1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE TupleSections #-}
module Main (main, showLayout) where
import Data.List (sortBy, transpose, intercalate, tails)
import Data.Foldable (toList)
import qualified Data.Map.Strict as Map
import Data.Map.Strict (Map)
import Data.Maybe (catMaybes, listToMaybe, fromJust)
import Data.Ord (Down(..), comparing)
import qualified Data.Set as Set
import Data.Set (Set)
import Input
import Util
data V4 a = V4 a a a a
deriving (Show, Functor)
instance Applicative V4 where
pure x = V4 x x x x
V4 f1 f2 f3 f4 <*> V4 x1 x2 x3 x4 = V4 (f1 x1) (f2 x2) (f3 x3) (f4 x4)
instance Foldable V4 where
foldr f z (V4 a b c d) = f a (f b (f c (f d z)))
ifmap :: (Int -> a -> b) -> V4 a -> V4 b
ifmap f (V4 a b c d) = fmap (uncurry f) (V4 (0, a) (1, b) (2, c) (3, d))
(!*) :: V4 a -> Int -> a
V4 a b c d !* i = [a, b, c, d] !! i
data B = F | T
deriving (Eq, Ord)
instance Show B where
show F = "."
show T = "#"
newtype Border' a = Border { unBorder :: [a] }
deriving (Eq, Ord, Functor)
type Border = Border' B
instance Show a => Show (Border' a) where
show (Border l) =
let l' = map show l
in if all ((== 1) . length) l' then concat l' else show l
data Rotation = R Int B -- rotated n, then possibly horizontally flipped
deriving (Show)
data Tile' a = Tile Int Rotation (V4 (Border' a)) [[a]]
deriving (Functor)
type Tile = Tile' B
instance Show a => Show (Tile' a) where
showsPrec p (Tile i r v _) = showParen (p > 10) (showString ("Tile " ++ show i ++ " (" ++ show r ++ ") ") . showsPrec 11 v . showString " {...}")
boolb :: Bool -> B
boolb True = T
boolb False = F
notB :: B -> B
notB F = T
notB T = F
tileID :: Tile -> Int
tileID (Tile i _ _ _) = i
parseTile :: [String] -> Tile
parseTile [] = error "empty tile"
parseTile (hdr:lns) =
fmap (boolb . (== '#')) $
Tile (if take 5 hdr == "Tile " then read (take 4 (drop 5 hdr)) else error ("tile header?" ++ show hdr))
(R 0 F)
(V4 (Border (head lns))
(Border (map last lns))
(Border (reverse (last lns)))
(Border (reverse (map head lns))))
lns
-- Rotates clockwise 90 degrees
rotArray :: [[a]] -> [[a]]
rotArray = map reverse . transpose
-- Flips horizontally
flipArray :: [[a]] -> [[a]]
flipArray = map reverse
-- Rotates clockwise 90 degrees
rotate :: Tile -> Tile
rotate (Tile i (R rotn rotf) (V4 a b c d) e) = Tile i (R (rotn+1) rotf) (V4 d a b c) (rotArray e)
-- Flips horizontally
flipTile :: Tile -> Tile
flipTile (Tile i (R rotn rotf) (V4 (Border a) (Border b) (Border c) (Border d)) e) =
Tile i (R rotn (notB rotf)) (V4 (Border (reverse a)) (Border (reverse d)) (Border (reverse c)) (Border (reverse b))) (flipArray e)
type Cd = (Int, Int) -- coordinate
data Layout = Layout (Map Cd Tile) (Set Cd)
deriving (Show)
lput :: Cd -> Tile -> Layout -> Layout
lput pos tile (Layout mp bd) =
Layout (Map.insertWith (error "lput: taken") pos tile mp)
(Set.delete pos bd <> (Set.fromList (toList (neighbours pos)) Set.\\ Map.keysSet mp))
neighbours :: Cd -> V4 Cd
neighbours (x, y) = V4 (x, y-1) (x+1, y) (x, y+1) (x-1, y)
borderAt :: Cd -> Layout -> V4 (Maybe Border)
borderAt pos (Layout mp _) =
ifmap (\i pos' -> (\(Tile _ _ bd _) -> Border (reverse (unBorder (bd !* mod (i + 2) 4)))) <$> Map.lookup pos' mp) (neighbours pos)
densityAt :: Layout -> Cd -> Int
densityAt ly pos = length (catMaybes (toList (borderAt pos ly)))
matchesOutline :: Tile -> V4 (Maybe Border) -> Bool
