1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
-- {-# OPTIONS_GHC -ddump-simpl -ddump-to-file -ddump-file-prefix=Arith #-}
module Data.Array.Nested.Internal.Arith where
import Control.Monad (forM, forM_, guard)
import qualified Data.Array.Internal as OI
import qualified Data.Array.Internal.RankedG as RG
import qualified Data.Array.Internal.RankedS as RS
import Data.Bits
import Data.Int
import Data.List (sort)
import qualified Data.Vector.Storable as VS
import qualified Data.Vector.Storable.Mutable as VSM
import Foreign.C.Types
import Foreign.Ptr
import Foreign.Storable (Storable)
import GHC.TypeLits
import Language.Haskell.TH
import System.IO.Unsafe
import Data.Array.Nested.Internal.Arith.Foreign
import Data.Array.Nested.Internal.Arith.Lists
liftVEltwise1 :: Storable a
=> SNat n
-> (VS.Vector a -> VS.Vector a)
-> RS.Array n a -> RS.Array n a
liftVEltwise1 SNat f arr@(RS.A (RG.A sh (OI.T strides offset vec)))
| Just prefixSz <- stridesDense sh strides =
let vec' = f (VS.slice offset prefixSz vec)
in RS.A (RG.A sh (OI.T strides 0 vec'))
| otherwise = RS.fromVector sh (f (RS.toVector arr))
liftVEltwise2 :: Storable a
=> SNat n
-> (Either a (VS.Vector a) -> Either a (VS.Vector a) -> VS.Vector a)
-> RS.Array n a -> RS.Array n a -> RS.Array n a
liftVEltwise2 SNat f
arr1@(RS.A (RG.A sh1 (OI.T strides1 offset1 vec1)))
arr2@(RS.A (RG.A sh2 (OI.T strides2 offset2 vec2)))
| sh1 /= sh2 = error $ "liftVEltwise2: shapes unequal: " ++ show sh1 ++ " vs " ++ show sh2
| product sh1 == 0 = arr1 -- if the arrays are empty, just return one of the empty inputs
| otherwise = case (stridesDense sh1 strides1, stridesDense sh2 strides2) of
(Just 1, Just 1) -> -- both are a (potentially replicated) scalar; just apply f to the scalars
let vec' = f (Left (vec1 VS.! offset1)) (Left (vec2 VS.! offset2))
in RS.A (RG.A sh1 (OI.T strides1 0 vec'))
(Just 1, Just n) -> -- scalar * dense
RS.fromVector sh1 (f (Left (vec1 VS.! offset1)) (Right (VS.slice offset2 n vec2)))
(Just n, Just 1) -> -- dense * scalar
RS.fromVector sh1 (f (Right (VS.slice offset1 n vec1)) (Left (vec2 VS.! offset2)))
(_, _) -> -- fallback case
RS.fromVector sh1 (f (Right (RS.toVector arr1)) (Right (RS.toVector arr2)))
-- | Given the shape vector and the stride vector, return whether this vector
-- of strides uses a dense prefix of its backing array. If so, the number of
-- elements in this prefix is returned.
-- This excludes any offset.
stridesDense :: [Int] -> [Int] -> Maybe Int
stridesDense sh _ | any (<= 0) sh = Just 0
stridesDense sh str =
-- sort dimensions on their stride, ascending, dropping any zero strides
case dropWhile ((== 0) . fst) (sort (zip str sh)) of
[] -> Just 1
(1, n) : (unzip -> (str', sh')) -> checkCover n sh' str'
_ -> Nothing -- if the smallest stride is not 1, it will never be dense
where
-- Given size of currently densely covered region at beginning of the
-- array, the remaining shape vector and the corresponding remaining stride
-- vector, return whether this all together covers a dense prefix of the
-- array. If it does, return the number of elements in this prefix.
checkCover :: Int -> [Int] -> [Int] -> Maybe Int
checkCover block [] [] = Just block
checkCover block (n : sh') (s : str') = guard (s <= block) >> checkCover (max block (n * s)) sh' str'
checkCover _ _ _ = error "Orthotope array's shape vector and stride vector have different lengths"
{-# NOINLINE vectorOp1 #-}
vectorOp1 :: forall a b. Storable a
=> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> Ptr b -> IO ())
-> VS.Vector a -> VS.Vector a
vectorOp1 ptrconv f v = unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length v)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith v $ \pv ->
f (fromIntegral (VS.length v)) (ptrconv poutv) (ptrconv pv)
VS.unsafeFreeze outv
-- | If two vectors are given, assumes that they have the same length.
