1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Data.Array.Nested.Internal.Ranked where
import Prelude hiding (mappend, mconcat)
import Control.DeepSeq (NFData)
import Control.Monad.ST
import Data.Array.RankedS qualified as S
import Data.Bifunctor (first)
import Data.Coerce (coerce)
import Data.Foldable (toList)
import Data.Kind (Type)
import Data.List.NonEmpty (NonEmpty)
import Data.Proxy
import Data.Type.Equality
import Data.Vector.Storable qualified as VS
import Foreign.Storable (Storable)
import GHC.Float qualified (log1p, expm1, log1pexp, log1mexp)
import GHC.TypeLits
import GHC.TypeNats qualified as TN
import Data.Array.Mixed.XArray (XArray(..))
import Data.Array.Mixed.XArray qualified as X
import Data.Array.Mixed.Internal.Arith
import Data.Array.Mixed.Lemmas
import Data.Array.Mixed.Permutation
import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
import Data.Array.Nested.Internal.Mixed
import Data.Array.Nested.Internal.Shape
-- | A rank-typed array: the number of dimensions of the array (its /rank/) is
-- represented on the type level as a 'Nat'.
--
-- Valid elements of a ranked arrays are described by the 'Elt' type class.
-- Because 'Ranked' itself is also an instance of 'Elt', nested arrays are
-- supported (and are represented as a single, flattened, struct-of-arrays
-- array internally).
--
-- 'Ranked' is a newtype around a 'Mixed' of 'Nothing's.
type Ranked :: Nat -> Type -> Type
newtype Ranked n a = Ranked (Mixed (Replicate n Nothing) a)
deriving instance Eq (Mixed (Replicate n Nothing) a) => Eq (Ranked n a)
deriving instance Ord (Mixed (Replicate n Nothing) a) => Ord (Ranked n a)
deriving instance NFData (Mixed (Replicate n Nothing) a) => NFData (Ranked n a)
instance (Show a, Elt a) => Show (Ranked n a) where
showsPrec d arr = showParen (d > 10) $
showString "rfromListLinear " . shows (toList (rshape arr)) . showString " "
. shows (rtoListLinear arr)
-- just unwrap the newtype and defer to the general instance for nested arrays
newtype instance Mixed sh (Ranked n a) = M_Ranked (Mixed sh (Mixed (Replicate n Nothing) a))
deriving via (ShowViaToListLinear sh (Ranked n a)) instance (Show a, Elt a) => Show (Mixed sh (Ranked n a))
newtype instance MixedVecs s sh (Ranked n a) = MV_Ranked (MixedVecs s sh (Mixed (Replicate n Nothing) a))
-- 'Ranked' and 'Shaped' can already be used at the top level of an array nest;
-- these instances allow them to also be used as elements of arrays, thus
-- making them first-class in the API.
instance Elt a => Elt (Ranked n a) where
mshape (M_Ranked arr) = mshape arr
mindex (M_Ranked arr) i = Ranked (mindex arr i)
mindexPartial :: forall sh sh'. Mixed (sh ++ sh') (Ranked n a) -> IIxX sh -> Mixed sh' (Ranked n a)
mindexPartial (M_Ranked arr) i =
coerce @(Mixed sh' (Mixed (Replicate n Nothing) a)) @(Mixed sh' (Ranked n a)) $
mindexPartial arr i
mscalar (Ranked x) = M_Ranked (M_Nest ZSX x)
mfromListOuter :: forall sh. NonEmpty (Mixed sh (Ranked n a)) -> Mixed (Nothing : sh) (Ranked n a)
mfromListOuter l = M_Ranked (mfromListOuter (coerce l))
mtoListOuter :: forall m sh. Mixed (m : sh) (Ranked n a) -> [Mixed sh (Ranked n a)]
mtoListOuter (M_Ranked arr) =
coerce @[Mixed sh (Mixed (Replicate n 'Nothing) a)] @[Mixed sh (Ranked n a)] (mtoListOuter arr)
mlift :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b)
-> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a)
mlift ssh2 f (M_Ranked arr) =
coerce @(Mixed sh2 (Mixed (Replicate n Nothing) a)) @(Mixed sh2 (Ranked n a)) $
mlift ssh2 f arr
mlift2 :: forall sh1 sh2 sh3.
