1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE StrictData #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
module Data.Array.Nested.Internal.Mixed where
import Prelude hiding (mconcat)
import Control.DeepSeq (NFData)
import Control.Monad (forM_, when)
import Control.Monad.ST
import Data.Array.RankedS qualified as S
import Data.Bifunctor (bimap)
import Data.Coerce
import Data.Foldable (toList)
import Data.Int
import Data.Kind (Type)
import Data.List.NonEmpty (NonEmpty(..))
import Data.List.NonEmpty qualified as NE
import Data.Proxy
import Data.Type.Equality
import Data.Vector.Storable qualified as VS
import Data.Vector.Storable.Mutable qualified as VSM
import Foreign.C.Types (CInt)
import Foreign.Storable (Storable)
import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp)
import GHC.Generics (Generic)
import GHC.TypeLits
import Data.Array.Mixed.XArray (XArray(..))
import Data.Array.Mixed.XArray qualified as X
import Data.Array.Mixed.Internal.Arith
import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
import Data.Array.Mixed.Permutation
import Data.Array.Mixed.Lemmas
-- TODO:
-- sumAllPrim :: (PrimElt a, NumElt a) => Mixed sh a -> a
-- rminIndex1 :: Ranked (n + 1) a -> Ranked n Int
-- gather/scatter-like things (most generally, the higher-order variants: accelerate's backpermute/permute)
-- After benchmarking: matmul and matvec
-- Invariant in the API
-- ====================
--
-- In the underlying XArray, there is some shape for elements of an empty
-- array. For example, for this array:
--
-- arr :: Ranked I3 (Ranked I2 Int, Ranked I1 Float)
-- rshape arr == 0 :.: 0 :.: 0 :.: ZIR
--
-- the two underlying XArrays have a shape, and those shapes might be anything.
-- The invariant is that these element shapes are unobservable in the API.
-- (This is possible because you ought to not be able to get to such an element
-- without indexing out of bounds.)
--
-- Note, though, that the converse situation may arise: the outer array might
-- be nonempty but then the inner arrays might. This is fine, an invariant only
-- applies if the _outer_ array is empty.
--
-- TODO: can we enforce that the elements of an empty (nested) array have
-- all-zero shape?
-- -> no, because mlift and also any kind of internals probing from outsiders
-- Primitive element types
-- =======================
--
-- There are a few primitive element types; arrays containing elements of such
-- type are a newtype over an XArray, which it itself a newtype over a Vector.
-- Unfortunately, the setup of the library requires us to list these primitive
-- element types multiple times; to aid in extending the list, all these lists
-- have been marked with [PRIMITIVE ELEMENT TYPES LIST].
-- | Wrapper type used as a tag to attach instances on. The instances on arrays
-- of @'Primitive' a@ are more polymorphic than the direct instances for arrays
-- of scalars; this means that if @orthotope@ supports an element type @T@ that
-- this library does not (directly), it may just work if you use an array of
-- @'Primitive' T@ instead.
newtype Primitive a = Primitive a
deriving (Show)
-- | Element types that are primitive; arrays of these types are just a newtype
-- wrapper over an array.
class (Storable a, Elt a) => PrimElt a where
fromPrimitive :: Mixed sh (Primitive a) -> Mixed sh a
toPrimitive :: Mixed sh a -> Mixed sh (Primitive a)
default fromPrimitive :: Coercible (Mixed sh a) (Mixed sh (Primitive a)) => Mixed sh (Primitive a) -> Mixed sh a
fromPrimitive = coerce
default toPrimitive :: Coercible (Mixed sh (Primitive a)) (Mixed sh a) => Mixed sh a -> Mixed sh (Primitive a)
toPrimitive = coerce
-- [PRIMITIVE ELEMENT TYPES LIST]
instance PrimElt Bool
instance PrimElt Int
instance PrimElt Int64
instance PrimElt Int32
instance PrimElt CInt
instance PrimElt Float
instance PrimElt Double
instance PrimElt ()
-- | Mixed arrays: some dimensions are size-typed, some are not. Distributes
-- over product-typed elements using a data family so that the full array is
-- always in struct-of-arrays format.
--
-- Built on top of 'XArray' which is built on top of @orthotope@, meaning that
-- dimension permutations (e.g. 'mtranspose') are typically free.
--
-- Many of the methods for working on 'Mixed' arrays come from the 'Elt' type
-- class.
type Mixed :: [Maybe Nat] -> Type -> Type
data family Mixed sh a
-- NOTE: When opening up the Mixed abstraction, you might see dimension sizes
-- that you're not supposed to see. In particular, you might see (nonempty)
-- sizes of the elements of an empty array, which is information that should
-- ostensibly not exist; the full array is still empty.
data instance Mixed sh (Primitive a) = M_Primitive !(IShX sh) !(XArray sh a)
deriving (Eq, Generic)
deriving (Show) via (ShowViaToListLinear sh (Primitive a))
-- | Only on scalars, because lexicographical ordering is strange on multi-dimensional arrays.
deriving instance (Ord a, Storable a) => Ord (Mixed sh (Primitive a))
instance NFData a => NFData (Mixed sh (Primitive a))
-- [PRIMITIVE ELEMENT TYPES LIST]
newtype instance Mixed sh Bool = M_Bool (Mixed sh (Primitive Bool)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Bool)
newtype instance Mixed sh Int = M_Int (Mixed sh (Primitive Int)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Int)
newtype instance Mixed sh Int64 = M_Int64 (Mixed sh (Primitive Int64)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Int64)
newtype instance Mixed sh Int32 = M_Int32 (Mixed sh (Primitive Int32)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Int32)
newtype instance Mixed sh CInt = M_CInt (Mixed sh (Primitive CInt)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh CInt)
newtype instance Mixed sh Float = M_Float (Mixed sh (Primitive Float)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Float)
newtype instance Mixed sh Double = M_Double (Mixed sh (Primitive Double)) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh Double)
newtype instance Mixed sh () = M_Nil (Mixed sh (Primitive ())) deriving (Eq, Generic) deriving (Show) via (ShowViaPrimitive sh ()) -- no content, orthotope optimises this (via Vector)
-- etc.