{-# NOINLINE vectorOp2 #-}
vectorOp2 :: forall a b. Storable a
=> (a -> b)
-> (Ptr a -> Ptr b)
-> (a -> a -> a)
-> (Int64 -> Ptr b -> b -> Ptr b -> IO ()) -- sv
-> (Int64 -> Ptr b -> Ptr b -> b -> IO ()) -- vs
-> (Int64 -> Ptr b -> Ptr b -> Ptr b -> IO ()) -- vv
-> Either a (VS.Vector a) -> Either a (VS.Vector a) -> VS.Vector a
vectorOp2 valconv ptrconv fss fsv fvs fvv = \cases
(Left x) (Left y) -> VS.singleton (fss x y)
(Left x) (Right vy) ->
unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length vy)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith vy $ \pvy ->
fsv (fromIntegral (VS.length vy)) (ptrconv poutv) (valconv x) (ptrconv pvy)
VS.unsafeFreeze outv
(Right vx) (Left y) ->
unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length vx)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith vx $ \pvx ->
fvs (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (valconv y)
VS.unsafeFreeze outv
(Right vx) (Right vy)
| VS.length vx == VS.length vy ->
unsafePerformIO $ do
outv <- VSM.unsafeNew (VS.length vx)
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith vx $ \pvx ->
VS.unsafeWith vy $ \pvy ->
fvv (fromIntegral (VS.length vx)) (ptrconv poutv) (ptrconv pvx) (ptrconv pvy)
VS.unsafeFreeze outv
| otherwise -> error $ "vectorOp: unequal lengths: " ++ show (VS.length vx) ++ " /= " ++ show (VS.length vy)
-- TODO: test all the weird cases of this function
-- | Reduce along the inner dimension
{-# NOINLINE vectorRedInnerOp #-}
vectorRedInnerOp :: forall a b n. (Num a, Storable a)
=> SNat n
-> (a -> b)
-> (Ptr a -> Ptr b)
-> (Int64 -> Ptr b -> b -> Ptr b -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr b -> Ptr b -> IO ()) -- ^ reduction kernel
-> RS.Array (n + 1) a -> RS.Array n a
vectorRedInnerOp sn@SNat valconv ptrconv fscale fred (RS.A (RG.A sh (OI.T strides offset vec)))
| null sh = error "unreachable"
| last sh <= 0 = RS.stretch (init sh) (RS.fromList (map (const 1) (init sh)) [0])
| any (<= 0) (init sh) = RS.A (RG.A (init sh) (OI.T (map (const 0) (init strides)) 0 VS.empty))
-- now the input array is nonempty
| last sh == 1 = RS.A (RG.A (init sh) (OI.T (init strides) offset vec))
| last strides == 0 =
liftVEltwise1 sn
(vectorOp1 id (\n pout px -> fscale n (ptrconv pout) (valconv (fromIntegral (last sh))) (ptrconv px)))
(RS.A (RG.A (init sh) (OI.T (init strides) offset vec)))
-- now there is useful work along the inner dimension
| otherwise =
let -- filter out zero-stride dimensions; the reduction kernel need not concern itself with those
(shF, stridesF) = unzip $ filter ((/= 0) . snd) (zip sh strides)
ndimsF = length shF
in unsafePerformIO $ do
outv <- VSM.unsafeNew (product (init shF))
VSM.unsafeWith outv $ \poutv ->
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral shF)) $ \pshF ->
VS.unsafeWith (VS.fromListN ndimsF (map fromIntegral stridesF)) $ \pstridesF ->
VS.unsafeWith (VS.slice offset (VS.length vec - offset) vec) $ \pvec ->
fred (fromIntegral ndimsF) pshF pstridesF (ptrconv poutv) (ptrconv pvec)
RS.fromVector (init sh) <$> VS.unsafeFreeze outv
flipOp :: (Int64 -> Ptr a -> a -> Ptr a -> IO ())
-> Int64 -> Ptr a -> Ptr a -> a -> IO ()
flipOp f n out v s = f n out s v
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (aboName arithop ++ "Vector" ++ nameBase (atType arithtype))
cnamebase = "c_binary_" ++ atCName arithtype
c_ss = varE (aboNumOp arithop)
