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
, _ :$% shT <- sh
= Ranked (M_Primitive shT (X.sumOuter (SUnknown () :!% ZKX) (X.staticShapeFrom shT) arr))
rsumOuter1 :: forall n a. (Storable a, Num a, PrimElt a)
=> Ranked (n + 1) a -> Ranked n a
rsumOuter1 = coerce fromPrimitive . rsumOuter1P @n @a . coerce toPrimitive
rtranspose :: forall n a. Elt a => [Int] -> Ranked n a -> Ranked n a
rtranspose perm arr
| sn@SNat <- snatFromShR (rshape arr)
, Dict <- lemKnownReplicate sn
, length perm <= fromIntegral (natVal (Proxy @n))
= rlift sn
(\ssh' -> X.transposeUntyped (natSing @n) ssh' perm)
arr
| otherwise
= error "Data.Array.Nested.rtranspose: Permutation longer than rank of array"
rappend :: forall n a. Elt a
=> Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked (n + 1) a
rappend arr1 arr2
| sn@SNat <- snatFromShR (rshape arr1)
, Dict <- lemKnownReplicate sn
, Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
= coerce (mappend @Nothing @Nothing @(Replicate n Nothing))
arr1 arr2
rscalar :: Elt a => a -> Ranked 0 a
rscalar x = Ranked (mscalar x)
rfromVectorP :: forall n a. Storable a => IShR n -> VS.Vector a -> Ranked n (Primitive a)
rfromVectorP sh v
| Dict <- lemKnownReplicate (snatFromShR sh)
= Ranked (mfromVectorP (shCvtRX sh) v)
rfromVector :: forall n a. (Storable a, PrimElt a) => IShR n -> VS.Vector a -> Ranked n a
rfromVector sh v = coerce fromPrimitive (rfromVectorP sh v)
rtoVectorP :: Storable a => Ranked n (Primitive a) -> VS.Vector a
rtoVectorP = coerce mtoVectorP
rtoVector :: (Storable a, PrimElt a) => Ranked n a -> VS.Vector a
rtoVector = coerce mtoVector
rfromList1 :: forall n a. Elt a => NonEmpty (Ranked n a) -> Ranked (n + 1) a
rfromList1 l
| Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
= Ranked (mfromList1 (coerce l :: NonEmpty (Mixed (Replicate n Nothing) a)))
rfromList :: Elt a => NonEmpty a -> Ranked 1 a
rfromList l = Ranked (mfromList l)
rtoList :: forall n a. Elt a => Ranked (n + 1) a -> [Ranked n a]
rtoList (Ranked arr)
| Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
= coerce (mtoList1 @a @Nothing @(Replicate n Nothing) arr)
rtoList1 :: Elt a => Ranked 1 a -> [a]
rtoList1 = map runScalar . rtoList
runScalar :: Elt a => Ranked 0 a -> a
runScalar arr = rindex arr ZIR
rconstantP :: forall n a. Storable a => IShR n -> a -> Ranked n (Primitive a)
rconstantP sh x
| Dict <- lemKnownReplicate (snatFromShR sh)
= Ranked (mconstantP (shCvtRX sh) x)
rconstant :: forall n a. (Storable a, PrimElt a)
=> IShR n -> a -> Ranked n a
rconstant sh x = coerce fromPrimitive (rconstantP sh x)
rslice :: forall n a. Elt a => Int -> Int -> Ranked (n + 1) a -> Ranked (n + 1) a
rslice i n arr
| Refl <- X.lemReplicateSucc @(Nothing @Nat) @n
= rlift (snatFromShR (rshape arr))
(\_ -> X.sliceU i n)
arr
rrev1 :: forall n a. Elt a => Ranked (n + 1) a -> Ranked (n + 1) a
rrev1 arr =
rlift (snatFromShR (rshape arr))
(\(_ :: StaticShX sh') ->
case X.lemReplicateSucc @(Nothing @Nat) @n of
Refl -> X.rev1 @Nothing @(Replicate n Nothing ++ sh'))
arr
rreshape :: forall n n' a. Elt a
=> IShR n' -> Ranked n a -> Ranked n' a
rreshape sh' rarr@(Ranked arr)
| Dict <- lemKnownReplicate (snatFromShR (rshape rarr))
, Dict <- lemKnownReplicate (snatFromShR sh')