-- [PRIMITIVE ELEMENT TYPES LIST]
deriving instance Ord (Mixed sh Bool) ; instance NFData (Mixed sh Bool)
deriving instance Ord (Mixed sh Int) ; instance NFData (Mixed sh Int)
deriving instance Ord (Mixed sh Int64) ; instance NFData (Mixed sh Int64)
deriving instance Ord (Mixed sh Int32) ; instance NFData (Mixed sh Int32)
deriving instance Ord (Mixed sh CInt) ; instance NFData (Mixed sh CInt)
deriving instance Ord (Mixed sh Float) ; instance NFData (Mixed sh Float)
deriving instance Ord (Mixed sh Double) ; instance NFData (Mixed sh Double)
deriving instance Ord (Mixed sh ()) ; instance NFData (Mixed sh ())
data instance Mixed sh (a, b) = M_Tup2 !(Mixed sh a) !(Mixed sh b) deriving (Generic)
deriving via (ShowViaToListLinear sh (a, b)) instance (Show a, Elt a, Show b, Elt b) => Show (Mixed sh (a, b))
instance (NFData (Mixed sh a), NFData (Mixed sh b)) => NFData (Mixed sh (a, b))
-- etc., larger tuples (perhaps use generics to allow arbitrary product types)
data instance Mixed sh1 (Mixed sh2 a) = M_Nest !(IShX sh1) !(Mixed (sh1 ++ sh2) a) deriving (Generic)
deriving via (ShowViaToListLinear sh1 (Mixed sh2 a)) instance (Show (Mixed sh2 a), Elt a) => Show (Mixed sh1 (Mixed sh2 a))
instance NFData (Mixed (sh1 ++ sh2) a) => NFData (Mixed sh1 (Mixed sh2 a))
-- | Internal helper data family mirroring 'Mixed' that consists of mutable
-- vectors instead of 'XArray's.
type MixedVecs :: Type -> [Maybe Nat] -> Type -> Type
data family MixedVecs s sh a
newtype instance MixedVecs s sh (Primitive a) = MV_Primitive (VS.MVector s a)
-- [PRIMITIVE ELEMENT TYPES LIST]
newtype instance MixedVecs s sh Bool = MV_Bool (VS.MVector s Bool)
newtype instance MixedVecs s sh Int = MV_Int (VS.MVector s Int)
newtype instance MixedVecs s sh Int64 = MV_Int64 (VS.MVector s Int64)
newtype instance MixedVecs s sh Int32 = MV_Int32 (VS.MVector s Int32)
newtype instance MixedVecs s sh CInt = MV_CInt (VS.MVector s CInt)
newtype instance MixedVecs s sh Double = MV_Double (VS.MVector s Double)
newtype instance MixedVecs s sh Float = MV_Float (VS.MVector s Float)
newtype instance MixedVecs s sh () = MV_Nil (VS.MVector s ()) -- no content, MVector optimises this
-- etc.
data instance MixedVecs s sh (a, b) = MV_Tup2 !(MixedVecs s sh a) !(MixedVecs s sh b)
-- etc.
data instance MixedVecs s sh1 (Mixed sh2 a) = MV_Nest !(IShX sh2) !(MixedVecs s (sh1 ++ sh2) a)
-- Helpers for Show instances for the Mixed arrays
newtype ShowViaToListLinear sh a = ShowViaToListLinear (Mixed sh a)
instance (Show a, Elt a) => Show (ShowViaToListLinear sh a) where
showsPrec d (ShowViaToListLinear arr) = showParen (d > 10) $
-- TODO: to avoid ambiguity, this should type-apply the shape to mfromListLinear
showString "mfromListLinear " . shows (shxToList (mshape arr)) . showString " "
. shows (mtoListLinear arr)
newtype ShowViaPrimitive sh a = ShowViaPrimitive (Mixed sh (Primitive a))
instance (Show a, Storable a) => Show (ShowViaPrimitive sh a) where
showsPrec d (ShowViaPrimitive parr@(M_Primitive sh _)) = showParen (d > 10) $
-- TODO: to avoid ambiguity, this should type-apply the shape to mfromListLinear
showString "mfromListLinear " . shows (shxToList sh) . showString " "
. shows (coerce @[Primitive a] @[a] (mtoListLinear parr))
mliftNumElt1 :: (PrimElt a, PrimElt b)
=> (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) b)
-> Mixed sh a -> Mixed sh b
mliftNumElt1 f (toPrimitive -> M_Primitive sh (XArray arr)) = fromPrimitive $ M_Primitive sh (XArray (f (shxRank sh) arr))
mliftNumElt2 :: (PrimElt a, PrimElt b, PrimElt c)
=> (SNat (Rank sh) -> S.Array (Rank sh) a -> S.Array (Rank sh) b -> S.Array (Rank sh) c)
-> Mixed sh a -> Mixed sh b -> Mixed sh c
mliftNumElt2 f (toPrimitive -> M_Primitive sh1 (XArray arr1)) (toPrimitive -> M_Primitive sh2 (XArray arr2))
| sh1 == sh2 = fromPrimitive $ M_Primitive sh1 (XArray (f (shxRank sh1) arr1 arr2))
| otherwise = error $ "Data.Array.Nested: Shapes unequal in elementwise Num operation: " ++ show sh1 ++ " vs " ++ show sh2
instance (NumElt a, PrimElt a, Num a) => Num (Mixed sh a) where
(+) = mliftNumElt2 numEltAdd
(-) = mliftNumElt2 numEltSub
(*) = mliftNumElt2 numEltMul
negate = mliftNumElt1 numEltNeg
abs = mliftNumElt1 numEltAbs
signum = mliftNumElt1 numEltSignum
-- TODO: THIS IS BAD, WE NEED TO REMOVE THIS
fromInteger = error "Mixed(fromInteger): Cannot implement fromInteger, use mreplicateScal"
instance (FloatElt a, NumElt a, PrimElt a, Num a) => Fractional (Mixed sh a) where
fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit mreplicate"
recip = mliftNumElt1 floatEltRecip
(/) = mliftNumElt2 floatEltDiv
instance (FloatElt a, NumElt a, PrimElt a, Num a) => Floating (Mixed sh a) where
pi = error "Data.Array.Nested.pi: No singletons available, use explicit mreplicate"
exp = mliftNumElt1 floatEltExp
log = mliftNumElt1 floatEltLog
sqrt = mliftNumElt1 floatEltSqrt
(**) = mliftNumElt2 floatEltPow
logBase = mliftNumElt2 floatEltLogbase
sin = mliftNumElt1 floatEltSin
cos = mliftNumElt1 floatEltCos
tan = mliftNumElt1 floatEltTan
asin = mliftNumElt1 floatEltAsin
acos = mliftNumElt1 floatEltAcos
atan = mliftNumElt1 floatEltAtan
sinh = mliftNumElt1 floatEltSinh
cosh = mliftNumElt1 floatEltCosh
tanh = mliftNumElt1 floatEltTanh
asinh = mliftNumElt1 floatEltAsinh
acosh = mliftNumElt1 floatEltAcosh
atanh = mliftNumElt1 floatEltAtanh
log1p = mliftNumElt1 floatEltLog1p
expm1 = mliftNumElt1 floatEltExpm1
log1pexp = mliftNumElt1 floatEltLog1pexp
log1mexp = mliftNumElt1 floatEltLog1mexp
-- | Allowable element types in a mixed array, and by extension in a 'Ranked' or
-- 'Shaped' array. Note the polymorphic instance for 'Elt' of @'Primitive'
-- a@; see the documentation for 'Primitive' for more details.
