diff options
author | Tom Smeding <tom@tomsmeding.com> | 2025-06-21 09:57:45 +0200 |
---|---|---|
committer | Tom Smeding <tom@tomsmeding.com> | 2025-06-21 09:57:45 +0200 |
commit | b5ed3d2fcc249cb410b9e86d25e9ef808c6dba97 (patch) | |
tree | 66383b16d5d95f939aaa165a783dbbfd99a57fe3 /src/AST/Sparse.hs | |
parent | 8bbc2d2867e3d0a4a1f2810b40e92175779822e1 (diff) | |
parent | a4b3eb76acbec30ffeae119a4dc6e4c9f64396fe (diff) |
Diffstat (limited to 'src/AST/Sparse.hs')
-rw-r--r-- | src/AST/Sparse.hs | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/src/AST/Sparse.hs b/src/AST/Sparse.hs new file mode 100644 index 0000000..93258b7 --- /dev/null +++ b/src/AST/Sparse.hs @@ -0,0 +1,290 @@ +{-# LANGUAGE DataKinds #-} +{-# LANGUAGE GADTs #-} +{-# LANGUAGE ImpredicativeTypes #-} +{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE StandaloneDeriving #-} +{-# LANGUAGE RankNTypes #-} + +{-# OPTIONS_GHC -fmax-pmcheck-models=80 #-} +module AST.Sparse (module AST.Sparse, module AST.Sparse.Types) where + +import Data.Type.Equality + +import AST +import AST.Sparse.Types +import Data (SBool(..)) + + +sparsePlus :: SMTy t -> Sparse t t' -> Ex env t' -> Ex env t' -> Ex env t' +sparsePlus _ SpAbsent e1 e2 = use e1 $ use e2 $ ENil ext +sparsePlus t sp e1 e2 | Just Refl <- isDense t sp = EPlus ext t e1 e2 +sparsePlus t (SpSparse sp) e1 e2 = sparsePlus (SMTMaybe t) (SpMaybe sp) e1 e2 -- heh +sparsePlus (SMTPair t1 t2) (SpPair sp1 sp2) e1 e2 = + eunPair e1 $ \w1 e1a e1b -> + eunPair (weakenExpr w1 e2) $ \w2 e2a e2b -> + EPair ext (sparsePlus t1 sp1 (weakenExpr w2 e1a) e2a) + (sparsePlus t2 sp2 (weakenExpr w2 e1b) e2b) +sparsePlus (SMTLEither t1 t2) (SpLEither sp1 sp2) e1 e2 = + elet e2 $ + elcase (weakenExpr WSink e1) + (evar IZ) + (elcase (evar (IS IZ)) + (ELInl ext (applySparse sp2 (fromSMTy t2)) (evar IZ)) + (ELInl ext (applySparse sp2 (fromSMTy t2)) (sparsePlus t1 sp1 (evar (IS IZ)) (evar IZ))) + (EError ext (fromSMTy (applySparse (SpLEither sp1 sp2) (SMTLEither t1 t2))) "splus ll+lr")) + (elcase (evar (IS IZ)) + (ELInr ext (applySparse sp1 (fromSMTy t1)) (evar IZ)) + (EError ext (fromSMTy (applySparse (SpLEither sp1 sp2) (SMTLEither t1 t2))) "splus lr+ll") + (ELInr ext (applySparse sp1 (fromSMTy t1)) (sparsePlus t2 sp2 (evar (IS IZ)) (evar IZ)))) +sparsePlus (SMTMaybe t) (SpMaybe sp) e1 e2 = + elet e2 $ + emaybe (weakenExpr WSink e1) + (evar IZ) + (emaybe (evar (IS IZ)) + (EJust ext (evar IZ)) + (EJust ext (sparsePlus t sp (evar (IS IZ)) (evar IZ)))) +sparsePlus (SMTArr _ t) (SpArr sp) e1 e2 = ezipWith (sparsePlus t sp (evar (IS IZ)) (evar IZ)) e1 e2 +sparsePlus t@SMTScal{} SpScal e1 e2 = EPlus ext t e1 e2 + + +cheapZero :: SMTy t -> Maybe (forall