= Ranked (mreshape (shCvtRX sh') arr)
rasXArrayPrimP :: Ranked n (Primitive a) -> (IShR n, XArray (Replicate n Nothing) a)
rasXArrayPrimP (Ranked arr) = first shCvtXR' (masXArrayPrimP arr)
rasXArrayPrim :: PrimElt a => Ranked n a -> (IShR n, XArray (Replicate n Nothing) a)
rasXArrayPrim (Ranked arr) = first shCvtXR' (masXArrayPrim arr)
rfromXArrayPrimP :: SNat n -> XArray (Replicate n Nothing) a -> Ranked n (Primitive a)
rfromXArrayPrimP sn arr = Ranked (mfromXArrayPrimP (X.staticShapeFrom (X.shape (ssxFromSNat sn) arr)) arr)
rfromXArrayPrim :: PrimElt a => SNat n -> XArray (Replicate n Nothing) a -> Ranked n a
rfromXArrayPrim sn arr = Ranked (mfromXArrayPrim (X.staticShapeFrom (X.shape (ssxFromSNat sn) arr)) arr)
-- ====== API OF SHAPED ARRAYS ====== --
arithPromoteShaped :: forall sh a. PrimElt a
=> (forall shx. Mixed shx a -> Mixed shx a)
-> Shaped sh a -> Shaped sh a
arithPromoteShaped = coerce
arithPromoteShaped2 :: forall sh a. PrimElt a
=> (forall shx. Mixed shx a -> Mixed shx a -> Mixed shx a)
-> Shaped sh a -> Shaped sh a -> Shaped sh a
arithPromoteShaped2 = coerce
instance (Storable a, Num a, PrimElt a) => Num (Shaped sh a) where
(+) = arithPromoteShaped2 (+)
(-) = arithPromoteShaped2 (-)
(*) = arithPromoteShaped2 (*)
negate = arithPromoteShaped negate
abs = arithPromoteShaped abs
signum = arithPromoteShaped signum
fromInteger _ = error "Data.Array.Nested.fromIntegral: No singletons available, use explicit mconstant"
zeroIxS :: ShS sh -> IIxS sh
zeroIxS ZSS = ZIS
zeroIxS (_ :$$ sh) = 0 :.$ zeroIxS sh
ixCvtXS :: ShS sh -> IIxX (MapJust sh) -> IIxS sh
ixCvtXS ZSS ZIX = ZIS
ixCvtXS (_ :$$ sh) (n :.% idx) = n :.$ ixCvtXS sh idx
type family Tail l where
Tail (_ : xs) = xs
shCvtXS' :: forall sh. IShX (MapJust sh) -> ShS sh
shCvtXS' ZSX = castWith (subst1 (unsafeCoerce Refl :: '[] :~: sh)) ZSS
shCvtXS' (SKnown n :$% (idx :: IShX mjshT)) =
castWith (subst1 (lem Refl)) $
n :$$ shCvtXS' @(Tail sh) (castWith (subst2 (unsafeCoerce Refl :: mjshT :~: MapJust (Tail sh)))
idx)
where
lem :: forall sh1 sh' n.
Just n : sh1 :~: MapJust sh'
-> n : Tail sh' :~: sh'
lem Refl = unsafeCoerce Refl
shCvtXS' (SUnknown _ :$% _) = error "impossible"
ixCvtSX :: IIxS sh -> IIxX (MapJust sh)
ixCvtSX ZIS = ZIX
ixCvtSX (n :.$ sh) = n :.% ixCvtSX sh
shCvtSX :: ShS sh -> IShX (MapJust sh)
shCvtSX ZSS = ZSX
shCvtSX (n :$$ sh) = SKnown n :$% shCvtSX sh
shapeSizeS :: ShS sh -> Int
shapeSizeS ZSS = 1
shapeSizeS (n :$$ sh) = X.fromSNat' n * shapeSizeS sh
sshape :: forall sh a. Elt a => Shaped sh a -> ShS sh
sshape (Shaped arr) = shCvtXS' (mshape arr)
sindex :: Elt a => Shaped sh a -> IIxS sh -> a
sindex (Shaped arr) idx = mindex arr (ixCvtSX idx)
shsTakeIx :: Proxy sh' -> ShS (sh ++ sh') -> IIxS sh -> ShS sh
shsTakeIx _ _ ZIS = ZSS
shsTakeIx p sh (_ :.$ idx) = case sh of n :$$ sh' -> n :$$ shsTakeIx p sh' idx
sindexPartial :: forall sh1 sh2 a. Elt a => Shaped (sh1 ++ sh2) a -> IIxS sh1 -> Shaped sh2 a
sindexPartial sarr@(Shaped arr) idx =
Shaped (mindexPartial @a @(MapJust sh1) @(MapJust sh2)
(castWith (subst2 (lemCommMapJustApp (shsTakeIx (Proxy @sh2) (sshape sarr) idx) (Proxy @sh2))) arr)
(ixCvtSX idx))
-- | __WARNING__: All values returned from the function must have equal shape.