class Elt a where
-- ====== PUBLIC METHODS ====== --
mshape :: Mixed sh a -> IShX sh
mindex :: Mixed sh a -> IIxX sh -> a
mindexPartial :: forall sh sh'. Mixed (sh ++ sh') a -> IIxX sh -> Mixed sh' a
mscalar :: a -> Mixed '[] a
-- | All arrays in the list, even subarrays inside @a@, must have the same
-- shape; if they do not, a runtime error will be thrown. See the
-- documentation of 'mgenerate' for more information about this restriction.
-- Furthermore, the length of the list must correspond with @n@: if @n@ is
-- @Just m@ and @m@ does not equal the length of the list, a runtime error is
-- thrown.
--
-- Consider also 'mfromListPrim', which can avoid intermediate arrays.
mfromListOuter :: forall sh. NonEmpty (Mixed sh a) -> Mixed (Nothing : sh) a
mtoListOuter :: Mixed (n : sh) a -> [Mixed sh a]
-- | Note: this library makes no particular guarantees about the shapes of
-- arrays "inside" an empty array. With 'mlift', 'mlift2' and 'mliftL' you can see the
-- full 'XArray' and as such you can distinguish different empty arrays by
-- the "shapes" of their elements. This information is meaningless, so you
-- should not use it.
mlift :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 a -> Mixed sh2 a
-- | See the documentation for 'mlift'.
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 a -> Mixed sh2 a -> Mixed sh3 a
-- TODO: mliftL is currently unused.
-- | All arrays in the input must have equal shapes, including subarrays
-- inside their elements.
mliftL :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b))
-> NonEmpty (Mixed sh1 a) -> NonEmpty (Mixed sh2 a)
mcast :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2
=> StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') a -> Mixed (sh2 ++ sh') a
mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh)
=> Perm is -> Mixed sh a -> Mixed (PermutePrefix is sh) a
-- | All arrays in the input must have equal shapes, including subarrays
-- inside their elements.
mconcat :: NonEmpty (Mixed (Nothing : sh) a) -> Mixed (Nothing : sh) a
-- ====== PRIVATE METHODS ====== --
-- | Tree giving the shape of every array component.
type ShapeTree a
mshapeTree :: a -> ShapeTree a
mshapeTreeEq :: Proxy a -> ShapeTree a -> ShapeTree a -> Bool
mshapeTreeEmpty :: Proxy a -> ShapeTree a -> Bool
mshowShapeTree :: Proxy a -> ShapeTree a -> String
-- | Given the shape of this array, an index and a value, write the value at
-- that index in the vectors.
mvecsWrite :: IShX sh -> IIxX sh -> a -> MixedVecs s sh a -> ST s ()
-- | Given the shape of this array, an index and a value, write the value at
-- that index in the vectors.
mvecsWritePartial :: IShX (sh ++ sh') -> IIxX sh -> Mixed sh' a -> MixedVecs s (sh ++ sh') a -> ST s ()
-- | Given the shape of this array, finalise the vectors into 'XArray's.
mvecsFreeze :: IShX sh -> MixedVecs s sh a -> ST s (Mixed sh a)
-- | Element types for which we have evidence of the (static part of the) shape
-- in a type class constraint. Compare the instance contexts of the instances
-- of this class with those of 'Elt': some instances have an additional
-- "known-shape" constraint.
--
-- This class is (currently) only required for 'mgenerate',
-- 'Data.Array.Nested.Ranked.rgenerate' and
-- 'Data.Array.Nested.Shaped.sgenerate'.
class Elt a => KnownElt a where
-- | Create an empty array. The given shape must have size zero; this may or may not be checked.
memptyArray :: IShX sh -> Mixed sh a
-- | Create uninitialised vectors for this array type, given the shape of
-- this vector and an example for the contents.
mvecsUnsafeNew :: IShX sh -> a -> ST s (MixedVecs s sh a)
mvecsNewEmpty :: Proxy a -> ST s (MixedVecs s sh a)
-- Arrays of scalars are basically just arrays of scalars.
instance Storable a => Elt (Primitive a) where
mshape (M_Primitive sh _) = sh
mindex (M_Primitive _ a) i = Primitive (X.index a i)
mindexPartial (M_Primitive sh a) i = M_Primitive (shxDropIx sh i) (X.indexPartial a i)
mscalar (Primitive x) = M_Primitive ZSX (X.scalar x)
mfromListOuter l@(arr1 :| _) =
let sh = SUnknown (length l) :$% mshape arr1
in M_Primitive sh (X.fromListOuter (ssxFromShape sh) (map (\(M_Primitive _ a) -> a) (toList l)))
mtoListOuter (M_Primitive sh arr) = map (M_Primitive (shxTail sh)) (X.toListOuter arr)
mlift :: forall sh1 sh2.