env. Ex env t) +cheapZero SMTNil = Just (ENil ext) +cheapZero (SMTPair t1 t2) + | Just e1 <- cheapZero t1 + , Just e2 <- cheapZero t2 + = Just (EPair ext e1 e2) + | otherwise + = Nothing +cheapZero (SMTLEither t1 t2) = Just (ELNil ext (fromSMTy t1) (fromSMTy t2)) +cheapZero (SMTMaybe t) = Just (ENothing ext (fromSMTy t)) +cheapZero SMTArr{} = Nothing +cheapZero (SMTScal t) = case t of + STI32 -> Just (EConst ext t 0) + STI64 -> Just (EConst ext t 0) + STF32 -> Just (EConst ext t 0.0) + STF64 -> Just (EConst ext t 0.0) + + +data Injection sp a b where + -- | 'Inj' is purposefully also allowed when @sp@ is @False@ so that + -- 'sparsePlusS' can provide injections even if the caller doesn't require + -- them. This simplifies the sparsePlusS code. + Inj :: (forall e. Ex e a -> Ex e b) -> Injection sp a b + Noinj :: Injection False a b + +withInj :: Injection sp a b -> ((forall e. Ex e a -> Ex e b) -> (forall e'. Ex e' a' -> Ex e' b')) -> Injection sp a' b' +withInj (Inj f) k = Inj (k f) +withInj Noinj _ = Noinj + +withInj2 :: Injection sp a1 b1 -> Injection sp a2 b2 + -> ((forall e. Ex e a1 -> Ex e b1) + -> (forall e. Ex e a2 -> Ex e b2) + -> (forall e'. Ex e' a' -> Ex e' b')) + -> Injection sp a' b' +withInj2 (Inj f) (Inj g) k = Inj (k f g) +withInj2 Noinj _ _ = Noinj +withInj2 _ Noinj _ = Noinj + +use :: Ex env a -> Ex env b -> Ex env b +use a b = elet a $ weakenExpr WSink b + +-- | This function produces quadratically-sized code in the presence of nested +-- dynamic sparsity. TODO can this be improved? +sparsePlusS + :: SBool inj1 -> SBool inj2 + -> SMTy t -> Sparse t t1 -> Sparse t t2 + -> (forall t3. Sparse t t3 + -> Injection inj1 t1 t3 -- only available if first injection is requested (second argument may be absent) + -> Injection inj2 t2 t3 -- only available if second injection is requested (first argument may be absent) + -> (forall e. Ex e t1 -> Ex e t2 -> Ex e t3) + -> r) + -> r +-- nil override (but don't destroy effects!) +sparsePlusS _ _ SMTNil _ _ k = + k SpAbsent (Inj $ \a -> use a $ ENil ext) (Inj $ \b -> use b $ ENil ext) (\a b -> use a $ use b $ ENil ext) + +-- simplifications +sparsePlusS req1 req2 t (SpSparse SpAbsent) sp2 k = + sparsePlusS req1 req2 t SpAbsent sp2 $ \sp3 minj1 minj2 plus -> + k sp3 (withInj minj1 $ \inj1 -> \a -> use a $ inj1 (ENil ext)) minj2 (\a b -> use a $ plus (ENil ext) b) +sparsePlusS req1 req2 t sp1 (SpSparse SpAbsent) k = + sparsePlusS req1 req2 t sp1 SpAbsent $ \sp3 minj1 minj2 plus -> + k sp3 minj1 (withInj minj2 $ \inj2 -> \b -> use b $ inj2 (ENil ext)) (\a b -> use b $ plus a (ENil ext)) + +sparsePlusS req1 req2 t (SpSparse (SpSparse sp1)) sp2 k = + let ta = applySparse sp1 (fromSMTy t) in + sparsePlusS req1 req2 t (SpSparse sp1) sp2 $ \sp3 minj1 minj2 plus -> + k sp3 + (withInj minj1 $ \inj1 -> \a -> inj1 (emaybe a (ENothing ext ta) (EVar ext (STMaybe ta) IZ))) + minj2 + (\a b -> plus (emaybe a (ENothing ext ta) (EVar ext (STMaybe ta) IZ)) b) +sparsePlusS req1 req2 t sp1 (SpSparse (SpSparse sp2)) k = + let tb = applySparse sp2 (fromSMTy t) in + sparsePlusS req1 req2 t sp1 (SpSparse sp2) $ \sp3 minj1 minj2 plus -> + k sp3 + minj1 + (withInj minj2 $ \inj2 -> \b -> inj2 (emaybe b (ENothing ext tb) (EVar ext (STMaybe tb) IZ))) + (\a b -> plus a (emaybe b (ENothing ext tb) (EVar ext (STMaybe tb) IZ))) + +sparsePlusS req1 req2 t (SpSparse (SpLEither sp1a sp1b)) sp2 k = + let STLEither ta tb = applySparse (SpLEither sp1a sp1b) (fromSMTy t) in + sparsePlusS req1 req2 t (SpLEither sp1a sp1b) sp2 $ \sp3 minj1 minj2 plus -> + k sp3 + (withInj minj1 $ \inj1 -> \a -> inj1 (emaybe a (ELNil ext ta tb) (EVar ext (STLEither ta tb) IZ))) + minj2 + (\a b -> plus (emaybe a (ELNil ext ta tb) (EVar ext (STLEither ta tb) IZ)) b) +sparsePlusS req1 req2 t sp1 (SpSparse (SpLEither sp2a sp2b)) k = + let STLEither ta tb = applySparse (SpLEither sp2a sp2b) (fromSMTy t) in + sparsePlusS req1 req2 t sp1 (SpLEither sp2a sp2b) $ \sp3 minj1 minj2 plus -> + k sp3 + minj1 + (withInj minj2 $ \inj2 -> \b -> inj2 (emaybe b (ELNil ext ta tb) (EVar ext (STLEither ta tb) IZ))) + (\a b -> plus a (emaybe b (ELNil ext ta tb) (EVar ext (STLEither ta tb) IZ))) + +sparsePlusS req1 req2 t (SpSparse (SpMaybe sp1)) sp2 k = + let STMaybe ta = applySparse (SpMaybe sp1) (fromSMTy t) in + sparsePlusS req1 req2 t (SpMaybe sp1) sp2 $ \sp3 minj1 minj2 plus -> + k sp3 + (withInj minj1 $ \inj1 -> \a -> inj1 (emaybe a (ENothing ext ta) (evar IZ))) + minj2 + (\a b -> plus (emaybe a (ENothing ext ta) (EVar ext (STMaybe ta) IZ)) b) +sparsePlusS req1 req2 t sp1 (SpSparse (SpMaybe sp2)) k = + let STMaybe tb = applySparse (SpMaybe sp2) (fromSMTy t) in + sparsePlusS req1 req2 t sp1 (SpMaybe sp2) $ \sp3 minj1 minj2 plus -> + k sp3 + minj1 + (withInj minj2 $ \inj2 -> \b -> inj2 (emaybe b (ENothing ext tb) (evar IZ))) + (\a b -> plus a (emaybe b (ENothing ext tb) (EVar ext (STMaybe tb) IZ))) +sparsePlusS req1 req2 t (SpMaybe (SpSparse sp1)) sp2 k = sparsePlusS req1 req2 t (SpSparse (SpMaybe sp1)) sp2 k +sparsePlusS req1 req2 t sp1 (SpMaybe (SpSparse sp2)) k = sparsePlusS req1 req2 t sp1 (SpSparse (SpMaybe sp2)) k + +-- TODO: sparse of Just is just Maybe + +-- dense plus +sparsePlusS _ _ t sp1 sp2 k + | Just Refl <- isDense t sp1 + , Just Refl <- isDense t sp2 + = k (spDense t) (Inj id) (Inj id) (\a b -> EPlus ext t a b) + +-- handle absents +sparsePlusS SF _ _ SpAbsent sp2 k = k sp2 Noinj (Inj