StaticShX sh3
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (sh1 ++ sh') b -> XArray (sh2 ++ sh') b -> XArray (sh3 ++ sh') b)
-> Mixed sh1 (Ranked n a) -> Mixed sh2 (Ranked n a) -> Mixed sh3 (Ranked n a)
mlift2 ssh3 f (M_Ranked arr1) (M_Ranked arr2) =
coerce @(Mixed sh3 (Mixed (Replicate n Nothing) a)) @(Mixed sh3 (Ranked n a)) $
mlift2 ssh3 f arr1 arr2
mliftL :: forall sh1 sh2.
StaticShX sh2
-> (forall sh' b. Storable b => StaticShX sh' -> NonEmpty (XArray (sh1 ++ sh') b) -> NonEmpty (XArray (sh2 ++ sh') b))
-> NonEmpty (Mixed sh1 (Ranked n a)) -> NonEmpty (Mixed sh2 (Ranked n a))
mliftL ssh2 f l =
coerce @(NonEmpty (Mixed sh2 (Mixed (Replicate n Nothing) a)))
@(NonEmpty (Mixed sh2 (Ranked n a))) $
mliftL ssh2 f (coerce l)
mcast ssh1 sh2 psh' (M_Ranked arr) = M_Ranked (mcast ssh1 sh2 psh' arr)
mtranspose perm (M_Ranked arr) = M_Ranked (mtranspose perm arr)
mconcat l = M_Ranked (mconcat (coerce l))
type ShapeTree (Ranked n a) = (IShR n, ShapeTree a)
mshapeTree (Ranked arr) = first shCvtXR' (mshapeTree arr)
mshapeTreeEq _ (sh1, t1) (sh2, t2) = sh1 == sh2 && mshapeTreeEq (Proxy @a) t1 t2
mshapeTreeEmpty _ (sh, t) = shrSize sh == 0 && mshapeTreeEmpty (Proxy @a) t
mshowShapeTree _ (sh, t) = "(" ++ show sh ++ ", " ++ mshowShapeTree (Proxy @a) t ++ ")"
mvecsWrite :: forall sh s. IShX sh -> IIxX sh -> Ranked n a -> MixedVecs s sh (Ranked n a) -> ST s ()
mvecsWrite sh idx (Ranked arr) vecs =
mvecsWrite sh idx arr
(coerce @(MixedVecs s sh (Ranked n a)) @(MixedVecs s sh (Mixed (Replicate n Nothing) a))
vecs)
mvecsWritePartial :: forall sh sh' s.
IShX (sh ++ sh') -> IIxX sh -> Mixed sh' (Ranked n a)
-> MixedVecs s (sh ++ sh') (Ranked n a)
-> ST s ()
mvecsWritePartial sh idx arr vecs =
mvecsWritePartial sh idx
(coerce @(Mixed sh' (Ranked n a))
@(Mixed sh' (Mixed (Replicate n Nothing) a))
arr)
(coerce @(MixedVecs s (sh ++ sh') (Ranked n a))
@(MixedVecs s (sh ++ sh') (Mixed (Replicate n Nothing) a))
vecs)
mvecsFreeze :: forall sh s. IShX sh -> MixedVecs s sh (Ranked n a) -> ST s (Mixed sh (Ranked n a))
mvecsFreeze sh vecs =
coerce @(Mixed sh (Mixed (Replicate n Nothing) a))
@(Mixed sh (Ranked n a))
<$> mvecsFreeze sh
(coerce @(MixedVecs s sh (Ranked n a))
@(MixedVecs s sh (Mixed (Replicate n Nothing) a))
vecs)
instance (KnownNat n, KnownElt a) => KnownElt (Ranked n a) where
memptyArray :: forall sh. IShX sh -> Mixed sh (Ranked n a)
memptyArray i
| Dict <- lemKnownReplicate (SNat @n)
= coerce @(Mixed sh (Mixed (Replicate n Nothing) a)) @(Mixed sh (Ranked n a)) $
memptyArray i
mvecsUnsafeNew idx (Ranked arr)
| Dict <- lemKnownReplicate (SNat @n)
= MV_Ranked <$> mvecsUnsafeNew idx arr
mvecsNewEmpty _
| Dict <- lemKnownReplicate (SNat @n)
= MV_Ranked <$> mvecsNewEmpty (Proxy @(Mixed (Replicate n Nothing) a))
arithPromoteRanked :: forall n a b.
(forall sh. Mixed sh a -> Mixed sh b)
-> Ranked n a -> Ranked n b
arithPromoteRanked = coerce
arithPromoteRanked2 :: forall n a b c.