c_sv = varE (mkName (cnamebase ++ "_sv")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
c_vs = varE (mkName (cnamebase ++ "_vs")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
c_vv = varE (mkName (cnamebase ++ "_vv")) `appE` litE (integerL (fromIntegral (aboEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise2 sn (vectorOp2 id id $c_ss $c_sv $c_vs $c_vv) |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM floatTypesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (afboName arithop ++ "Vector" ++ nameBase (atType arithtype))
cnamebase = "c_fbinary_" ++ atCName arithtype
c_ss = varE (afboNumOp arithop)
c_sv = varE (mkName (cnamebase ++ "_sv")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
c_vs = varE (mkName (cnamebase ++ "_vs")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
c_vv = varE (mkName (cnamebase ++ "_vv")) `appE` litE (integerL (fromIntegral (afboEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise2 sn (vectorOp2 id id $c_ss $c_sv $c_vs $c_vv) |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (auoName arithop ++ "Vector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_unary_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (auoEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise1 sn (vectorOp1 id $c_op) |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM floatTypesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (afuoName arithop ++ "Vector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_funary_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (afuoEnum arithop)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array n $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> liftVEltwise1 sn (vectorOp1 id $c_op) |]
return $ FunD name [Clause [] (NormalB body) []]])
$(fmap concat . forM typesList $ \arithtype -> do
let ttyp = conT (atType arithtype)
fmap concat . forM [minBound..maxBound] $ \arithop -> do
let name = mkName (aroName arithop ++ "Vector" ++ nameBase (atType arithtype))
c_op = varE (mkName ("c_reduce_" ++ atCName arithtype)) `appE` litE (integerL (fromIntegral (aroEnum arithop)))
c_scale_op = varE (mkName ("c_binary_" ++ atCName arithtype ++ "_sv")) `appE` litE (integerL (fromIntegral (aboEnum BO_MUL)))
sequence [SigD name <$>
[t| forall n. SNat n -> RS.Array (n + 1) $ttyp -> RS.Array n $ttyp |]
,do body <- [| \sn -> vectorRedInnerOp sn id id $c_scale_op $c_op |]
return $ FunD name [Clause [] (NormalB body) []]])
-- This branch is ostensibly a runtime branch, but will (hopefully) be
-- constant-folded away by GHC.
intWidBranch1 :: forall i n. (FiniteBits i, Storable i)
=> (Int64 -> Ptr Int32 -> Ptr Int32 -> IO ())
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> IO ())
-> (SNat n -> RS.Array n i -> RS.Array n i)
intWidBranch1 f32 f64 sn
| finiteBitSize (undefined :: i) == 32 = liftVEltwise1 sn (vectorOp1 @i @Int32 castPtr f32)
| finiteBitSize (undefined :: i) == 64 = liftVEltwise1 sn (vectorOp1 @i @Int64 castPtr f64)
| otherwise = error "Unsupported Int width"
intWidBranch2 :: forall i n. (FiniteBits i, Storable i, Integral i)
=> (i -> i -> i) -- ss
-- int32
-> (Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ()) -- sv
-> (Int64 -> Ptr Int32 -> Ptr Int32 -> Int32 -> IO ()) -- vs
-> (Int64 -> Ptr Int32 -> Ptr Int32 -> Ptr Int32 -> IO ()) -- vv
-- int64
-> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ()) -- sv
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Int64 -> IO ()) -- vs