id) (\a b -> use a $ b) +sparsePlusS ST _ t SpAbsent sp2 k + | Just zero2 <- cheapZero (applySparse sp2 t) = + k sp2 (Inj $ \a -> use a $ zero2) (Inj id) (\a b -> use a $ b) + | otherwise = + k (SpSparse sp2) (Inj $ \a -> use a $ ENothing ext (applySparse sp2 (fromSMTy t))) (Inj $ EJust ext) (\a b -> use a $ EJust ext b) + +sparsePlusS _ SF _ sp1 SpAbsent k = k sp1 (Inj id) Noinj (\a b -> use b $ a) +sparsePlusS _ ST t sp1 SpAbsent k + | Just zero1 <- cheapZero (applySparse sp1 t) = + k sp1 (Inj id) (Inj $ \b -> use b $ zero1) (\a b -> use b $ a) + | otherwise = + k (SpSparse sp1) (Inj $ EJust ext) (Inj $ \b -> use b $ ENothing ext (applySparse sp1 (fromSMTy t))) (\a b -> use b $ EJust ext a) + +-- double sparse yields sparse +sparsePlusS _ _ t (SpSparse sp1) (SpSparse sp2) k = + sparsePlusS ST ST t sp1 sp2 $ \sp3 (Inj inj1) (Inj inj2) plus -> + k (SpSparse sp3) + (Inj $ \a -> emaybe a (ENothing ext (applySparse sp3 (fromSMTy t))) (EJust ext (inj1 (evar IZ)))) + (Inj $ \b -> emaybe b (ENothing ext (applySparse sp3 (fromSMTy t))) (EJust ext (inj2 (evar IZ)))) + (\a b -> + elet b $ + emaybe (weakenExpr WSink a) + (emaybe (evar IZ) + (ENothing ext (applySparse sp3 (fromSMTy t))) + (EJust ext (inj2 (evar IZ)))) + (emaybe (evar (IS IZ)) + (EJust ext (inj1 (evar IZ))) + (EJust ext (plus (evar (IS IZ)) (evar IZ))))) + +-- single sparse can yield non-sparse if the other argument is always present +sparsePlusS SF _ t (SpSparse sp1) sp2 k = + sparsePlusS SF ST t sp1 sp2 $ \sp3 _ (Inj inj2) plus -> + k sp3 Noinj (Inj inj2) + (\a b -> + elet b $ + emaybe (weakenExpr WSink a) + (inj2 (evar IZ)) + (plus (evar IZ) (evar (IS IZ)))) +sparsePlusS ST _ t (SpSparse sp1) sp2 k = + sparsePlusS ST ST t sp1 sp2 $ \sp3 (Inj inj1) (Inj inj2) plus -> + k (SpSparse sp3) + (Inj $ \a -> emaybe a (ENothing ext (applySparse sp3 (fromSMTy t))) (EJust ext (inj1 (evar IZ)))) + (Inj $ \b -> EJust ext (inj2 b)) + (\a b -> + elet b $ + emaybe (weakenExpr WSink a) + (EJust ext (inj2 (evar IZ))) + (EJust ext (plus (evar IZ) (evar (IS IZ))))) +sparsePlusS req1 req2 t sp1 (SpSparse sp2) k = + sparsePlusS req2 req1 t (SpSparse sp2) sp1 $ \sp3 inj1 inj2 plus -> + k sp3 inj2 inj1 (flip plus) + +-- products +sparsePlusS req1 req2 (SMTPair ta tb) (SpPair sp1a sp1b) (SpPair sp2a sp2b) k = + sparsePlusS req1 req2 ta sp1a sp2a $ \sp3a minj13a minj23a plusa -> + sparsePlusS req1 req2 tb sp1b sp2b $ \sp3b minj13b minj23b plusb -> + k (SpPair sp3a sp3b) + (withInj2 minj13a minj13b $ \inj13a inj13b -> + \x1 -> eunPair x1 $ \_ x1a x1b -> EPair ext (inj13a x1a) (inj13b x1b)) + (withInj2 minj23a minj23b $ \inj23a inj23b -> + \x2 -> eunPair x2 $ \_ x2a x2b -> EPair ext (inj23a x2a) (inj23b