(forall sh. Mixed sh a -> Mixed sh b -> Mixed sh c)
-> Ranked n a -> Ranked n b -> Ranked n c
arithPromoteRanked2 = coerce
instance (NumElt a, PrimElt a, Num a) => Num (Ranked n a) where
(+) = arithPromoteRanked2 (+)
(-) = arithPromoteRanked2 (-)
(*) = arithPromoteRanked2 (*)
negate = arithPromoteRanked negate
abs = arithPromoteRanked abs
signum = arithPromoteRanked signum
fromInteger = error "Ranked(fromInteger): Cannot implement fromInteger, use rreplicateScal"
instance (FloatElt a, NumElt a, PrimElt a, Num a) => Fractional (Ranked n a) where
fromRational _ = error "Data.Array.Nested.fromRational: No singletons available, use explicit rreplicateScal"
recip = arithPromoteRanked recip
(/) = arithPromoteRanked2 (/)
instance (FloatElt a, NumElt a, PrimElt a, Num a) => Floating (Ranked n a) where
pi = error "Data.Array.Nested.pi: No singletons available, use explicit rreplicateScal"
exp = arithPromoteRanked exp
log = arithPromoteRanked log
sqrt = arithPromoteRanked sqrt
(**) = arithPromoteRanked2 (**)
logBase = arithPromoteRanked2 logBase
sin = arithPromoteRanked sin
cos = arithPromoteRanked cos
tan = arithPromoteRanked tan
asin = arithPromoteRanked asin
acos = arithPromoteRanked acos
atan = arithPromoteRanked atan
sinh = arithPromoteRanked sinh
cosh = arithPromoteRanked cosh
tanh = arithPromoteRanked tanh
asinh = arithPromoteRanked asinh
acosh = arithPromoteRanked acosh
atanh = arithPromoteRanked atanh
log1p = arithPromoteRanked GHC.Float.log1p
expm1 = arithPromoteRanked GHC.Float.expm1
log1pexp = arithPromoteRanked GHC.Float.log1pexp
log1mexp = arithPromoteRanked GHC.Float.log1mexp
rshape :: Elt a => Ranked n a -> IShR n
rshape (Ranked arr) = shCvtXR' (mshape arr)
rrank :: Elt a => Ranked n a -> SNat n
rrank = shrRank . rshape
-- | The total number of elements in the array.
rsize :: Elt a => Ranked n a -> Int
rsize = shrSize . rshape
rindex :: Elt a => Ranked n a -> IIxR n -> a
rindex (Ranked arr) idx = mindex arr (ixCvtRX idx)
rindexPartial :: forall n m a. Elt a => Ranked (n + m) a -> IIxR n -> Ranked m a
rindexPartial (Ranked arr) idx =
Ranked (mindexPartial @a @(Replicate n Nothing) @(Replicate m Nothing)
(castWith (subst2 (lemReplicatePlusApp (ixrRank idx) (Proxy @m) (Proxy @Nothing))) arr)
(ixCvtRX idx))
-- | __WARNING__: All values returned from the function must have equal shape.
-- See the documentation of 'mgenerate' for more details.
rgenerate :: forall n a. KnownElt a => IShR n -> (IIxR n -> a) -> Ranked n a
rgenerate sh f
| sn@SNat <- shrRank sh
, Dict <- lemKnownReplicate sn
, Refl <- lemRankReplicate sn
= Ranked (mgenerate (shCvtRX sh) (f . ixCvtXR))
-- | See the documentation of 'mlift'.
rlift :: forall n1 n2 a. Elt a
=> SNat n2
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b)
-> Ranked n1 a -> Ranked n2 a
rlift sn2 f (Ranked arr) = Ranked (mlift (ssxFromSNat sn2) f arr)
-- | See the documentation of 'mlift2'.
rlift2 :: forall n1 n2 n3 a. Elt a
=> SNat n3
-> (forall sh' b. Storable b => StaticShX sh' -> XArray (Replicate n1 Nothing ++ sh') b -> XArray (Replicate n2 Nothing ++ sh') b -> XArray (Replicate n3 Nothing ++ sh') b)
-> Ranked n1 a -> Ranked n2 a -> Ranked n3 a
rlift2 sn3 f (Ranked arr1) (Ranked arr2) = Ranked (mlift2 (ssxFromSNat sn3) f arr1 arr2)
rsumOuter1P :: forall n a.
