diff options
author | Tom Smeding <t.j.smeding@uu.nl> | 2025-02-21 13:35:26 +0100 |
---|---|---|
committer | Tom Smeding <t.j.smeding@uu.nl> | 2025-02-21 13:35:26 +0100 |
commit | a17bd53598ee5266fc3a1c45f8f4bb4798dc495e (patch) | |
tree | ee7962f603fbb26a0df0f793b8e50666f41a0dfd /examples/Numeric | |
parent | b91d36fa38be07397b505433f24a6d29a79c2642 (diff) |
Working tests and benchmarks against 'ad'
Diffstat (limited to 'examples/Numeric')
-rw-r--r-- | examples/Numeric/ADDual/Examples.hs | 37 |
1 files changed, 19 insertions, 18 deletions
diff --git a/examples/Numeric/ADDual/Examples.hs b/examples/Numeric/ADDual/Examples.hs index d6aa6d2..819aec4 100644 --- a/examples/Numeric/ADDual/Examples.hs +++ b/examples/Numeric/ADDual/Examples.hs @@ -5,17 +5,21 @@ module Numeric.ADDual.Examples where import Control.DeepSeq import Control.Monad (replicateM) +import Data.Maybe (catMaybes) import qualified Data.Vector as V import GHC.Generics (Generic) -import Hedgehog (Gen) +import Hedgehog (Gen, Size) import qualified Hedgehog.Gen as Gen import qualified Hedgehog.Range as Range +import qualified Hedgehog.Internal.Gen as HI.Gen +import qualified Hedgehog.Internal.Seed as HI.Seed +import qualified Hedgehog.Internal.Tree as HI.Tree type Matrix s = V.Vector s data FNeural a = FNeural [(Matrix a, V.Vector a)] (V.Vector a) - deriving (Show, Functor, Foldable, Traversable, Generic) + deriving (Show, Eq, Functor, Foldable, Traversable, Generic) instance NFData a => NFData (FNeural a) @@ -39,27 +43,24 @@ fneural (FNeural layers input) = in forward lys x' in V.sum $ forward layers input -makeNeuralInput :: FNeural Double -makeNeuralInput = - let genMatrix nin nout = - V.fromListN (nin*nout) [sin (fromIntegral @Int (i+j)) - | i <- [0..nout-1], j <- [0..nin-1]] - genVector nout = V.fromListN nout [sin (0.41 * fromIntegral @Int i) | i <- [0..nout-1]] - -- 50 inputs; 2 hidden layers (100; 50); final softmax, then sum the outputs. - nIn = 50; n1 = 100; n2 = 50 - in FNeural [(genMatrix nIn n1, genVector n1) - ,(genMatrix n1 n2, genVector n2)] - (genVector nIn) +makeNeuralInput :: Int -> FNeural Double +makeNeuralInput scale = sampleGenPure 100 (genNeuralInput scale) -genNeuralInput :: Gen (FNeural Double) -genNeuralInput = do +genNeuralInput :: Int -> Gen (FNeural Double) +genNeuralInput scale = do let genScalar = Gen.double (Range.linearFracFrom 0 (-1) 1) genMatrix nin nout = V.fromListN (nin*nout) <$> replicateM (nin*nout) genScalar genVector nout = V.fromListN nout <$> replicateM nout genScalar - nIn <- Gen.integral (Range.linear 1 80) - n1 <- Gen.integral (Range.linear 1 100) - n2 <- Gen.integral (Range.linear 1 80) + nIn <- Gen.integral (Range.linear 1 scale) + n1 <- Gen.integral (Range.linear 1 scale) + n2 <- Gen.integral (Range.linear 1 scale) m1 <- genMatrix nIn n1; v1 <- genVector n1 m2 <- genMatrix n1 n2; v2 <- genVector n2 inp <- genVector nIn pure $ FNeural [(m1, v1), (m2, v2)] inp + + +sampleGenPure :: Size -> Gen a -> a +sampleGenPure size gen = + HI.Tree.treeValue $ head $ catMaybes + [HI.Gen.evalGen size (HI.Seed.from n) gen | n <- [42..]] |