StaticShX sh2
-> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a)
-> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a)
mlift ssh2 f (M_Primitive _ a)
| Refl <- lemAppNil @sh1
, Refl <- lemAppNil @sh2
, let result = f ZKX a
= M_Primitive (X.shape ssh2 result) result
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (StaticShX '[] -> XArray (sh1 ++ '[]) a -> XArray (sh2 ++ '[]) a -> XArray (sh3 ++ '[]) a)
-> Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive a) -> Mixed sh3 (Primitive a)
mlift2 ssh3 f (M_Primitive _ a) (M_Primitive _ b)
| Refl <- lemAppNil @sh1
, Refl <- lemAppNil @sh2
, Refl <- lemAppNil @sh3
, let result = f ZKX a b
= M_Primitive (X.shape ssh3 result) result
mliftL :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b))
-> NonEmpty (Mixed sh1 (Primitive a)) -> NonEmpty (Mixed sh2 (Primitive a))
mliftL ssh2 f l
| Refl <- lemAppNil @sh1
, Refl <- lemAppNil @sh2
= fmap (\arr -> M_Primitive (X.shape ssh2 arr) arr) $
f ZKX (fmap (\(M_Primitive _ arr) -> arr) l)
mcast :: forall sh1 sh2 sh'. Rank sh1 ~ Rank sh2
=> StaticShX sh1 -> IShX sh2 -> Proxy sh' -> Mixed (sh1 ++ sh') (Primitive a) -> Mixed (sh2 ++ sh') (Primitive a)
mcast ssh1 sh2 _ (M_Primitive sh1' arr) =
let (_, sh') = shxSplitApp (Proxy @sh') ssh1 sh1'
in M_Primitive (shxAppend sh2 sh') (X.cast ssh1 sh2 (ssxFromShape sh') arr)
mtranspose perm (M_Primitive sh arr) =
M_Primitive (shxPermutePrefix perm sh)
(X.transpose (ssxFromShape sh) perm arr)
mconcat :: forall sh. NonEmpty (Mixed (Nothing : sh) (Primitive a)) -> Mixed (Nothing : sh) (Primitive a)
mconcat l@(M_Primitive (_ :$% sh) _ :| _) =
let result = X.concat (ssxFromShape sh) (fmap (\(M_Primitive _ arr) -> arr) l)
in M_Primitive (X.shape (SUnknown () :!% ssxFromShape sh) result) result
type ShapeTree (Primitive a) = ()
mshapeTree _ = ()
mshapeTreeEq _ () () = True
mshapeTreeEmpty _ () = False
mshowShapeTree _ () = "()"
mvecsWrite sh i (Primitive x) (MV_Primitive v) = VSM.write v (ixxToLinear sh i) x
-- TODO: this use of toVector is suboptimal
mvecsWritePartial
:: forall sh' sh s.
IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Primitive a) -> MixedVecs s (sh ++ sh') (Primitive a) -> ST s ()
mvecsWritePartial sh i (M_Primitive sh' arr) (MV_Primitive v) = do
let arrsh = X.shape (ssxFromShape sh') arr
offset = ixxToLinear sh (ixxAppend i (ixxZero' arrsh))
VS.copy (VSM.slice offset (shxSize arrsh) v) (X.toVector arr)
mvecsFreeze sh (MV_Primitive v) = M_Primitive sh . X.fromVector sh <$> VS.freeze v
-- [PRIMITIVE ELEMENT TYPES LIST]
deriving via Primitive Bool instance Elt Bool
deriving via Primitive Int instance Elt Int
deriving via Primitive Int64 instance Elt Int64
deriving via Primitive Int32 instance Elt Int32
deriving via Primitive CInt instance Elt CInt
deriving via Primitive Double instance Elt Double
deriving via Primitive Float instance Elt Float
deriving via Primitive () instance Elt ()
instance Storable a => KnownElt (Primitive a) where
memptyArray sh = M_Primitive sh (X.empty sh)
mvecsUnsafeNew sh _ = MV_Primitive <$> VSM.unsafeNew (shxSize sh)
mvecsNewEmpty _ = MV_Primitive <$> VSM.unsafeNew 0
-- [PRIMITIVE ELEMENT TYPES LIST]
deriving via Primitive Bool instance KnownElt Bool
deriving via Primitive Int instance KnownElt Int
deriving via Primitive Int64 instance KnownElt Int64
deriving via Primitive Int32 instance KnownElt Int32
deriving via Primitive CInt instance KnownElt CInt
deriving via Primitive Double instance KnownElt Double
deriving via Primitive Float instance KnownElt Float
deriving via Primitive () instance KnownElt ()
-- Arrays of pairs are pairs of arrays.
