diff options
Diffstat (limited to 'src/Simplify.hs')
| -rw-r--r-- | src/Simplify.hs | 478 |
1 files changed, 0 insertions, 478 deletions
diff --git a/src/Simplify.hs b/src/Simplify.hs deleted file mode 100644 index d963b7e..0000000 --- a/src/Simplify.hs +++ /dev/null @@ -1,478 +0,0 @@ -{-# LANGUAGE DataKinds #-} -{-# LANGUAGE DeriveFunctor #-} -{-# LANGUAGE GADTs #-} -{-# LANGUAGE ImplicitParams #-} -{-# LANGUAGE LambdaCase #-} -{-# LANGUAGE MultiWayIf #-} -{-# LANGUAGE QuasiQuotes #-} -{-# LANGUAGE RankNTypes #-} -{-# LANGUAGE ScopedTypeVariables #-} -{-# LANGUAGE StandaloneDeriving #-} -{-# LANGUAGE TypeApplications #-} -{-# LANGUAGE TypeOperators #-} -module Simplify ( - simplifyN, simplifyFix, - SimplifyConfig(..), defaultSimplifyConfig, simplifyWith, simplifyFixWith, -) where - -import Control.Monad (ap) -import Data.Bifunctor (first) -import Data.Function (fix) -import Data.Monoid (Any(..)) -import Data.Type.Equality (testEquality) - -import Debug.Trace - -import AST -import AST.Count -import AST.Pretty -import Data -import Simplify.TH - - -data SimplifyConfig = SimplifyConfig - { scLogging :: Bool - } - -defaultSimplifyConfig :: SimplifyConfig -defaultSimplifyConfig = SimplifyConfig False - -simplifyN :: KnownEnv env => Int -> Ex env t -> Ex env t -simplifyN 0 = id -simplifyN n = simplifyN (n - 1) . simplify - -simplify :: forall env t. KnownEnv env => Ex env t -> Ex env t -simplify = - let ?accumInScope = checkAccumInScope @env knownEnv - ?config = defaultSimplifyConfig - in snd . runSM . simplify' - -simplifyWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t -simplifyWith config = - let ?accumInScope = checkAccumInScope @env knownEnv - ?config = config - in snd . runSM . simplify' - -simplifyFix :: forall env t. KnownEnv env => Ex env t -> Ex env t -simplifyFix = simplifyFixWith defaultSimplifyConfig - -simplifyFixWith :: forall env t. KnownEnv env => SimplifyConfig -> Ex env t -> Ex env t -simplifyFixWith config = - let ?accumInScope = checkAccumInScope @env knownEnv - ?config = config - in fix $ \loop e -> - let (act, e') = runSM (simplify' e) - in if act then loop e' else e' - --- | simplify monad -newtype SM tenv tt env t a = SM ((Ex env t -> Ex tenv tt) -> (Any, a)) - deriving (Functor) - -instance Applicative (SM tenv tt env t) where - pure x = SM (\_ -> (Any False, x)) - (<*>) = ap - -instance Monad (SM tenv tt env t) where - SM f >>= g = SM $ \ctx -> f ctx >>= \x -> let SM h = g x in h ctx - -runSM :: SM env t env t a -> (Bool, a) -runSM (SM f) = first getAny (f id) - -smReconstruct :: Ex env t -> SM tenv tt env t (Ex tenv tt) -smReconstruct core = SM (\ctx -> (Any False, ctx core)) - -tellActed :: SM tenv tt env t () -tellActed = SM (\_ -> (Any True, ())) - --- more convenient in practice -acted :: SM tenv tt env t a -> SM tenv tt env t