(Storable a, NumElt a)
=> Ranked (n + 1) (Primitive a) -> Ranked n (Primitive a)
rsumOuter1P (Ranked arr)
| Refl <- lemReplicateSucc @(Nothing @Nat) @n
= Ranked (msumOuter1P arr)
rsumOuter1 :: forall n a. (NumElt a, PrimElt a)
=> Ranked (n + 1) a -> Ranked n a
rsumOuter1 = rfromPrimitive . rsumOuter1P . rtoPrimitive
rsumAllPrim :: (PrimElt a, NumElt a) => Ranked n a -> a
rsumAllPrim (Ranked arr) = msumAllPrim arr
rtranspose :: forall n a. Elt a => PermR -> Ranked n a -> Ranked n a
rtranspose perm arr
| sn@SNat <- rrank arr
, Dict <- lemKnownReplicate sn
, length perm <= fromIntegral (natVal (Proxy @n))
= rlift sn
(\ssh' -> X.transposeUntyped (natSing @n) ssh' perm)
arr
| otherwise
= error "Data.Array.Nested.rtranspose: Permutation longer than rank of array"
rconcat :: forall n a. Elt a => NonEmpty (Ranked (n + 1) a) -> Ranked (n + 1) a
rconcat
| Refl <- lemReplicateSucc @(Nothing @Nat) @n
= coerce mconcat
rappend :: forall n a. Elt a
=> Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked (n + 1) a
rappend arr1 arr2
| sn@SNat <- rrank arr1
, Dict <- lemKnownReplicate sn
, Refl <- lemReplicateSucc @(Nothing @Nat) @n
= coerce (mappend @Nothing @Nothing @(Replicate n Nothing))
arr1 arr2
rscalar :: Elt a => a -> Ranked 0 a
rscalar x = Ranked (mscalar x)
rfromVectorP :: forall n a. Storable a => IShR n -> VS.Vector a -> Ranked n (Primitive a)
rfromVectorP sh v
| Dict <- lemKnownReplicate (shrRank sh)
= Ranked (mfromVectorP (shCvtRX sh) v)
rfromVector :: forall n a. PrimElt a => IShR n -> VS.Vector a -> Ranked n a
rfromVector sh v = rfromPrimitive (rfromVectorP sh v)
rtoVectorP :: Storable a => Ranked n (Primitive a) -> VS.Vector a
rtoVectorP = coerce mtoVectorP
rtoVector :: PrimElt a => Ranked n a -> VS.Vector a
rtoVector = coerce mtoVector
rfromListOuter :: forall n a. Elt a => NonEmpty (Ranked n a) -> Ranked (n + 1) a
rfromListOuter l
| Refl <- lemReplicateSucc @(Nothing @Nat) @n
= Ranked (mfromListOuter (coerce l :: NonEmpty (Mixed (Replicate n Nothing) a)))
rfromList1 :: Elt a => NonEmpty a -> Ranked 1 a
rfromList1 l = Ranked (mfromList1 l)
rfromList1Prim :: PrimElt a => [a] -> Ranked 1 a
rfromList1Prim l = Ranked (mfromList1Prim l)
rtoListOuter :: forall n a. Elt a => Ranked (n + 1) a -> [Ranked n a]
rtoListOuter (Ranked arr)
| Refl <- lemReplicateSucc @(Nothing @Nat) @n
= coerce (mtoListOuter @a @Nothing @(Replicate n Nothing) arr)
rtoList1 :: Elt a => Ranked 1 a -> [a]
rtoList1 = map runScalar . rtoListOuter
rfromListPrim :: PrimElt a => [a] -> Ranked 1 a
rfromListPrim l =
let ssh = SUnknown () :!% ZKX
xarr = X.fromList1 ssh l
in Ranked $ fromPrimitive $ M_Primitive (X.shape ssh xarr) xarr
rfromListPrimLinear :: PrimElt a => IShR n -> [a] -> Ranked n a
rfromListPrimLinear sh l =
let M_Primitive _ xarr = toPrimitive (mfromListPrim l)
in Ranked $ fromPrimitive $ M_Primitive (shCvtRX sh) (X.reshape (SUnknown () :!% ZKX) (shCvtRX sh) xarr)
rfromListLinear :: forall n a. Elt a => IShR n -> NonEmpty a -> Ranked n a
rfromListLinear sh l = rreshape sh (rfromList1 l)
rtoListLinear :: Elt a => Ranked n a -> [a]
rtoListLinear (Ranked arr) = mtoListLinear arr
rfromOrthotope :: PrimElt a => SNat n -> S.Array n a -> Ranked n a
rfromOrthotope sn arr
| Refl <- lemRankReplicate sn
= let xarr = XArray arr
in Ranked (fromPrimitive (M_Primitive (X.shape (ssxFromSNat sn) xarr) xarr))
rtoOrthotope :: PrimElt a => Ranked n a -> S.Array n a
rtoOrthotope (rtoPrimitive -> Ranked (M_Primitive sh (XArray arr)))
| Refl <- lemRankReplicate (shrRank $ shCvtXR' sh)
= arr