instance (Elt a, Elt b) => Elt (a, b) where
mshape (M_Tup2 a _) = mshape a
mindex (M_Tup2 a b) i = (mindex a i, mindex b i)
mindexPartial (M_Tup2 a b) i = M_Tup2 (mindexPartial a i) (mindexPartial b i)
mscalar (x, y) = M_Tup2 (mscalar x) (mscalar y)
mfromListOuter l =
M_Tup2 (mfromListOuter ((\(M_Tup2 x _) -> x) <$> l))
(mfromListOuter ((\(M_Tup2 _ y) -> y) <$> l))
mtoListOuter (M_Tup2 a b) = zipWith M_Tup2 (mtoListOuter a) (mtoListOuter b)
mlift ssh2 f (M_Tup2 a b) = M_Tup2 (mlift ssh2 f a) (mlift ssh2 f b)
mlift2 ssh3 f (M_Tup2 a b) (M_Tup2 x y) = M_Tup2 (mlift2 ssh3 f a x) (mlift2 ssh3 f b y)
mliftL ssh2 f =
let unzipT2l [] = ([], [])
unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2)
unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2)
in uncurry (NE.zipWith M_Tup2) . bimap (mliftL ssh2 f) (mliftL ssh2 f) . unzipT2
mcast ssh1 sh2 psh' (M_Tup2 a b) =
M_Tup2 (mcast ssh1 sh2 psh' a) (mcast ssh1 sh2 psh' b)
mtranspose perm (M_Tup2 a b) = M_Tup2 (mtranspose perm a) (mtranspose perm b)
mconcat =
let unzipT2l [] = ([], [])
unzipT2l (M_Tup2 a b : l) = let (l1, l2) = unzipT2l l in (a : l1, b : l2)
unzipT2 (M_Tup2 a b :| l) = let (l1, l2) = unzipT2l l in (a :| l1, b :| l2)
in uncurry M_Tup2 . bimap mconcat mconcat . unzipT2
type ShapeTree (a, b) = (ShapeTree a, ShapeTree b)
mshapeTree (x, y) = (mshapeTree x, mshapeTree y)
mshapeTreeEq _ (t1, t2) (t1', t2') = mshapeTreeEq (Proxy @a) t1 t1' && mshapeTreeEq (Proxy @b) t2 t2'
mshapeTreeEmpty _ (t1, t2) = mshapeTreeEmpty (Proxy @a) t1 && mshapeTreeEmpty (Proxy @b) t2
mshowShapeTree _ (t1, t2) = "(" ++ mshowShapeTree (Proxy @a) t1 ++ ", " ++ mshowShapeTree (Proxy @b) t2 ++ ")"
mvecsWrite sh i (x, y) (MV_Tup2 a b) = do
mvecsWrite sh i x a
mvecsWrite sh i y b
mvecsWritePartial sh i (M_Tup2 x y) (MV_Tup2 a b) = do
mvecsWritePartial sh i x a
mvecsWritePartial sh i y b
mvecsFreeze sh (MV_Tup2 a b) = M_Tup2 <$> mvecsFreeze sh a <*> mvecsFreeze sh b
instance (KnownElt a, KnownElt b) => KnownElt (a, b) where
memptyArray sh = M_Tup2 (memptyArray sh) (memptyArray sh)
mvecsUnsafeNew sh (x, y) = MV_Tup2 <$> mvecsUnsafeNew sh x <*> mvecsUnsafeNew sh y
mvecsNewEmpty _ = MV_Tup2 <$> mvecsNewEmpty (Proxy @a) <*> mvecsNewEmpty (Proxy @b)
-- Arrays of arrays are just arrays, but with more dimensions.
instance Elt a => Elt (Mixed sh' a) where
-- TODO: this is quadratic in the nesting depth because it repeatedly
-- truncates the shape vector to one a little shorter. Fix with a
-- moverlongShape method, a prefix of which is mshape.
mshape :: forall sh. Mixed sh (Mixed sh' a) -> IShX sh
mshape (M_Nest sh arr)
= fst (shxSplitApp (Proxy @sh') (ssxFromShape sh) (mshape arr))
mindex :: Mixed sh (Mixed sh' a) -> IIxX sh -> Mixed sh' a
mindex (M_Nest _ arr) i = mindexPartial arr i
mindexPartial :: forall sh1 sh2.
Mixed (sh1 ++ sh2) (Mixed sh' a) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
mindexPartial (M_Nest sh arr) i
| Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
= M_Nest (shxDropIx sh i) (mindexPartial @a @sh1 @(sh2 ++ sh') arr i)
mscalar = M_Nest ZSX
mfromListOuter :: forall sh. NonEmpty (Mixed sh (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a)
mfromListOuter l@(arr :| _) =
M_Nest (SUnknown (length l) :$% mshape arr)
(mfromListOuter ((\(M_Nest _ a) -> a) <$> l))
mtoListOuter (M_Nest sh arr) = map (M_Nest (shxTail sh)) (mtoListOuter arr)
mlift :: forall sh1 sh2.
StaticShX sh2
-> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b)
-> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a)
mlift ssh2 f (M_Nest sh1 arr) =
let result = mlift (ssxAppend ssh2 ssh') f' arr
(sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape result)
in M_Nest sh2 result
where
ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr)))
f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b
f' sshT
| Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
, Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
= f (ssxAppend ssh' sshT)
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (forall shT b. Storable b => StaticShX shT -> XArray (sh1 ++ shT) b -> XArray (sh2 ++ shT) b -> XArray (sh3 ++ shT) b)
-> Mixed sh1 (Mixed sh' a) -> Mixed sh2 (Mixed sh' a) -> Mixed sh3 (Mixed sh' a)
mlift2 ssh3 f (M_Nest sh1 arr1) (M_Nest _ arr2) =
let result = mlift2 (ssxAppend ssh3 ssh') f' arr1 arr2
(sh3, _) = shxSplitApp (Proxy @sh') ssh3 (mshape result)
in M_Nest sh3 result
where
ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1)))
f' :: forall shT b. Storable b => StaticShX shT -> XArray ((sh1 ++ sh') ++ shT) b -> XArray ((sh2 ++ sh') ++ shT) b -> XArray ((sh3 ++ sh') ++ shT) b
f' sshT
| Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
, Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
, Refl <- lemAppAssoc (Proxy @sh3) (Proxy @sh') (Proxy @shT)
= f (ssxAppend ssh' sshT)
mliftL :: forall sh1 sh2.