a -acted m = tellActed >> m - -within :: (Ex env' t' -> Ex env t) -> SM tenv tt env' t' a -> SM tenv tt env t a -within subctx (SM f) = SM $ \ctx -> f (ctx . subctx) - -acted' :: (Any, a) -> (Any, a) -acted' (_, x) = (Any True, x) - -liftActed :: (Any, a) -> SM tenv tt env t a -liftActed pair = SM $ \_ -> pair - -simplify' :: (?accumInScope :: Bool, ?config :: SimplifyConfig, KnownEnv tenv) => Ex env t -> SM tenv tt env t (Ex env t) -simplify' expr - | scLogging ?config = do - res <- simplify'Rec expr - full <- smReconstruct res - let printed = ppExpr knownEnv full - replace a bs = concatMap (\x -> if x == a then bs else [x]) - str | '\n' `elem` printed = "--- simplify step:\n " ++ replace '\n' "\n " printed - | otherwise = "--- simplify step: " ++ printed - traceM str - return res - | otherwise = simplify'Rec expr - -simplify'Rec :: (?accumInScope :: Bool, ?config :: SimplifyConfig, KnownEnv tenv) => Ex env t -> SM tenv tt env t (Ex env t) -simplify'Rec = \case - -- inlining - ELet _ rhs body - | cheapExpr rhs - -> acted $ simplify' (substInline rhs body) - - | Occ lexOcc runOcc <- occCount IZ body - , ((not ?accumInScope || not (hasAdds rhs)) && lexOcc <= One && runOcc <= One) -- without effects, normal rules apply - || (lexOcc == One && runOcc == One) -- with effects, linear inlining is still allowed, but weakening is not - -> acted $ simplify' (substInline rhs body) - - -- let splitting / let peeling - ELet _ (EPair _ a b) body -> - acted $ simplify' $ - ELet ext a $ - ELet ext (weakenExpr WSink b) $ - subst (\_ t -> \case IZ -> EPair ext (EVar ext (typeOf a) (IS IZ)) (EVar ext (typeOf b) IZ) - IS i -> EVar ext t (IS (IS i))) - body - ELet _ (EJust _ a) body -> - acted $ simplify' $ ELet ext a $ subst0 (EJust ext (EVar ext (typeOf a) IZ)) body - ELet _ (EInl _ t2 a) body -> - acted $ simplify' $ ELet ext a $ subst0 (EInl ext t2 (EVar ext (typeOf a) IZ)) body - ELet _ (EInr _ t1 a) body -> - acted $ simplify' $ ELet ext a $ subst0 (EInr ext t1 (EVar ext (typeOf a) IZ)) body - - -- let rotation - ELet _ (ELet _ rhs a) b -> do - b' <- within (ELet ext (ELet ext rhs a)) $ simplify' b - acted $ simplify' $ - ELet ext rhs $ - ELet ext a $ - weakenExpr (WCopy WSink) b' - - -- beta rules for products - EFst _ (EPair _ e e') - | not (hasAdds e') -> acted $ simplify' e - | otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e) - ESnd _ (EPair _ e' e) - | not (hasAdds e') -> acted $ simplify' e - | otherwise -> acted $ simplify' $ ELet ext e' (weakenExpr WSink e) - - -- beta rules for coproducts - ECase _ (EInl _ _ e) rhs _ -> acted $ simplify' (ELet ext e rhs) - ECase _ (EInr _ _ e) _ rhs -> acted $ simplify' (ELet ext e rhs) - - -- beta rules for maybe - EMaybe _ e1 _ ENothing{} -> acted $ simplify' e1 - EMaybe _ _ e1 (EJust _ e2) -> acted $ simplify' $ ELet ext