runScalar :: Elt a => Ranked 0 a -> a
runScalar arr = rindex arr ZIR
rnest :: forall n m a. Elt a => SNat n -> Ranked (n + m) a -> Ranked n (Ranked m a)
rnest n arr
| Refl <- lemReplicatePlusApp n (Proxy @m) (Proxy @(Nothing @Nat))
= coerce (mnest (ssxFromSNat n) (coerce arr))
runNest :: forall n m a. Elt a => Ranked n (Ranked m a) -> Ranked (n + m) a
runNest rarr@(Ranked (M_Ranked (M_Nest _ arr)))
| Refl <- lemReplicatePlusApp (rrank rarr) (Proxy @m) (Proxy @(Nothing @Nat))
= Ranked arr
rrerankP :: forall n1 n2 n a b. (Storable a, Storable b)
=> SNat n -> IShR n2
-> (Ranked n1 (Primitive a) -> Ranked n2 (Primitive b))
-> Ranked (n + n1) (Primitive a) -> Ranked (n + n2) (Primitive b)
rrerankP sn sh2 f (Ranked arr)
| Refl <- lemReplicatePlusApp sn (Proxy @n1) (Proxy @(Nothing @Nat))
, Refl <- lemReplicatePlusApp sn (Proxy @n2) (Proxy @(Nothing @Nat))
= Ranked (mrerankP (ssxFromSNat sn) (shCvtRX sh2)
(\a -> let Ranked r = f (Ranked a) in r)
arr)
-- | If there is a zero-sized dimension in the @n@-prefix of the shape of the
-- input array, then there is no way to deduce the full shape of the output
-- array (more precisely, the @n2@ part): that could only come from calling
-- @f@, and there are no subarrays to call @f@ on. @orthotope@ errors out in
-- this case; we choose to fill the @n2@ part of the output shape with zeros.
--
-- For example, if:
--
-- @
-- arr :: Ranked 5 Int -- of shape [3, 0, 4, 2, 21]
-- f :: Ranked 2 Int -> Ranked 3 Float
-- @
--
-- then:
--
-- @
-- rrerank _ _ _ f arr :: Ranked 5 Float
-- @
--
-- and this result will have shape @[3, 0, 4, 0, 0, 0]@. Note that the
-- "reranked" part (the last 3 entries) are zero; we don't know if @f@ intended
-- to return an array with shape all-0 here (it probably didn't), but there is
-- no better number to put here absent a subarray of the input to pass to @f@.
rrerank :: forall n1 n2 n a b. (PrimElt a, PrimElt b)
=> SNat n -> IShR n2
-> (Ranked n1 a -> Ranked n2 b)
-> Ranked (n + n1) a -> Ranked (n + n2) b
rrerank sn sh2 f (rtoPrimitive -> arr) =
rfromPrimitive $ rrerankP sn sh2 (rtoPrimitive . f . rfromPrimitive) arr
rreplicate :: forall n m a. Elt a
=> IShR n -> Ranked m a -> Ranked (n + m) a
rreplicate sh (Ranked arr)
| Refl <- lemReplicatePlusApp (shrRank sh) (Proxy @m) (Proxy @(Nothing @Nat))
= Ranked (mreplicate (shCvtRX sh) arr)
rreplicateScalP :: forall n a. Storable a => IShR n -> a -> Ranked n (Primitive a)
rreplicateScalP sh x
| Dict <- lemKnownReplicate (shrRank sh)
= Ranked (mreplicateScalP (shCvtRX sh) x)
rreplicateScal :: forall n a. PrimElt a
=> IShR n -> a -> Ranked n a
rreplicateScal sh x = rfromPrimitive (rreplicateScalP sh x)
rslice :: forall n a. Elt a => Int -> Int -> Ranked (n + 1) a -> Ranked (n + 1) a
rslice i n arr
| Refl <- lemReplicateSucc @(Nothing @Nat) @n
= rlift (rrank arr)
(\_ -> X.sliceU i n)
arr
rrev1 :: forall n a. Elt a => Ranked (n + 1) a -> Ranked (n + 1) a
rrev1 arr =
rlift (rrank arr)
(\(_ :: StaticShX sh') ->
case lemReplicateSucc @(Nothing @Nat) @n of
Refl -> X.rev1 @Nothing @(Replicate n Nothing ++ sh'))
arr
rreshape :: forall n n' a. Elt a
=> IShR n' -> Ranked n a -> Ranked n' a
rreshape sh' rarr@(Ranked arr)
| Dict <- lemKnownReplicate (rrank rarr)
, Dict <- lemKnownReplicate (shrRank sh')
= Ranked (mreshape (shCvtRX sh') arr)
rflatten :: Elt a => Ranked n a -> Ranked 1 a
rflatten (Ranked arr) = mtoRanked (mflatten arr)
riota :: (Enum a, PrimElt a, Elt a) => Int -> Ranked 1 a
riota n = TN.withSomeSNat (fromIntegral n) $ mtoRanked . miota
-- | Throws if the array is empty.
