1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE NumericUnderscores #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeAbstractions #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Gen where
import Data.ByteString qualified as BS
import Data.Foldable (toList)
import Data.Type.Equality
import Data.Type.Ord
import Data.Vector.Storable qualified as VS
import Foreign
import GHC.TypeLits
import GHC.TypeNats qualified as TN
import Data.Array.Mixed.Permutation
import Data.Array.Mixed.Shape
import Data.Array.Mixed.Types
import Data.Array.Nested
import Data.Array.Nested.Internal.Shape
import Hedgehog
import Hedgehog.Gen qualified as Gen
import Hedgehog.Range qualified as Range
import System.Random qualified as Random
import Util
-- | Generates zero with small probability, because there's typically only one
-- interesting case for 0 anyway.
genRank :: Monad m => (forall n. SNat n -> PropertyT m ()) -> PropertyT m ()
genRank k = do
rank <- forAll $ Gen.frequency [(1, return 0)
,(49, Gen.int (Range.linear 1 8))]
TN.withSomeSNat (fromIntegral rank) k
genLowBiased :: RealFloat a => (a, a) -> Gen a
genLowBiased (lo, hi) = do
x <- Gen.realFloat (Range.linearFrac 0 1)
return (lo + x * x * x * (hi - lo))
shuffleShR :: IShR n -> Gen (IShR n)
shuffleShR = \sh -> go (length (toList sh)) (toList sh) sh
where
go :: Int -> [Int] -> IShR n -> Gen (IShR n)
go _ _ ZSR = return ZSR
go nbag bag (_ :$: sh) = do
idx <- Gen.int (Range.linear 0 (nbag - 1))
let (dim, bag') = case splitAt idx bag of
(pre, n : post) -> (n, pre ++ post)
_ -> error "unreachable"
(dim :$:) <$> go (nbag - 1) bag' sh
genShR :: SNat n -> Gen (IShR n)
genShR sn = do
let n = fromSNat' sn
targetSize <- Gen.int (Range.linear 0 100_000)
let genDims :: SNat m -> Int -> Gen (IShR m)
genDims SZ _ = return ZSR
genDims (SS m) 0 = do
dim <- Gen.int (Range.linear 0 20)
dims <- genDims m 0
return (dim :$: dims)
genDims (SS m) tgt = do
dim <- Gen.frequency [(20 * n, round <$> genLowBiased @Double (2.0, max 2.0 (sqrt (fromIntegral tgt))))
,(2 , return tgt)
,(4 , return 1)
,(1 , return 0)]
dims <- genDims m (if dim == 0 then 0 else tgt `div` dim)
return (dim :$: dims)
dims <- genDims sn targetSize
let dimsL = toList dims
maxdim = maximum dimsL
cap = binarySearch (`div` 2) 1 maxdim (\cap' -> product (min cap' <$> dimsL) <= targetSize)
shuffleShR (min cap <$> dims)
-- | Example: given 3 and 7, might return:
--
-- @
-- ([ 13, 4, 27 ]
-- ,[1, 13, 1, 1, 4, 27, 1]
-- ,[4, 13, 1, 3, 4, 27, 2])
-- @
--
-- The up-replicated dimensions are always nonzero and not very large, but the
-- other dimensions might be zero.
genReplicatedShR :: m <= n => SNat m -> SNat n -> Gen (IShR m, IShR n, IShR n)
genReplicatedShR = \m n -> do
sh1 <- genShR m
(sh2, sh3) <- injectOnes n sh1 sh1
return (sh1, sh2, sh3)
where
injectOnes :: m <= n => SNat n -> IShR m -> IShR m -> Gen (IShR n, IShR n)
injectOnes n@SNat shOnes sh
| m@SNat <- shrRank sh
= case cmpNat n m of
LTI -> error "unreachable"
EQI -> return (shOnes, sh)
GTI -> do
index <- Gen.int (Range.linear 0 (fromSNat' m))
value <- Gen.int (Range.linear 1 5)
Refl <- return (lem n m)
injectOnes n (inject index 1 shOnes) (inject index value sh)
lem :: forall n m proxy. Compare n m ~ GT => proxy n -> proxy m -> (m + 1 <=? n) :~: True
lem _ _ = unsafeCoerceRefl
inject :: Int -> Int -> IShR m -> IShR (m + 1)
inject 0 v sh = v :$: sh
inject i v (w :$: sh) = w :$: inject (i - 1) v sh
inject _ v ZSR = v :$: ZSR -- invalid input, but meh
genStorables :: forall a. Storable a => Range Int -> (Word64 -> a) -> GenT IO (VS.Vector a)
genStorables rng f = do
n <- Gen.int rng
seed <- Gen.resize 99 $ Gen.int Range.linearBounded
let gen0 = Random.mkStdGen seed
(bs, _) = Random.genByteString (8 * n) gen0
let readW64 i = sum (zipWith (*) (iterate (*256) 1) [fromIntegral (bs `BS.index` (8 * i + j)) | j <- [0..7]])
return $ VS.generate n (f . readW64)
genStaticShX :: Monad m => SNat n -> (forall sh. Rank sh ~ n => StaticShX sh -> PropertyT m ()) -> PropertyT m ()
genStaticShX = \n k -> case n of
SZ -> k ZKX
SS n' ->
genItem $ \item ->
genStaticShX n' $ \ssh ->
k (item :!% ssh)
where
genItem :: Monad m => (forall n. SMayNat () SNat n -> PropertyT m ()) -> PropertyT m ()
genItem k = do
b <- forAll Gen.bool
if b
then do
n <- forAll $ Gen.frequency [(20, Gen.int (Range.linear 1 4))
,(1, return 0)]
TN.withSomeSNat (fromIntegral n) $ \sn -> k (SKnown sn)
else k (SUnknown ())
genShX :: StaticShX sh -> Gen (IShX sh)
genShX ZKX = return ZSX
genShX (SKnown sn :!% ssh) = (SKnown sn :$%) <$> genShX ssh
genShX (SUnknown () :!% ssh) = do
dim <- Gen.int (Range.linear 1 4)
(SUnknown dim :$%) <$> genShX ssh
genPermR :: Int -> Gen PermR
genPermR n = Gen.shuffle [0 .. n-1]
genPerm :: Monad m => SNat n -> (forall p. (IsPermutation p, Rank p ~ n) => Perm p -> PropertyT m r) -> PropertyT m r
genPerm n@SNat k = do
list <- forAll $ genPermR (fromSNat' n)
permFromList list $ \perm -> do
case permCheckPermutation perm $
case sameNat' (permRank perm) n of
Just Refl -> Just (k perm)
Nothing -> Nothing
of
Just (Just act) -> act
_ -> error ""
|