StaticShX sh2
-> (forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray (sh1 ++ shT) b) -> NonEmpty (XArray (sh2 ++ shT) b))
-> NonEmpty (Mixed sh1 (Mixed sh' a)) -> NonEmpty (Mixed sh2 (Mixed sh' a))
mliftL ssh2 f l@(M_Nest sh1 arr1 :| _) =
let result = mliftL (ssxAppend ssh2 ssh') f' (fmap (\(M_Nest _ arr) -> arr) l)
(sh2, _) = shxSplitApp (Proxy @sh') ssh2 (mshape (NE.head result))
in fmap (M_Nest sh2) result
where
ssh' = ssxFromShape (snd (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape arr1)))
f' :: forall shT b. Storable b => StaticShX shT -> NonEmpty (XArray ((sh1 ++ sh') ++ shT) b) -> NonEmpty (XArray ((sh2 ++ sh') ++ shT) b)
f' sshT
| Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh') (Proxy @shT)
, Refl <- lemAppAssoc (Proxy @sh2) (Proxy @sh') (Proxy @shT)
= f (ssxAppend ssh' sshT)
mcast :: forall sh1 sh2 shT. Rank sh1 ~ Rank sh2
=> StaticShX sh1 -> IShX sh2 -> Proxy shT -> Mixed (sh1 ++ shT) (Mixed sh' a) -> Mixed (sh2 ++ shT) (Mixed sh' a)
mcast ssh1 sh2 _ (M_Nest sh1T arr)
| Refl <- lemAppAssoc (Proxy @sh1) (Proxy @shT) (Proxy @sh')
, Refl <- lemAppAssoc (Proxy @sh2) (Proxy @shT) (Proxy @sh')
= let (_, shT) = shxSplitApp (Proxy @shT) ssh1 sh1T
in M_Nest (shxAppend sh2 shT) (mcast ssh1 sh2 (Proxy @(shT ++ sh')) arr)
mtranspose :: forall is sh. (IsPermutation is, Rank is <= Rank sh)
=> Perm is -> Mixed sh (Mixed sh' a)
-> Mixed (PermutePrefix is sh) (Mixed sh' a)
mtranspose perm (M_Nest sh arr)
| let sh' = shxDropSh @sh @sh' (mshape arr) sh
, Refl <- lemRankApp (ssxFromShape sh) (ssxFromShape sh')
, Refl <- lemLeqPlus (Proxy @(Rank is)) (Proxy @(Rank sh)) (Proxy @(Rank sh'))
, Refl <- lemAppAssoc (Proxy @(Permute is (TakeLen is (sh ++ sh')))) (Proxy @(DropLen is sh)) (Proxy @sh')
, Refl <- lemDropLenApp (Proxy @is) (Proxy @sh) (Proxy @sh')
, Refl <- lemTakeLenApp (Proxy @is) (Proxy @sh) (Proxy @sh')
= M_Nest (shxPermutePrefix perm sh)
(mtranspose perm arr)
mconcat :: NonEmpty (Mixed (Nothing : sh) (Mixed sh' a)) -> Mixed (Nothing : sh) (Mixed sh' a)
mconcat l@(M_Nest sh1 _ :| _) =
let result = mconcat (fmap (\(M_Nest _ arr) -> arr) l)
in M_Nest (fst (shxSplitApp (Proxy @sh') (ssxFromShape sh1) (mshape result))) result
type ShapeTree (Mixed sh' a) = (IShX sh', ShapeTree a)
mshapeTree :: Mixed sh' a -> ShapeTree (Mixed sh' a)
mshapeTree arr = (mshape arr, mshapeTree (mindex arr (ixxZero (ssxFromShape (mshape arr)))))
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = shxSize sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsWrite sh idx val (MV_Nest sh' vecs) = mvecsWritePartial (shxAppend sh sh') idx val vecs
mvecsWritePartial :: forall sh1 sh2 s.
IShX (sh1 ++ sh2) -> IIxX sh1 -> Mixed sh2 (Mixed sh' a)
-> MixedVecs s (sh1 ++ sh2) (Mixed sh' a)
-> ST s ()
mvecsWritePartial sh12 idx (M_Nest _ arr) (MV_Nest sh' vecs)
| Refl <- lemAppAssoc (Proxy @sh1) (Proxy @sh2) (Proxy @sh')
= mvecsWritePartial (shxAppend sh12 sh') idx arr vecs
mvecsFreeze sh (MV_Nest sh' vecs) = M_Nest sh <$> mvecsFreeze (shxAppend sh sh') vecs
instance (KnownShX sh', KnownElt a) => KnownElt (Mixed sh' a) where
memptyArray sh = M_Nest sh (memptyArray (shxAppend sh (shxCompleteZeros (knownShX @sh'))))
mvecsUnsafeNew sh example
| shxSize sh' == 0 = mvecsNewEmpty (Proxy @(Mixed sh' a))
| otherwise = MV_Nest sh' <$> mvecsUnsafeNew (shxAppend sh sh') (mindex example (ixxZero (ssxFromShape sh')))
where
sh' = mshape example
mvecsNewEmpty _ = MV_Nest (shxCompleteZeros (knownShX @sh')) <$> mvecsNewEmpty (Proxy @a)
mrank :: Elt a => Mixed sh a -> SNat (Rank sh)
mrank = shxRank . mshape
-- | The total number of elements in the array.
msize :: Elt a => Mixed sh a -> Int
msize = shxSize . mshape
-- | Create an array given a size and a function that computes the element at a
-- given index.
--
-- __WARNING__: It is required that every @a@ returned by the argument to
-- 'mgenerate' has the same shape. For example, the following will throw a
-- runtime error:
--
-- > foo :: Mixed [Nothing] (Mixed [Nothing] Double)
-- > foo = mgenerate (10 :.: ZIR) $ \(i :.: ZIR) ->
-- > mgenerate (i :.: ZIR) $ \(j :.: ZIR) ->
-- > ...