x2b)) + (\x1 x2 -> + eunPair x1 $ \w1 x1a x1b -> + eunPair (weakenExpr w1 x2) $ \w2 x2a x2b -> + EPair ext (plusa (weakenExpr w2 x1a) x2a) (plusb (weakenExpr w2 x1b) x2b)) + +-- coproducts +sparsePlusS _ _ (SMTLEither ta tb) (SpLEither sp1a sp1b) (SpLEither sp2a sp2b) k = + sparsePlusS ST ST ta sp1a sp2a $ \(sp3a :: Sparse _t3 t3a) (Inj inj13a) (Inj inj23a) plusa -> + sparsePlusS ST ST tb sp1b sp2b $ \(sp3b :: Sparse _t3' t3b) (Inj inj13b) (Inj inj23b) plusb -> + let nil :: Ex e (TLEither t3a t3b) ; nil = ELNil ext (applySparse sp3a (fromSMTy ta)) (applySparse sp3b (fromSMTy tb)) + inl :: Ex e t3a -> Ex e (TLEither t3a t3b) ; inl = ELInl ext (applySparse sp3b (fromSMTy tb)) + inr :: Ex e t3b -> Ex e (TLEither t3a t3b) ; inr = ELInr ext (applySparse sp3a (fromSMTy ta)) + in + k (SpLEither sp3a sp3b) + (Inj $ \x1 -> elcase x1 nil (inl (inj13a (evar IZ))) (inr (inj13b (evar IZ)))) + (Inj $ \x2 -> elcase x2 nil (inl (inj23a (evar IZ))) (inr (inj23b (evar IZ)))) + (\x1 x2 -> + elet x2 $ + elcase (weakenExpr WSink x1) + (elcase (evar IZ) + nil + (inl (inj23a (evar IZ))) + (inr (inj23b (evar IZ)))) + (elcase (evar (IS IZ)) + (inl (inj13a (evar IZ))) + (inl (plusa (evar (IS IZ)) (evar IZ))) + (EError ext (applySparse (SpLEither sp3a sp3b) (fromSMTy (SMTLEither ta tb))) "plusS ll+lr")) + (elcase (evar (IS IZ)) + (inr (inj13b (evar IZ))) + (EError ext (applySparse (SpLEither sp3a sp3b) (fromSMTy (SMTLEither ta tb))) "plusS lr+ll") + (inr (plusb (evar (IS IZ)) (evar IZ))))) + +-- maybe +sparsePlusS _ _ (SMTMaybe t) (SpMaybe sp1) (SpMaybe sp2) k = + sparsePlusS ST ST t sp1 sp2 $ \sp3 (Inj inj1) (Inj inj2) plus -> + k (SpMaybe sp3) + (Inj $ \a -> emaybe a (ENothing ext (applySparse sp3 (fromSMTy t))) (EJust ext (inj1 (evar IZ)))) + (Inj $ \b -> emaybe b (ENothing ext (applySparse sp3 (fromSMTy t))) (EJust ext (inj2 (evar IZ)))) + (\a b -> + elet b $ + emaybe (weakenExpr WSink a) + (emaybe (evar IZ) + (ENothing ext (applySparse sp3 (fromSMTy t))) + (EJust ext (inj2 (evar IZ)))) + (emaybe (evar (IS IZ)) + (EJust ext (inj1 (evar IZ))) + (EJust ext (plus (evar (IS IZ)) (evar IZ))))) + +-- dense array cotangents simply recurse +sparsePlusS req1 req2 (SMTArr _ t) (SpArr sp1) (SpArr sp2) k = + sparsePlusS req1 req2 t sp1 sp2 $ \sp3 minj1 minj2 plus -> + k (SpArr sp3) + (withInj minj1 $ \inj1 -> emap (inj1 (EVar ext (applySparse sp1 (fromSMTy t)) IZ))) + (withInj minj2 $ \inj2 -> emap (inj2 (EVar ext (applySparse sp2 (fromSMTy t)) IZ))) + (ezipWith (plus (EVar ext (applySparse sp1 (fromSMTy t)) (IS IZ)) + (EVar ext (applySparse sp2 (fromSMTy t)) IZ))) + +-- scalars +sparsePlusS _ _ (SMTScal t) SpScal SpScal k = k SpScal (Inj id) (Inj id) (EPlus ext (SMTScal t)) |