aboutsummaryrefslogtreecommitdiff
path: root/bench
diff options
context:
space:
mode:
authorTom Smeding <tom@tomsmeding.com>2025-02-20 10:11:57 +0100
committerTom Smeding <tom@tomsmeding.com>2025-02-20 10:11:57 +0100
commitfe3132304b6c25e5bebc9fb327e3ea5d6018be7a (patch)
treeedbf62755eab8103c3f39ee7dfe2b0006692e857 /bench
parent011bda94ea9ab0bdb43751d8d19963beb5a887a0 (diff)
Attempt at a benchmark (crashes)
Diffstat (limited to 'bench')
-rw-r--r--bench/Main.hs57
1 files changed, 57 insertions, 0 deletions
diff --git a/bench/Main.hs b/bench/Main.hs
new file mode 100644
index 0000000..cb5e829
--- /dev/null
+++ b/bench/Main.hs
@@ -0,0 +1,57 @@
+{-# LANGUAGE DeriveTraversable #-}
+{-# LANGUAGE TypeApplications #-}
+{-# LANGUAGE DeriveGeneric #-}
+module Main where
+
+import Control.DeepSeq
+import Criterion
+import Criterion.Main
+import qualified Data.Vector as V
+import GHC.Generics (Generic)
+
+import qualified Numeric.ADDual as ADD
+
+
+type Matrix s = V.Vector s
+
+data FNeural a = FNeural [(Matrix a, V.Vector a)] (V.Vector a)
+ deriving (Show, Functor, Foldable, Traversable, Generic)
+
+instance NFData a => NFData (FNeural a)
+
+fneural :: (Floating a, Ord a) => FNeural a -> a
+fneural (FNeural layers input) =
+ let dotp v1 v2 = V.sum (V.zipWith (*) v1 v2)
+
+ mat @. vec =
+ let n = V.length vec
+ m = V.length mat `div` n
+ in V.fromListN m $ map (\i -> dotp (V.slice (n*i) n mat) vec) [0 .. m-1]
+ (+.) = V.zipWith (+)
+
+ relu x = if x >= 0.0 then x else 0.0
+ safeSoftmax vec = let m = V.maximum vec
+ factor = V.sum (V.map (\z -> exp (z - m)) vec)
+ in V.map (\z -> exp (z - m) / factor) vec
+ forward [] x = safeSoftmax x
+ forward ((weights, bias) : lys) x =
+ let x' = V.map relu ((weights @. x) +. bias)
+ in forward lys x'
+ in V.sum $ forward layers input
+
+makeNeuralInput :: FNeural Double
+makeNeuralInput =
+ let genMatrix nin nout =
+ V.fromListN (nin*nout) [sin (fromIntegral @Int (i+j))
+ | i <- [0..nout-1], j <- [0..nin-1]]
+ genVector nout = V.fromListN nout [sin (0.41 * fromIntegral @Int i) | i <- [0..nout-1]]
+ -- 50 inputs; 2 hidden layers (100; 50); final softmax, then sum the outputs.
+ nIn = 50; n1 = 100; n2 = 50
+ in FNeural [(genMatrix nIn n1, genVector n1)
+ ,(genMatrix n1 n2, genVector n2)]
+ (genVector nIn)
+
+main :: IO ()
+main = defaultMain
+ [env (pure makeNeuralInput) $ \input ->
+ bench "neural" $ nf (\inp -> ADD.gradient' @Double fneural inp 1.0) input]