--
-- because the size of the inner 'mgenerate' is not always the same (it depends
-- on @i@). Nested arrays in @ox-arrays@ are always stored fully flattened, so
-- the entire hierarchy (after distributing out tuples) must be a rectangular
-- array. The type of 'mgenerate' allows this requirement to be broken very
-- easily, hence the runtime check.
mgenerate :: forall sh a. KnownElt a => IShX sh -> (IIxX sh -> a) -> Mixed sh a
mgenerate sh f = case shxEnum sh of
[] -> memptyArray sh
firstidx : restidxs ->
let firstelem = f (ixxZero' sh)
shapetree = mshapeTree firstelem
in if mshapeTreeEmpty (Proxy @a) shapetree
then memptyArray sh
else runST $ do
vecs <- mvecsUnsafeNew sh firstelem
mvecsWrite sh firstidx firstelem vecs
-- TODO: This is likely fine if @a@ is big, but if @a@ is a
-- scalar this array copying inefficient. Should improve this.
forM_ restidxs $ \idx -> do
let val = f idx
when (not (mshapeTreeEq (Proxy @a) (mshapeTree val) shapetree)) $
error "Data.Array.Nested mgenerate: generated values do not have equal shapes"
mvecsWrite sh idx val vecs
mvecsFreeze sh vecs
msumOuter1P :: forall sh n a. (Storable a, NumElt a)
=> Mixed (n : sh) (Primitive a) -> Mixed sh (Primitive a)
msumOuter1P (M_Primitive (n :$% sh) arr) =
let nssh = fromSMayNat (\_ -> SUnknown ()) SKnown n :!% ZKX
in M_Primitive sh (X.sumOuter nssh (ssxFromShape sh) arr)
msumOuter1 :: forall sh n a. (NumElt a, PrimElt a)
=> Mixed (n : sh) a -> Mixed sh a
msumOuter1 = fromPrimitive . msumOuter1P @sh @n @a . toPrimitive
msumAllPrim :: (PrimElt a, NumElt a) => Mixed sh a -> a
msumAllPrim (toPrimitive -> M_Primitive sh arr) = X.sumFull (ssxFromShape sh) arr
mappend :: forall n m sh a. Elt a
=> Mixed (n : sh) a -> Mixed (m : sh) a -> Mixed (AddMaybe n m : sh) a
mappend arr1 arr2 = mlift2 (snm :!% ssh) f arr1 arr2
where
sn :$% sh = mshape arr1
sm :$% _ = mshape arr2
ssh = ssxFromShape sh
snm :: SMayNat () SNat (AddMaybe n m)
snm = case (sn, sm) of
(SUnknown{}, _) -> SUnknown ()
(SKnown{}, SUnknown{}) -> SUnknown ()
(SKnown n, SKnown m) -> SKnown (snatPlus n m)
f :: forall sh' b. Storable b
=> StaticShX sh' -> XArray (n : sh ++ sh') b -> XArray (m : sh ++ sh') b -> XArray (AddMaybe n m : sh ++ sh') b
f ssh' = X.append (ssxAppend ssh ssh')
mfromVectorP :: forall sh a. Storable a => IShX sh -> VS.Vector a -> Mixed sh (Primitive a)
mfromVectorP sh v = M_Primitive sh (X.fromVector sh v)
mfromVector :: forall sh a. PrimElt a => IShX sh -> VS.Vector a -> Mixed sh a
mfromVector sh v = fromPrimitive (mfromVectorP sh v)
mtoVectorP :: Storable a => Mixed sh (Primitive a) -> VS.Vector a
mtoVectorP (M_Primitive _ v) = X.toVector v
mtoVector :: PrimElt a => Mixed sh a -> VS.Vector a
mtoVector arr = mtoVectorP (toPrimitive arr)
mfromList1 :: Elt a => NonEmpty a -> Mixed '[Nothing] a
mfromList1 = mfromListOuter . fmap mscalar -- TODO: optimise?
mfromList1Prim :: PrimElt a => [a] -> Mixed '[Nothing] a
mfromList1Prim l =
let ssh = SUnknown () :!% ZKX
xarr = X.fromList1 ssh l
in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr
mtoList1 :: Elt a => Mixed '[n] a -> [a]
mtoList1 = map munScalar . mtoListOuter
mfromListPrim :: PrimElt a => [a] -> Mixed '[Nothing] a
mfromListPrim l =
let ssh = SUnknown () :!% ZKX
xarr = X.fromList1 ssh l
in fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr
mfromListPrimLinear :: PrimElt a => IShX sh -> [a] -> Mixed sh a
mfromListPrimLinear sh l =
let M_Primitive _ xarr = toPrimitive (mfromListPrim l)
in fromPrimitive $ M_Primitive sh (X.reshape (SUnknown () :!% ZKX) sh xarr)
-- This forall is there so that a simple type application can constrain the
-- shape, in case the user wants to use OverloadedLists for the shape.
mfromListLinear :: forall sh a. Elt a => IShX sh -> NonEmpty a -> Mixed sh a
mfromListLinear sh l = mreshape sh (mfromList1 l)
mtoListLinear :: Elt a => Mixed sh a -> [a]
mtoListLinear arr = map (mindex arr) (shxEnum (mshape arr)) -- TODO: optimise
munScalar :: Elt a => Mixed '[] a -> a
munScalar arr = mindex arr ZIX
mnest :: forall sh sh' a. Elt a => StaticShX sh -> Mixed (sh ++ sh') a -> Mixed sh (Mixed sh' a)
mnest ssh arr = M_Nest (fst (shxSplitApp (Proxy @sh') ssh (mshape arr))) arr
munNest :: Mixed sh (Mixed sh' a) -> Mixed (sh ++ sh') a
munNest (M_Nest _ arr) = arr
mrerankP :: forall sh1 sh2 sh a b. (Storable a, Storable b)
=> StaticShX sh -> IShX sh2
-> (Mixed sh1 (Primitive a) -> Mixed sh2 (Primitive b))
-> Mixed (sh ++ sh1) (Primitive a) -> Mixed (sh ++ sh2) (Primitive b)
mrerankP ssh sh2 f (M_Primitive sh arr) =
let sh1 = shxDropSSX sh ssh
in M_Primitive (shxAppend (shxTakeSSX (Proxy @sh1) sh ssh) sh2)
(X.rerank ssh (ssxFromShape sh1) (ssxFromShape sh2)
(\a -> let M_Primitive _ r = f (M_Primitive sh1 a) in r)
arr)
-- | See the caveats at @X.rerank@.