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- vv
-> (SNat n -> RS.Array n i -> RS.Array n i -> RS.Array n i)
intWidBranch2 ss sv32 vs32 vv32 sv64 vs64 vv64 sn
| finiteBitSize (undefined :: i) == 32 = liftVEltwise2 sn (vectorOp2 @i @Int32 fromIntegral castPtr ss sv32 vs32 vv32)
| finiteBitSize (undefined :: i) == 64 = liftVEltwise2 sn (vectorOp2 @i @Int64 fromIntegral castPtr ss sv64 vs64 vv64)
| otherwise = error "Unsupported Int width"
intWidBranchRed :: forall i n. (FiniteBits i, Storable i, Integral i)
=> -- int32
(Int64 -> Ptr Int32 -> Int32 -> Ptr Int32 -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int32 -> Ptr Int32 -> IO ()) -- ^ reduction kernel
-- int64
-> (Int64 -> Ptr Int64 -> Int64 -> Ptr Int64 -> IO ()) -- ^ scale by constant
-> (Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> Ptr Int64 -> IO ()) -- ^ reduction kernel
-> (SNat n -> RS.Array (n + 1) i -> RS.Array n i)
intWidBranchRed fsc32 fred32 fsc64 fred64 sn
| finiteBitSize (undefined :: i) == 32 = vectorRedInnerOp @i @Int32 sn fromIntegral castPtr fsc32 fred32
| finiteBitSize (undefined :: i) == 64 = vectorRedInnerOp @i @Int64 sn fromIntegral castPtr fsc64 fred64
| otherwise = error "Unsupported Int width"
class NumElt a where
numEltAdd :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
numEltSub :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
numEltMul :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
numEltNeg :: SNat n -> RS.Array n a -> RS.Array n a
numEltAbs :: SNat n -> RS.Array n a -> RS.Array n a
numEltSignum :: SNat n -> RS.Array n a -> RS.Array n a
numEltSum1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a
numEltProduct1Inner :: SNat n -> RS.Array (n + 1) a -> RS.Array n a
instance NumElt Int32 where
numEltAdd = addVectorInt32
numEltSub = subVectorInt32
numEltMul = mulVectorInt32
numEltNeg = negVectorInt32
numEltAbs = absVectorInt32
numEltSignum = signumVectorInt32
numEltSum1Inner = sum1VectorInt32
numEltProduct1Inner = product1VectorInt32
instance NumElt Int64 where
numEltAdd = addVectorInt64
numEltSub = subVectorInt64
numEltMul = mulVectorInt64
numEltNeg = negVectorInt64
numEltAbs = absVectorInt64
numEltSignum = signumVectorInt64
numEltSum1Inner = sum1VectorInt64
numEltProduct1Inner = product1VectorInt64
instance NumElt Float where
numEltAdd = addVectorFloat
numEltSub = subVectorFloat
numEltMul = mulVectorFloat
numEltNeg = negVectorFloat
numEltAbs = absVectorFloat
numEltSignum = signumVectorFloat
numEltSum1Inner = sum1VectorFloat
numEltProduct1Inner = product1VectorFloat
hsaddDoubleSV :: Double -> VS.Vector Double -> VS.Vector Double
hsaddDoubleSV = error "unimplemented"
{-# NOINLINE hsaddDoubleVV #-}
hsaddDoubleVV :: VS.Vector Double -> VS.Vector Double -> VS.Vector Double
-- hsaddDoubleVV = VS.zipWith (+)
hsaddDoubleVV v1 v2 = unsafePerformIO $ do
let n = min (VS.length v1) (VS.length v2)
dest <- VSM.unsafeNew n
forM_ [0 .. n - 1] $ \i -> do
VSM.write dest i (v1 VS.! i + v2 VS.! i)
VS.unsafeFreeze dest
instance NumElt Double where
numEltAdd = \sn -> liftVEltwise2 sn $ \cases
(Left x) (Left y) -> VS.singleton (x + y)
(Left x) (Right vy) -> hsaddDoubleSV x vy
(Right vx) (Left y) -> hsaddDoubleSV y vx
(Right vx) (Right vy) -> hsaddDoubleVV vx vy
-- numEltAdd = addVectorDouble
numEltSub = subVectorDouble
numEltMul = mulVectorDouble
numEltNeg = negVectorDouble