e2 e1 - - -- let floating - EFst _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EFst ext body)) - ESnd _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (ESnd ext body)) - ECase _ (ELet _ rhs body) e1 e2 -> acted $ simplify' (ELet ext rhs (ECase ext body (weakenExpr (WCopy WSink) e1) (weakenExpr (WCopy WSink) e2))) - EIdx0 _ (ELet _ rhs body) -> acted $ simplify' (ELet ext rhs (EIdx0 ext body)) - EIdx1 _ (ELet _ rhs body) e -> acted $ simplify' (ELet ext rhs (EIdx1 ext body (weakenExpr WSink e))) - EAccum _ t p e1 (ELet _ rhs body) acc -> - acted $ simplify' $ - ELet ext rhs $ - EAccum ext t p (weakenExpr WSink e1) body (weakenExpr WSink acc) - - -- let () = e in () ~> e - ELet _ e1 (ENil _) | STNil <- typeOf e1 -> - acted $ simplify' e1 - - -- projection down-commuting - EFst _ (ECase _ e1 e2 e3) -> - acted $ simplify' $ - ECase ext e1 (EFst ext e2) (EFst ext e3) - ESnd _ (ECase _ e1 e2 e3) -> - acted $ simplify' $ - ECase ext e1 (ESnd ext e2) (ESnd ext e3) - - -- TODO: more array indexing - EIdx _ (EReplicate1Inner _ _ e2) e3 -> acted $ simplify' $ EIdx ext e2 (EFst ext e3) - EIdx _ (EUnit _ e1) _ -> acted $ simplify' $ e1 - - -- TODO: more constant folding - EOp _ OIf (EConst _ STBool True) -> acted $ return (EInl ext STNil (ENil ext)) - EOp _ OIf (EConst _ STBool False) -> acted $ return (EInr ext STNil (ENil ext)) - - -- inline cheap array constructors - ELet _ (EReplicate1Inner _ e1 e2) e3 -> - acted $ simplify' $ - ELet ext (EPair ext e1 e2) $ - let v = EVar ext (STPair tIx (typeOf e2)) IZ - in subst0 (EReplicate1Inner ext (EFst ext v) (ESnd ext v)) e3 - -- -- TODO: This is a bad idea and anyway only helps in practice if (!) is - -- -- cheap, which it can't be because (!) is not cheap if you do AD after. - -- -- Should do proper SoA representation. - -- ELet _ (EBuild _ n e1 e2) e3 | cheapExpr e2 -> - -- acted $ simplify' $ - -- ELet ext e1 $ - -- subst0 (EBuild ext n (EVar ext (tTup (sreplicate n tIx)) IZ) (weakenExpr (WCopy WSink) e2)) e3 - - -- eta rule for unit - e | STNil <- typeOf e, not ?accumInScope || not (hasAdds e) -> - case e of - ENil _ -> return e - _ -> acted $ return (ENil ext) - - EBuild _ SZ _ e -> - acted $ simplify' $ EUnit ext (substInline (ENil ext) e) - - -- monoid rules - EAccum _ t p e1 e2 acc -> do - e1' <- within (\e1' -> EAccum ext t p e1' e2 acc ) $ simplify' e1 - e2' <- within (\e2' -> EAccum ext t p e1' e2' acc ) $ simplify' e2 - acc' <- within (\acc' -> EAccum ext t p e1' e2' acc') $ simplify' acc - simplifyOneHotTerm (OneHotTerm t p e1' e2') - (acted $ return (ENil ext)) - (\e -> return (EAccum ext t SAPHere (ENil ext) e acc')) - (\(OneHotTerm t' p' e1'' e2'') -> return (EAccum ext t' p' e1'' e2'' acc')) - EPlus _ _ (EZero _ _ _) e -> acted $ simplify' e - EPlus _ _ e (EZero _ _ _) -> acted $ simplify' e - EOneHot _ t p e1 e2 -> do - e1' <- within (\e1' -> EOneHot ext t p e1' e2 ) $ simplify' e1 - e2' <- within (\e2' -> EOneHot ext t p e1' e2') $ simplify' e2 - simplifyOneHotTerm (OneHotTerm t p e1' e2') - (acted $ return (EZero ext t (zeroInfoFromOneHot t p e1 e2))) - (\e -> acted $ return e) - (\(OneHotTerm t' p' e1'' e2'') -> return (EOneHot ext t' p' e1'' e2'')) - - -- type-specific equations for plus - EPlus _ SMTNil e1 e2 | not (hasAdds e1), not (hasAdds e2) -> - acted $ return (ENil ext) - - EPlus _ (SMTPair t1 t2) (EPair _ a1 b1) (EPair _ a2 b2) -> - acted $ simplify' $ EPair ext (EPlus ext t1 a1 a2) (EPlus ext t2 b1 b2) - - EPlus _ (SMTLEither t1 _) (ELInl _ dt2 a1) (ELInl _ _ a2) -> - acted $ simplify' $ ELInl ext dt2 (EPlus ext t1 a1 a2) - EPlus _ (SMTLEither _ t2) (ELInr _ dt1 b1) (ELInr _ _ b2) -> - acted $ simplify' $ ELInr ext dt1 (EPlus ext t2 b1 b2) - EPlus _ SMTLEither{} ELNil{} e -> acted $ simplify' e - EPlus _ SMTLEither{} e ELNil{} -> acted $ simplify' e - - EPlus _ (SMTMaybe t) (EJust _ e1) (EJust _ e2) -> - acted $ simplify' $ EJust ext (EPlus ext t e1 e2) - EPlus _ SMTMaybe{} ENothing{} e -> acted $ simplify' e - EPlus _ SMTMaybe{} e ENothing{} -> acted $ simplify' e - - -- fallback recursion - EVar _ t i -> pure $ EVar ext t i - ELet _ a b -> [simprec| ELet ext *a *b |] - EPair _ a b -> [simprec| EPair ext *a *b |] - EFst _ e -> [simprec| EFst ext *e |] - ESnd _ e -> [simprec| ESnd ext *e |] - ENil _ -> pure $ ENil ext - EInl _ t e -> [simprec| EInl ext t *e |] - EInr _ t e -> [simprec| EInr ext t *e |] - ECase _ e a b -> [simprec| ECase ext *e *a *b |] - ENothing _ t -> pure $ ENothing ext t - EJust _ e -> [simprec| EJust ext *e |] - EMaybe _ a b e -> [simprec| EMaybe ext *a *b *e |] - ELNil _ t1 t2 -> pure $ ELNil ext t1 t2 - ELInl _ t e -> [simprec| ELInl ext t *e |] - ELInr _ t e -> [simprec| ELInr ext t *e |] - ELCase _ e a b c -> [simprec| ELCase ext *e *a *b *c |] - EConstArr _ n t v -> pure $ EConstArr ext n t v - EBuild _ n a b -> [simprec| EBuild ext n *a *b |] - EFold1Inner _ cm a b c -> [simprec| EFold1Inner ext cm *a *b *c |] - ESum1Inner _ e -> [simprec| ESum1Inner ext *e |] - EUnit _ e -> [simprec| EUnit ext *e |] - EReplicate1Inner _ a b -> [simprec| EReplicate1Inner ext *a *b |] - EMaximum1Inner _ e -> [simprec| EMaximum1Inner ext *e |] - EMinimum1Inner _ e -> [simprec| EMinimum1Inner ext *e |] - EConst _ t v -> pure $ EConst ext t v - EIdx0 _ e -> [simprec| EIdx0 ext *e |] - EIdx1 _ a b -> [simprec| EIdx1 ext *a *b |] - EIdx _ a b -> [simprec| EIdx ext *a *b |] - EShape _ e -> [simprec| EShape ext *e |] - EOp _ op e -> [simprec| EOp ext op *e |] - ECustom _ s t p a b c e1 e2 -> do - a' <- within (\a' -> ECustom ext s t p a' b c e1 e2) (let ?accumInScope = False in simplify' a) - b' <- within (\b' -> ECustom ext s t p a' b' c