mrerank :: forall sh1 sh2 sh a b. (PrimElt a, PrimElt b)
=> StaticShX sh -> IShX sh2
-> (Mixed sh1 a -> Mixed sh2 b)
-> Mixed (sh ++ sh1) a -> Mixed (sh ++ sh2) b
mrerank ssh sh2 f (toPrimitive -> arr) =
fromPrimitive $ mrerankP ssh sh2 (toPrimitive . f . fromPrimitive) arr
mreplicate :: forall sh sh' a. Elt a
=> IShX sh -> Mixed sh' a -> Mixed (sh ++ sh') a
mreplicate sh arr =
let ssh' = ssxFromShape (mshape arr)
in mlift (ssxAppend (ssxFromShape sh) ssh')
(\(sshT :: StaticShX shT) ->
case lemAppAssoc (Proxy @sh) (Proxy @sh') (Proxy @shT) of
Refl -> X.replicate sh (ssxAppend ssh' sshT))
arr
mreplicateScalP :: forall sh a. Storable a => IShX sh -> a -> Mixed sh (Primitive a)
mreplicateScalP sh x = M_Primitive sh (X.replicateScal sh x)
mreplicateScal :: forall sh a. PrimElt a
=> IShX sh -> a -> Mixed sh a
mreplicateScal sh x = fromPrimitive (mreplicateScalP sh x)
mslice :: Elt a => SNat i -> SNat n -> Mixed (Just (i + n + k) : sh) a -> Mixed (Just n : sh) a
mslice i n arr =
let _ :$% sh = mshape arr
in mlift (SKnown n :!% ssxFromShape sh) (\_ -> X.slice i n) arr
msliceU :: Elt a => Int -> Int -> Mixed (Nothing : sh) a -> Mixed (Nothing : sh) a
msliceU i n arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.sliceU i n) arr
mrev1 :: Elt a => Mixed (n : sh) a -> Mixed (n : sh) a
mrev1 arr = mlift (ssxFromShape (mshape arr)) (\_ -> X.rev1) arr
mreshape :: forall sh sh' a. Elt a => IShX sh' -> Mixed sh a -> Mixed sh' a
mreshape sh' arr =
mlift (ssxFromShape sh')
(\sshIn -> X.reshapePartial (ssxFromShape (mshape arr)) sshIn sh')
arr
mflatten :: Elt a => Mixed sh a -> Mixed '[Flatten sh] a
mflatten arr = mreshape (shxFlatten (mshape arr) :$% ZSX) arr
miota :: (Enum a, PrimElt a) => SNat n -> Mixed '[Just n] a
miota sn = fromPrimitive $ M_Primitive (SKnown sn :$% ZSX) (X.iota sn)
-- | Throws if the array is empty.
mminIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh
mminIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) =
ixxFromList (ssxFromShape sh) (numEltMinIndex arr)
-- | Throws if the array is empty.
mmaxIndexPrim :: (PrimElt a, NumElt a) => Mixed sh a -> IIxX sh
mmaxIndexPrim (toPrimitive -> M_Primitive sh (XArray arr)) =
ixxFromList (ssxFromShape sh) (numEltMaxIndex arr)
mdot1Inner :: forall sh n a. (PrimElt a, NumElt a)
=> Proxy n -> Mixed (sh ++ '[n]) a -> Mixed (sh ++ '[n]) a -> Mixed sh a
mdot1Inner _ (toPrimitive -> M_Primitive sh1 (XArray a)) (toPrimitive -> M_Primitive sh2 (XArray b))
| Refl <- lemInitApp (Proxy @sh) (Proxy @n)
, Refl <- lemLastApp (Proxy @sh) (Proxy @n)
= case sh1 of
_ :$% _
| sh1 == sh2
, Refl <- lemRankApp (ssxInit (ssxFromShape sh1)) (ssxLast (ssxFromShape sh1) :!% ZKX) ->
fromPrimitive $ M_Primitive (shxInit sh1) (XArray (numEltDotprodInner (shxRank (shxInit sh1)) a b))
| otherwise -> error "mdot1Inner: Unequal shapes"
ZSX -> error "unreachable"
-- | This has a temporary, suboptimal implementation in terms of 'mflatten'.
-- Prefer 'mdot1Inner' if applicable.
mdot :: (PrimElt a, NumElt a) => Mixed sh a -> Mixed sh a -> a
mdot a b =
munScalar $
mdot1Inner Proxy (fromPrimitive (mflatten (toPrimitive a)))
(fromPrimitive (mflatten (toPrimitive b)))
mtoXArrayPrimP :: Mixed sh (Primitive a) -> (IShX sh, XArray sh a)
mtoXArrayPrimP (M_Primitive sh arr) = (sh, arr)
mtoXArrayPrim :: PrimElt a => Mixed sh a -> (IShX sh, XArray sh a)
mtoXArrayPrim = mtoXArrayPrimP . toPrimitive
mfromXArrayPrimP :: StaticShX sh -> XArray sh a -> Mixed sh (Primitive a)
mfromXArrayPrimP ssh arr = M_Primitive (X.shape ssh arr) arr
mfromXArrayPrim :: PrimElt a => StaticShX sh -> XArray sh a -> Mixed sh a
mfromXArrayPrim = (fromPrimitive .) . mfromXArrayPrimP
mliftPrim :: (PrimElt a, PrimElt b)
=> (a -> b)
-> Mixed sh a -> Mixed sh b
mliftPrim f (toPrimitive -> M_Primitive sh (X.XArray arr)) = fromPrimitive $ M_Primitive sh (X.XArray (S.mapA f arr))
mliftPrim2 :: (PrimElt a, PrimElt b, PrimElt c)
=> (a -> b -> c)
-> Mixed sh a -> Mixed sh b -> Mixed sh c
mliftPrim2 f (toPrimitive -> M_Primitive sh (X.XArray arr1)) (toPrimitive -> M_Primitive _ (X.XArray arr2)) =
fromPrimitive $ M_Primitive sh (X.XArray (S.zipWithA f arr1 arr2))
|