-- See the documentation of 'mgenerate' for more details.
sgenerate :: forall sh a. KnownElt a => ShS sh -> (IIxS sh -> a) -> Shaped sh a
sgenerate sh f = Shaped (mgenerate (shCvtSX sh) (f . ixCvtXS sh))
{-
-- | See the documentation of 'mlift'.
slift :: forall sh1 sh2 a. (KnownShape sh2, Elt a)
=> (forall sh' b. (KnownShapeX sh', Storable b) => Proxy sh' -> XArray (MapJust sh1 ++ sh') b -> XArray (MapJust sh2 ++ sh') b)
-> Shaped sh1 a -> Shaped sh2 a
slift f (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh2)
= Shaped (mlift f arr)
ssumOuter1P :: forall sh n a.
(Storable a, Num a, KnownNat n, KnownShape sh)
=> Shaped (n : sh) (Primitive a) -> Shaped sh (Primitive a)
ssumOuter1P (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped
. coerce @(XArray (MapJust sh) a) @(Mixed (MapJust sh) (Primitive a))
. X.sumOuter (natSing @n :!$@ ZKSX) (knownShapeX @(MapJust sh))
. coerce @(Mixed (Just n : MapJust sh) (Primitive a)) @(XArray (Just n : MapJust sh) a)
$ arr
ssumOuter1 :: forall sh n a.
(Storable a, Num a, PrimElt a, KnownNat n, KnownShape sh)
=> Shaped (n : sh) a -> Shaped sh a
ssumOuter1 = coerce fromPrimitive . ssumOuter1P @sh @n @a . coerce toPrimitive
lemCommMapJustTakeLen :: HList SNat is -> ShS sh -> X.TakeLen is (MapJust sh) :~: MapJust (X.TakeLen is sh)
lemCommMapJustTakeLen HNil _ = Refl
lemCommMapJustTakeLen (_ `HCons` is) (_ :$$ sh) | Refl <- lemCommMapJustTakeLen is sh = Refl
lemCommMapJustTakeLen (_ `HCons` _) ZSS = error "TakeLen of empty"
lemCommMapJustDropLen :: HList SNat is -> ShS sh -> X.DropLen is (MapJust sh) :~: MapJust (X.DropLen is sh)
lemCommMapJustDropLen HNil _ = Refl
lemCommMapJustDropLen (_ `HCons` is) (_ :$$ sh) | Refl <- lemCommMapJustDropLen is sh = Refl
lemCommMapJustDropLen (_ `HCons` _) ZSS = error "DropLen of empty"
lemCommMapJustIndex :: SNat i -> ShS sh -> X.Index i (MapJust sh) :~: Just (X.Index i sh)
lemCommMapJustIndex SZ (_ :$$ _) = Refl
lemCommMapJustIndex (SS (i :: SNat i')) ((_ :: SNat n) :$$ (sh :: ShS sh'))
| Refl <- lemCommMapJustIndex i sh
, Refl <- X.lemIndexSucc (Proxy @i') (Proxy @(Just n)) (Proxy @(MapJust sh'))
, Refl <- X.lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh')
= Refl
lemCommMapJustIndex _ ZSS = error "Index of empty"
lemCommMapJustPermute :: HList SNat is -> ShS sh -> X.Permute is (MapJust sh) :~: MapJust (X.Permute is sh)
lemCommMapJustPermute HNil _ = Refl
lemCommMapJustPermute (i `HCons` is) sh
| Refl <- lemCommMapJustPermute is sh
, Refl <- lemCommMapJustIndex i sh
= Refl
shTakeLen :: HList SNat is -> ShS sh -> ShS (X.TakeLen is sh)
shTakeLen HNil _ = ZSS
shTakeLen (_ `HCons` is) (n :$$ sh) = n :$$ shTakeLen is sh
shTakeLen (_ `HCons` _) ZSS = error "Permutation longer than shape"
shPermute :: HList SNat is -> ShS sh -> ShS (X.Permute is sh)
shPermute HNil _ = ZSS
shPermute (i `HCons` (is :: HList SNat is')) (sh :: ShS sh) = shIndex (Proxy @is') (Proxy @sh) i sh (shPermute is sh)
shIndex :: Proxy is -> Proxy shT -> SNat i -> ShS sh -> ShS (X.Permute is shT) -> ShS (X.Index i sh : X.Permute is shT)
shIndex _ _ SZ (n :$$ _) rest = n :$$ rest
shIndex p pT (SS (i :: SNat i')) ((_ :: SNat n) :$$ (sh :: ShS sh')) rest
| Refl <- X.lemIndexSucc (Proxy @i') (Proxy @n) (Proxy @sh')
= shIndex p pT i sh rest
shIndex _ _ _ ZSS _ = error "Index into empty shape"