rminIndexPrim :: (PrimElt a, NumElt a) => Ranked n a -> IIxR n
rminIndexPrim rarr@(Ranked arr)
| Refl <- lemRankReplicate (rrank (rtoPrimitive rarr))
= ixCvtXR (mminIndexPrim arr)
-- | Throws if the array is empty.
rmaxIndexPrim :: (PrimElt a, NumElt a) => Ranked n a -> IIxR n
rmaxIndexPrim rarr@(Ranked arr)
| Refl <- lemRankReplicate (rrank (rtoPrimitive rarr))
= ixCvtXR (mmaxIndexPrim arr)
rdot1Inner :: forall n a. (PrimElt a, NumElt a) => Ranked (n + 1) a -> Ranked (n + 1) a -> Ranked n a
rdot1Inner arr1 arr2
| SNat <- rrank arr1
, Refl <- lemReplicatePlusApp (SNat @n) (Proxy @1) (Proxy @(Nothing @Nat))
= coerce (mdot1Inner (Proxy @(Nothing @Nat))) arr1 arr2
-- | This has a temporary, suboptimal implementation in terms of 'mflatten'.
-- Prefer 'rdot1Inner' if applicable.
rdot :: (PrimElt a, NumElt a) => Ranked n a -> Ranked n a -> a
rdot = coerce mdot
rtoXArrayPrimP :: Ranked n (Primitive a) -> (IShR n, XArray (Replicate n Nothing) a)
rtoXArrayPrimP (Ranked arr) = first shCvtXR' (mtoXArrayPrimP arr)
rtoXArrayPrim :: PrimElt a => Ranked n a -> (IShR n, XArray (Replicate n Nothing) a)
rtoXArrayPrim (Ranked arr) = first shCvtXR' (mtoXArrayPrim arr)
rfromXArrayPrimP :: SNat n -> XArray (Replicate n Nothing) a -> Ranked n (Primitive a)
rfromXArrayPrimP sn arr = Ranked (mfromXArrayPrimP (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr)
rfromXArrayPrim :: PrimElt a => SNat n -> XArray (Replicate n Nothing) a -> Ranked n a
rfromXArrayPrim sn arr = Ranked (mfromXArrayPrim (ssxFromShape (X.shape (ssxFromSNat sn) arr)) arr)
rfromPrimitive :: PrimElt a => Ranked n (Primitive a) -> Ranked n a
rfromPrimitive (Ranked arr) = Ranked (fromPrimitive arr)
rtoPrimitive :: PrimElt a => Ranked n a -> Ranked n (Primitive a)
rtoPrimitive (Ranked arr) = Ranked (toPrimitive arr)
mtoRanked :: forall sh a. Elt a => Mixed sh a -> Ranked (Rank sh) a
mtoRanked arr
| Refl <- lemAppNil @sh
, Refl <- lemAppNil @(Replicate (Rank sh) (Nothing @Nat))
, Refl <- lemRankReplicate (shxRank (mshape arr))
= Ranked (mcast (ssxFromShape (mshape arr)) (convSh (mshape arr)) (Proxy @'[]) arr)
where
convSh :: IShX sh' -> IShX (Replicate (Rank sh') Nothing)
convSh ZSX = ZSX
convSh (smn :$% (sh :: IShX sh'T))
| Refl <- lemReplicateSucc @(Nothing @Nat) @(Rank sh'T)
= SUnknown (fromSMayNat' smn) :$% convSh sh
rtoMixed :: forall n a. Ranked n a -> Mixed (Replicate n Nothing) a
rtoMixed (Ranked arr) = arr
|