matchesOutline (Tile _ _ bd _) outl =
all id ((\b -> maybe True (== b)) <$> bd <*> outl)
rotrefls :: Tile -> [Tile]
rotrefls = concatMap (\t -> [t, flipTile t]) . take 4 . iterate rotate
matchesAtPos :: Layout -> [Tile] -> Cd -> [(Tile, [Tile])]
matchesAtPos ly ts pos =
[(t', rest)
| (t, rest) <- splits' ts
, t' <- rotrefls t
, matchesOutline t' (borderAt pos ly)]
allCandidates :: Layout -> [Tile] -> [(Cd, Tile, [Tile])]
allCandidates ly@(Layout _ bd) ts =
catMaybes
[case matchesAtPos ly ts pos of
[(t, ts')] -> Just (pos, t, ts')
_ -> Nothing
| pos <- sortBy (comparing (Down . densityAt ly)) (toList bd)]
findCandidate :: Layout -> [Tile] -> Maybe (Cd, Tile, [Tile])
findCandidate ly ts = listToMaybe (allCandidates ly ts)
placeAll :: Layout -> [Tile] -> (Layout, [Tile])
placeAll ly ts
| Just (pos, t, ts') <- findCandidate ly ts = placeAll (lput pos t ly) ts'
| otherwise = (ly, ts)
extents :: Map Cd a -> ((Int, Int), (Int, Int))
extents mp =
let keys = Map.keys mp
in ((minimum (map fst keys), maximum (map fst keys))
,(minimum (map snd keys), maximum (map snd keys)))
showLayout :: Layout -> String
showLayout (Layout mp bd) =
let mp' = foldr (uncurry Map.insert) (Map.map Just mp) (map (,Nothing) (toList bd))
((xmin, xmax), (ymin, ymax)) = extents mp'
in unlines [intercalate " "
[maybe "...." (maybe "----" (show . tileID)) (Map.lookup (x, y) mp')
| x <- [xmin..xmax]]
| y <- [ymin..ymax]]
cornerProd :: Layout -> Int
cornerProd (Layout mp _) =
let ((xmin, xmax), (ymin, ymax)) = extents mp
in product (map (tileID . fromJust . (`Map.lookup` mp)) [(xmin,ymin), (xmin,ymax), (xmax,ymin), (xmax,ymax)])
squareOfTiles :: Layout -> [[Tile]]
squareOfTiles (Layout mp _) =
let ((xmin, xmax), (ymin, ymax)) = extents mp
in [[mp Map.! (x, y) | x <- [xmin..xmax]] | y <- [ymin..ymax]]
removeEdges :: [[B]] -> [[B]]
removeEdges = map trim . trim
where trim = tail . reverse . tail . reverse
joinEdges :: [[Tile]] -> [[B]]
joinEdges tiles =
concat [map concat (transpose [removeEdges body | Tile _ _ _ body <- tilerow])
| tilerow <- tiles]
monster :: [[B]]
monster = map (map (\case '#' -> T ; ' ' -> F ; _ -> undefined)) pat
where pat = [" # "
,"# ## ## ###"
," # # # # # # "]
fieldParts :: [[a]] -> [[[a]]]
fieldParts bd = concatMap maptails (tails bd)
where maptails [] = []
maptails ([]:_) = []
maptails l = l : maptails (map tail l)
exceedsLength :: [a] -> [a] -> Bool
_ `exceedsLength` [] = True
[] `exceedsLength` _ = False
(_:xs) `exceedsLength` (_:ys) = xs `exceedsLength` ys
matchPattern :: [[B]] -> [[B]] -> Bool
matchPattern bd pat =
bd `exceedsLength` pat &&
all (\(bdrow, patrow) -> bdrow `exceedsLength` patrow &&
all (\(b, p) -> (p == F) || (b == T)) (zip bdrow patrow))
(zip bd pat)
countPattern :: [[B]] -> [[B]] -> Int
countPattern bd pat = length (filter (`matchPattern` pat) (fieldParts bd))
numTrue :: [[B]] -> Int
numTrue = length . concat . map (filter (== T))
main :: IO ()
main = do
tile0:tiles <- map parseTile . filter (not . null) . toList . splitOn null <$> getInput 20
let initLayout = lput (0, 0) tile0 (Layout mempty (Set.singleton (0, 0)))
(ly', _) = placeAll initLayout tiles
print (cornerProd ly')
let image = joinEdges (squareOfTiles ly')
images = concatMap (\b -> [b, flipArray b]) (take 4 (iterate rotArray image))
print (numTrue image - numTrue monster * maximum (map (`countPattern` monster) images))
|