e1 e2) (let ?accumInScope = False in simplify' b) - c' <- within (\c' -> ECustom ext s t p a' b' c' e1 e2) (let ?accumInScope = False in simplify' c) - e1' <- within (\e1' -> ECustom ext s t p a' b' c' e1' e2) (simplify' e1) - e2' <- within (\e2' -> ECustom ext s t p a' b' c' e1' e2') (simplify' e2) - pure (ECustom ext s t p a' b' c' e1' e2') - ERecompute _ e -> [simprec| ERecompute ext *e |] - EWith _ t e1 e2 -> do - e1' <- within (\e1' -> EWith ext t e1' e2) (simplify' e1) - e2' <- within (\e2' -> EWith ext t e1' e2') (let ?accumInScope = True in simplify' e2) - pure (EWith ext t e1' e2') - EZero _ t e -> [simprec| EZero ext t *e |] -- EZero ext t <$> simplify' e - EPlus _ t a b -> [simprec| EPlus ext t *a *b |] -- EPlus ext t <$> simplify' a <*> simplify' b - EError _ t s -> pure $ EError ext t s - -cheapExpr :: Expr x env t -> Bool -cheapExpr = \case - EVar{} -> True - ENil{} -> True - EConst{} -> True - EFst _ e -> cheapExpr e - ESnd _ e -> cheapExpr e - EUnit _ e -> cheapExpr e - _ -> False - --- | This can be made more precise by tracking (and not counting) adds on --- locally eliminated accumulators. -hasAdds :: Expr x env t -> Bool -hasAdds = \case - EVar _ _ _ -> False - ELet _ rhs body -> hasAdds rhs || hasAdds body - EPair _ a b -> hasAdds a || hasAdds b - EFst _ e -> hasAdds e - ESnd _ e -> hasAdds e - ENil _ -> False - EInl _ _ e -> hasAdds e - EInr _ _ e -> hasAdds e - ECase _ e a b -> hasAdds e || hasAdds a || hasAdds b - ENothing _ _ -> False - EJust _ e -> hasAdds e - EMaybe _ a b e -> hasAdds a || hasAdds b || hasAdds e - ELNil _ _ _ -> False - ELInl _ _ e -> hasAdds e - ELInr _ _ e -> hasAdds e - ELCase _ e a b c -> hasAdds e || hasAdds a || hasAdds b || hasAdds c - EConstArr _ _ _ _ -> False - EBuild _ _ a b -> hasAdds a || hasAdds b - EFold1Inner _ _ a b c -> hasAdds a || hasAdds b || hasAdds c - ESum1Inner _ e -> hasAdds e - EUnit _ e -> hasAdds e - EReplicate1Inner _ a b -> hasAdds a || hasAdds b - EMaximum1Inner _ e -> hasAdds e - EMinimum1Inner _ e -> hasAdds e - ECustom _ _ _ _ a b c d e -> hasAdds a || hasAdds b || hasAdds c || hasAdds d || hasAdds e - EConst _ _ _ -> False - EIdx0 _ e -> hasAdds e - EIdx1 _ a b -> hasAdds a || hasAdds b - EIdx _ a b -> hasAdds a || hasAdds b - EShape _ e -> hasAdds e - EOp _ _ e -> hasAdds e - EWith _ _ a b -> hasAdds a || hasAdds b - ERecompute _ e -> hasAdds e - EAccum _ _ _ _ _ _ -> True - EZero _ _ e -> hasAdds e - EPlus _ _ a b -> hasAdds a || hasAdds b - EOneHot _ _ _ a b -> hasAdds a || hasAdds b - EError _ _ _ -> False - -checkAccumInScope :: SList STy env -> Bool -checkAccumInScope = \case SNil -> False - SCons t env -> check t || checkAccumInScope env - where - check :: STy t -> Bool - check STNil = False - check (STPair s t) = check s || check t - check (STEither s t) = check s || check