diff options
author | Tom Smeding <tom@tomsmeding.com> | 2025-02-20 10:11:57 +0100 |
---|---|---|
committer | Tom Smeding <tom@tomsmeding.com> | 2025-02-20 10:11:57 +0100 |
commit | fe3132304b6c25e5bebc9fb327e3ea5d6018be7a (patch) | |
tree | edbf62755eab8103c3f39ee7dfe2b0006692e857 /bench | |
parent | 011bda94ea9ab0bdb43751d8d19963beb5a887a0 (diff) |
Attempt at a benchmark (crashes)
Diffstat (limited to 'bench')
-rw-r--r-- | bench/Main.hs | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/bench/Main.hs b/bench/Main.hs new file mode 100644 index 0000000..cb5e829 --- /dev/null +++ b/bench/Main.hs @@ -0,0 +1,57 @@ +{-# LANGUAGE DeriveTraversable #-} +{-# LANGUAGE TypeApplications #-} +{-# LANGUAGE DeriveGeneric #-} +module Main where + +import Control.DeepSeq +import Criterion +import Criterion.Main +import qualified Data.Vector as V +import GHC.Generics (Generic) + +import qualified Numeric.ADDual as ADD + + +type Matrix s = V.Vector s + +data FNeural a = FNeural [(Matrix a, V.Vector a)] (V.Vector a) + deriving (Show, Functor, Foldable, Traversable, Generic) + +instance NFData a => NFData (FNeural a) + +fneural :: (Floating a, Ord a) => FNeural a -> a +fneural (FNeural layers input) = + let dotp v1 v2 = V.sum (V.zipWith (*) v1 v2) + + mat @. vec = + let n = V.length vec + m = V.length mat `div` n + in V.fromListN m $ map (\i -> dotp (V.slice (n*i) n mat) vec) [0 .. m-1] + (+.) = V.zipWith (+) + + relu x = if x >= 0.0 then x else 0.0 + safeSoftmax vec = let m = V.maximum vec + factor = V.sum (V.map (\z -> exp (z - m)) vec) + in V.map (\z -> exp (z - m) / factor) vec + forward [] x = safeSoftmax x + forward ((weights, bias) : lys) x = + let x' = V.map relu ((weights @. x) +. bias) + in forward lys x' + in V.sum $ forward layers input + +makeNeuralInput :: FNeural Double +makeNeuralInput = + let genMatrix nin nout = + V.fromListN (nin*nout) [sin (fromIntegral @Int (i+j)) + | i <- [0..nout-1], j <- [0..nin-1]] + genVector nout = V.fromListN nout [sin (0.41 * fromIntegral @Int i) | i <- [0..nout-1]] + -- 50 inputs; 2 hidden layers (100; 50); final softmax, then sum the outputs. + nIn = 50; n1 = 100; n2 = 50 + in FNeural [(genMatrix nIn n1, genVector n1) + ,(genMatrix n1 n2, genVector n2)] + (genVector nIn) + +main :: IO () +main = defaultMain + [env (pure makeNeuralInput) $ \input -> + bench "neural" $ nf (\inp -> ADD.gradient' @Double fneural inp 1.0) input] |