stranspose :: forall is sh a. (X.Permutation is, X.Rank is <= X.Rank sh, KnownShape sh, Elt a) => HList SNat is -> Shaped sh a -> Shaped (X.PermutePrefix is sh) a
stranspose perm (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
, Refl <- lemRankMapJust (Proxy @sh)
, Refl <- lemCommMapJustTakeLen perm (knownShape @sh)
, Refl <- lemCommMapJustDropLen perm (knownShape @sh)
, Refl <- lemCommMapJustPermute perm (shTakeLen perm (knownShape @sh))
, Refl <- lemCommMapJustApp (shPermute perm (shTakeLen perm (knownShape @sh))) (Proxy @(X.DropLen is sh))
= Shaped (mtranspose perm arr)
sappend :: forall n m sh a. (KnownNat n, KnownNat m, KnownShape sh, Elt a)
=> Shaped (n : sh) a -> Shaped (m : sh) a -> Shaped (n + m : sh) a
sappend | Dict <- lemKnownMapJust (Proxy @sh) = coerce mappend
sscalar :: Elt a => a -> Shaped '[] a
sscalar x = Shaped (mscalar x)
sfromVectorP :: forall sh a. (KnownShape sh, Storable a) => VS.Vector a -> Shaped sh (Primitive a)
sfromVectorP v
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mfromVectorP (shCvtSX (knownShape @sh)) v)
sfromVector :: forall sh a. (KnownShape sh, Storable a, PrimElt a) => VS.Vector a -> Shaped sh a
sfromVector v = coerce fromPrimitive (sfromVectorP @sh @a v)
stoVectorP :: Storable a => Shaped sh (Primitive a) -> VS.Vector a
stoVectorP = coerce mtoVectorP
stoVector :: (Storable a, PrimElt a) => Shaped sh a -> VS.Vector a
stoVector = coerce mtoVector
sfromList1 :: forall n sh a. (KnownNat n, KnownShape sh, Elt a)
=> NonEmpty (Shaped sh a) -> Shaped (n : sh) a
sfromList1 l
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mfromList1 (coerce l))
sfromList :: (KnownNat n, Elt a) => NonEmpty a -> Shaped '[n] a
sfromList = Shaped . mfromList1 . fmap mscalar
stoList :: Elt a => Shaped (n : sh) a -> [Shaped sh a]
stoList (Shaped arr) = coerce (mtoList1 arr)
stoList1 :: Elt a => Shaped '[n] a -> [a]
stoList1 = map sunScalar . stoList
sunScalar :: Elt a => Shaped '[] a -> a
sunScalar arr = sindex arr ZIS
sconstantP :: forall sh a. (KnownShape sh, Storable a) => a -> Shaped sh (Primitive a)
sconstantP x
| Dict <- lemKnownMapJust (Proxy @sh)
= Shaped (mconstantP (shCvtSX (knownShape @sh)) x)
sconstant :: forall sh a. (KnownShape sh, Storable a, PrimElt a)
=> a -> Shaped sh a
sconstant x = coerce fromPrimitive (sconstantP @sh x)
sslice :: (KnownShape sh, Elt a) => SNat i -> SNat n -> Shaped (i + n + k : sh) a -> Shaped (n : sh) a
sslice i n@SNat = slift $ \_ -> X.slice i n
srev1 :: (KnownNat n, KnownShape sh, Elt a) => Shaped (n : sh) a -> Shaped (n : sh) a
srev1 = slift $ \_ -> X.rev1
sreshape :: forall sh sh' a. (KnownShape sh, KnownShape sh', Elt a)
=> ShS sh' -> Shaped sh a -> Shaped sh' a
sreshape sh' (Shaped arr)
| Dict <- lemKnownMapJust (Proxy @sh)
, Dict <- lemKnownMapJust (Proxy @sh')
= Shaped (mreshape (shCvtSX sh') arr)
sasXArrayPrimP :: Shaped sh (Primitive a) -> XArray (MapJust sh) a
sasXArrayPrimP (Shaped arr) = masXArrayPrimP arr
sasXArrayPrim :: PrimElt a => Shaped sh a -> XArray (MapJust sh) a
sasXArrayPrim (Shaped arr) = masXArrayPrim arr
sfromXArrayPrimP :: XArray (MapJust sh) a -> Shaped sh (Primitive a)
sfromXArrayPrimP = Shaped . mfromXArrayPrimP
sfromXArrayPrim :: PrimElt a => XArray (MapJust sh) a -> Shaped sh a
sfromXArrayPrim = Shaped . mfromXArrayPrim
-}
|