t - check (STLEither s t) = check s || check t - check (STMaybe t) = check t - check (STArr _ t) = check t - check (STScal _) = False - check STAccum{} = True - -data OneHotTerm env p a b where - OneHotTerm :: SMTy a -> SAcPrj p a b -> Ex env (AcIdx p a) -> Ex env b -> OneHotTerm env p a b -deriving instance Show (OneHotTerm env p a b) - -simplifyOneHotTerm :: OneHotTerm env p a b - -> SM tenv tt env t r -- ^ Zero case (onehot is actually zero) - -> (Ex env a -> SM tenv tt env t r) -- ^ Trivial case (no zeros in onehot) - -> (forall p' b'. OneHotTerm env p' a b' -> SM tenv tt env t r) - -> SM tenv tt env t r -simplifyOneHotTerm (OneHotTerm t1 prj1 idx1 val1) kzero ktriv k = do - val1' <- liftActed $ recogniseMonoid (acPrjTy prj1 t1) val1 - case val1' of - EZero{} -> kzero - EOneHot _ t2 prj2 idx2 val2 - | Just Refl <- testEquality (acPrjTy prj1 t1) t2 -> do - tellActed -- record, whatever happens later, that we've modified something - concatOneHots t1 prj1 idx1 prj2 idx2 $ \prj12 idx12 -> - simplifyOneHotTerm (OneHotTerm t1 prj12 idx12 val2) kzero ktriv k - _ -> case prj1 of - SAPHere -> ktriv val1 - _ -> k (OneHotTerm t1 prj1 idx1 val1) - --- | Recognises 'EZero' and 'EOneHot'. -recogniseMonoid :: SMTy t -> Ex env t -> (Any, Ex env t) -recogniseMonoid _ e@EOneHot{} = return e -recogniseMonoid SMTNil (ENil _) = acted' $ return $ EZero ext SMTNil (ENil ext) -recogniseMonoid typ@(SMTPair t1 t2) (EPair _ a b) = - ((,) <$> recogniseMonoid t1 a <*> recogniseMonoid t2 b) >>= \case - (EZero _ _ ezi1, EZero _ _ ezi2) -> acted' $ return $ EZero ext typ (EPair ext ezi1 ezi2) - (a', EZero _ _ ezi2) -> acted' $ EOneHot ext typ (SAPFst SAPHere) (EPair ext (ENil ext) ezi2) <$> recogniseMonoid t1 a' - (EZero _ _ ezi1, b') -> acted' $ EOneHot ext typ (SAPSnd SAPHere) (EPair ext ezi1 (ENil ext)) <$> recogniseMonoid t2 b' - (a', b') -> return $ EPair ext a' b' -recogniseMonoid typ@(SMTLEither t1 t2) expr = - case expr of - ELNil{} -> acted' $ return $ EZero ext typ (ENil ext) - ELInl _ _ e -> acted' $ EOneHot ext typ (SAPLeft SAPHere) (ENil ext) <$> recogniseMonoid t1 e - ELInr _ _ e -> acted' $ EOneHot ext typ (SAPRight SAPHere) (ENil ext) <$> recogniseMonoid t2 e - _ -> return expr -recogniseMonoid typ@(SMTMaybe t1) expr = - case expr of - ENothing{} -> acted' $ return $ EZero ext typ (ENil ext) - EJust _ e -> acted' $ EOneHot ext typ (SAPJust SAPHere) (ENil ext) <$> recogniseMonoid t1 e - _ -> return expr -recogniseMonoid typ@(SMTArr SZ t) (EUnit _ e) = - acted' $ do - e' <- recogniseMonoid t e - return $ - ELet ext e' $ - EOneHot ext typ (SAPArrIdx SAPHere) - (EPair ext (EPair ext (ENil ext) (EUnit ext (makeZeroInfo t (EVar ext (fromSMTy t) IZ)))) - (ENil ext)) - (EVar ext (fromSMTy t) IZ) -recogniseMonoid typ@(SMTScal sty) e@(EConst _ _ x) = case (sty, x) of - (STI32, 