numEltAbs = absVectorDouble
numEltSignum = signumVectorDouble
numEltSum1Inner = sum1VectorDouble
numEltProduct1Inner = product1VectorDouble
instance NumElt Int where
numEltAdd = intWidBranch2 @Int (+)
(c_binary_i32_sv (aboEnum BO_ADD)) (flipOp (c_binary_i32_sv (aboEnum BO_ADD))) (c_binary_i32_vv (aboEnum BO_ADD))
(c_binary_i64_sv (aboEnum BO_ADD)) (flipOp (c_binary_i64_sv (aboEnum BO_ADD))) (c_binary_i64_vv (aboEnum BO_ADD))
numEltSub = intWidBranch2 @Int (-)
(c_binary_i32_sv (aboEnum BO_SUB)) (flipOp (c_binary_i32_sv (aboEnum BO_SUB))) (c_binary_i32_vv (aboEnum BO_SUB))
(c_binary_i64_sv (aboEnum BO_SUB)) (flipOp (c_binary_i64_sv (aboEnum BO_SUB))) (c_binary_i64_vv (aboEnum BO_SUB))
numEltMul = intWidBranch2 @Int (*)
(c_binary_i32_sv (aboEnum BO_MUL)) (flipOp (c_binary_i32_sv (aboEnum BO_MUL))) (c_binary_i32_vv (aboEnum BO_MUL))
(c_binary_i64_sv (aboEnum BO_MUL)) (flipOp (c_binary_i64_sv (aboEnum BO_MUL))) (c_binary_i64_vv (aboEnum BO_MUL))
numEltNeg = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_NEG)) (c_unary_i64 (auoEnum UO_NEG))
numEltAbs = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_ABS)) (c_unary_i64 (auoEnum UO_ABS))
numEltSignum = intWidBranch1 @Int (c_unary_i32 (auoEnum UO_SIGNUM)) (c_unary_i64 (auoEnum UO_SIGNUM))
numEltSum1Inner = intWidBranchRed @Int
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_SUM1))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_SUM1))
numEltProduct1Inner = intWidBranchRed @Int
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_PRODUCT1))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_PRODUCT1))
instance NumElt CInt where
numEltAdd = intWidBranch2 @CInt (+)
(c_binary_i32_sv (aboEnum BO_ADD)) (flipOp (c_binary_i32_sv (aboEnum BO_ADD))) (c_binary_i32_vv (aboEnum BO_ADD))
(c_binary_i64_sv (aboEnum BO_ADD)) (flipOp (c_binary_i64_sv (aboEnum BO_ADD))) (c_binary_i64_vv (aboEnum BO_ADD))
numEltSub = intWidBranch2 @CInt (-)
(c_binary_i32_sv (aboEnum BO_SUB)) (flipOp (c_binary_i32_sv (aboEnum BO_SUB))) (c_binary_i32_vv (aboEnum BO_SUB))
(c_binary_i64_sv (aboEnum BO_SUB)) (flipOp (c_binary_i64_sv (aboEnum BO_SUB))) (c_binary_i64_vv (aboEnum BO_SUB))
numEltMul = intWidBranch2 @CInt (*)
(c_binary_i32_sv (aboEnum BO_MUL)) (flipOp (c_binary_i32_sv (aboEnum BO_MUL))) (c_binary_i32_vv (aboEnum BO_MUL))
(c_binary_i64_sv (aboEnum BO_MUL)) (flipOp (c_binary_i64_sv (aboEnum BO_MUL))) (c_binary_i64_vv (aboEnum BO_MUL))
numEltNeg = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_NEG)) (c_unary_i64 (auoEnum UO_NEG))
numEltAbs = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_ABS)) (c_unary_i64 (auoEnum UO_ABS))
numEltSignum = intWidBranch1 @CInt (c_unary_i32 (auoEnum UO_SIGNUM)) (c_unary_i64 (auoEnum UO_SIGNUM))
numEltSum1Inner = intWidBranchRed @CInt
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_SUM1))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_SUM1))
numEltProduct1Inner = intWidBranchRed @CInt
(c_binary_i32_sv (aboEnum BO_MUL)) (c_reduce_i32 (aroEnum RO_PRODUCT1))
(c_binary_i64_sv (aboEnum BO_MUL)) (c_reduce_i64 (aroEnum RO_PRODUCT1))
class FloatElt a where
floatEltDiv :: SNat n -> RS.Array n a -> RS.Array n a -> RS.Array n a
floatEltRecip :: SNat n -> RS.Array n a -> RS.Array n a
instance FloatElt Float where
floatEltDiv = divVectorFloat
floatEltRecip = recipVectorFloat
instance FloatElt Double where
floatEltDiv = divVectorDouble
floatEltRecip = recipVectorDouble
|