0) -> acted' $ return $ EZero ext typ (ENil ext) - (STI64, 0) -> acted' $ return $ EZero ext typ (ENil ext) - (STF32, 0) -> acted' $ return $ EZero ext typ (ENil ext) - (STF64, 0) -> acted' $ return $ EZero ext typ (ENil ext) - _ -> return e -recogniseMonoid _ e = return e - -concatOneHots :: SMTy a - -> SAcPrj p1 a b -> Ex env (AcIdx p1 a) - -> SAcPrj p2 b c -> Ex env (AcIdx p2 b) - -> (forall p12. SAcPrj p12 a c -> Ex env (AcIdx p12 a) -> r) -> r -concatOneHots t1 prj1 idx1 prj2 idx2 k = case (t1, prj1) of - (_, SAPHere) -> k prj2 idx2 - - (SMTPair a _, SAPFst prj1') -> - concatOneHots a prj1' (EFst ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 -> - k (SAPFst prj12) (ELet ext idx1 $ EPair ext idx12 (ESnd ext (EVar ext (typeOf idx1) IZ))) - (SMTPair _ b, SAPSnd prj1') -> - concatOneHots b prj1' (ESnd ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 -> - k (SAPSnd prj12) (ELet ext idx1 $ EPair ext (EFst ext (EVar ext (typeOf idx1) IZ)) idx12) - - (SMTLEither a _, SAPLeft prj1') -> - concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPLeft prj12) idx12 - (SMTLEither _ b, SAPRight prj1') -> - concatOneHots b prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPRight prj12) idx12 - - (SMTMaybe a, SAPJust prj1') -> - concatOneHots a prj1' idx1 prj2 idx2 $ \prj12 idx12 -> k (SAPJust prj12) idx12 - - (SMTArr _ a, SAPArrIdx prj1') -> - concatOneHots a prj1' (ESnd ext (EVar ext (typeOf idx1) IZ)) prj2 (weakenExpr WSink idx2) $ \prj12 idx12 -> - k (SAPArrIdx prj12) (ELet ext idx1 $ EPair ext (EFst ext (EVar ext (typeOf idx1) IZ)) idx12) - -zeroInfoFromOneHot :: SMTy t -> SAcPrj p t a -> Ex env (AcIdx p t) -> Ex env a -> Ex env (ZeroInfo t) -zeroInfoFromOneHot = \ty prj eidx e -> ELet ext eidx $ go ty prj (EVar ext (typeOf eidx) IZ) (weakenExpr WSink e) - where - -- invariant: AcIdx expression is duplicable - go :: SMTy t -> SAcPrj p t a -> Ex env (AcIdx p t) -> Ex env a -> Ex env (ZeroInfo t) - go t SAPHere _ e = makeZeroInfo t e - go (SMTPair t1 _) (SAPFst prj) eidx e = EPair ext (go t1 prj (EFst ext eidx) e) (ESnd ext eidx) - go (SMTPair _ t2) (SAPSnd prj) eidx e = EPair ext (EFst ext eidx) (go t2 prj (ESnd ext eidx) e) - go SMTLEither{} _ _ _ = ENil ext - go SMTMaybe{} _ _ _ = ENil ext - go SMTArr{} SAPArrIdx{} eidx _ = ESnd ext (EFst ext eidx) - -makeZeroInfo :: SMTy t -> Ex env t -> Ex env (ZeroInfo t) -makeZeroInfo = \ty reference -> ELet ext reference $ go ty (EVar ext (fromSMTy ty) IZ) - where - -- invariant: expression argument is duplicable - go :: SMTy t -> Ex env t -> Ex env (ZeroInfo t) - go SMTNil _ = ENil ext - go (SMTPair t1 t2) e = EPair ext (go t1 (EFst ext e)) (go t2 (ESnd ext e)) - go SMTLEither{} _ = ENil ext - go SMTMaybe{} _ = ENil ext - go (SMTArr _ t) e = emap (go t (EVar ext (fromSMTy t) IZ)) e - go SMTScal{} _ = ENil ext |
