1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module AST (module AST, module AST.Types, module AST.Weaken) where
import Data.Functor.Const
import Data.Kind (Type)
import Array
import AST.Types
import AST.Weaken
import CHAD.Types
import Data
-- | This index is flipped around from the usual direction: the smallest index
-- is at the _heart_ of the nesting, not at the outside. The outermost layer
-- indexes into the _outer_ dimension of the type @t@. This makes indices into
-- compound structures work properly with coproducts.
type family AcIdx t i where
AcIdx t Z = TNil
AcIdx (TPair a b) (S i) = TEither (AcIdx a i) (AcIdx b i)
AcIdx (TEither a b) (S i) = TEither (AcIdx a i) (AcIdx b i)
AcIdx (TMaybe t) (S i) = AcIdx t i
AcIdx (TArr Z t) (S i) = AcIdx t i
AcIdx (TArr (S n) t) (S i) = TPair TIx (AcIdx (TArr n t) i)
type family AcVal t i where
AcVal t Z = t
AcVal (TPair a b) (S i) = TEither (AcVal a i) (AcVal b i)
AcVal (TEither a b) (S i) = TEither (AcVal a i) (AcVal b i)
AcVal (TMaybe t) (S i) = AcVal t i
AcVal (TArr n t) (S i) = TPair (Tup (Replicate n TIx)) (AcValArr n t (S i))
type family AcValArr n t i where
AcValArr n t Z = TArr n t
AcValArr Z t (S i) = AcVal t i
AcValArr (S n) t (S i) = AcValArr n t i
-- General assumption: head of the list (whatever way it is associated) is the
-- inner variable / inner array dimension. In pretty printing, the inner
-- variable / inner dimension is printed on the _right_.
--
-- Note that the 'EZero' and 'EPlus' constructs have typing that depend on the
-- type transformation of CHAD. Indeed, these constructors are created _by_
-- CHAD, and are intended to be eliminated after simplification, so that the
-- input program as well as the output program do not contain these
-- constructors.
-- TODO: ensure this by a "stage" type parameter.
type Expr :: (Ty -> Type) -> [Ty] -> Ty -> Type
data Expr x env t where
-- lambda calculus
EVar :: x t -> STy t -> Idx env t -> Expr x env t
ELet :: x t -> Expr x env a -> Expr x (a : env) t -> Expr x env t
-- base types
EPair :: x (TPair a b) -> Expr x env a -> Expr x env b -> Expr x env (TPair a b)
EFst :: x a -> Expr x env (TPair a b) -> Expr x env a
ESnd :: x b -> Expr x env (TPair a b) -> Expr x env b
ENil :: x TNil -> Expr x env TNil
EInl :: x (TEither a b) -> STy b -> Expr x env a -> Expr x env (TEither a b)
EInr :: x (TEither a b) -> STy a -> Expr x env b -> Expr x env (TEither a b)
ECase :: x c -> Expr x env (TEither a b) -> Expr x (a : env) c -> Expr x (b : env) c -> Expr x env c
ENothing :: x (TMaybe t) -> STy t -> Expr x env (TMaybe t)
EJust :: x (TMaybe t) -> Expr x env t -> Expr x env (TMaybe t)
EMaybe :: x b -> Expr x env b -> Expr x (t : env) b -> Expr x env (TMaybe t) -> Expr x env b
-- array operations
EConstArr :: Show (ScalRep t) => x (TArr n (TScal t)) -> SNat n -> SScalTy t -> Array n (ScalRep t) -> Expr x env (TArr n (TScal t))
EBuild :: x (TArr n t) -> SNat n -> Expr x env (Tup (Replicate n TIx)) -> Expr x (Tup (Replicate n TIx) : env) t -> Expr x env (TArr n t)
EFold1Inner :: x (TArr n t) -> Expr x (t : t : env) t -> Expr x env t -> Expr x env (TArr (S n) t) -> Expr x env (TArr n t)
ESum1Inner :: ScalIsNumeric t ~ True => x (TArr n (TScal t)) -> Expr x env (TArr (S n) (TScal t)) -> Expr x env (TArr n (TScal t))
EUnit :: x (TArr Z t) -> Expr x env t -> Expr x env (TArr Z t)
EReplicate1Inner :: x (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t) -> Expr x env (TArr (S n) t)
EMaximum1Inner :: ScalIsNumeric t ~ True => x (TArr n (TScal t)) -> Expr x env (TArr (S n) (TScal t)) -> Expr x env (TArr n (TScal t))
EMinimum1Inner :: ScalIsNumeric t ~ True => x (TArr n (TScal t)) -> Expr x env (TArr (S n) (TScal t)) -> Expr x env (TArr n (TScal t))
-- expression operations
EConst :: Show (ScalRep t) => x (TScal t) -> SScalTy t -> ScalRep t -> Expr x env (TScal t)
EIdx0 :: x t -> Expr x env (TArr Z t) -> Expr x env t
EIdx1 :: x (TArr n t) -> Expr x env (TArr (S n) t) -> Expr x env TIx -> Expr x env (TArr n t)
EIdx :: x t -> Expr x env (TArr n t) -> Expr x env (Tup (Replicate n TIx)) -> Expr x env t
EShape :: x (Tup (Replicate n TIx)) -> Expr x env (TArr n t) -> Expr x env (Tup (Replicate n TIx))
EOp :: x t -> SOp a t -> Expr x env a -> Expr x env t
-- custom derivatives
-- 'b' is the part of the input of the operation that derivatives should
-- be backpropagated to; 'a' is the inactive part. The dual field of
-- ECustom does not allow a derivative to be generated for 'a', and hence
-- none is propagated.
ECustom :: x t -> STy a -> STy b -> STy tape
-> Expr x [b, a] t -- ^ regular operation
-> Expr x [D1 b, D1 a] (TPair (D1 t) tape) -- ^ CHAD forward pass
-> Expr x [D2 t, tape] (D2 b) -- ^ CHAD reverse derivative
-> Expr x env a -> Expr x env b
-> Expr x env t
-- accumulation effect
EWith :: x (TPair a t) -> Expr x env t -> Expr x (TAccum t : env) a -> Expr x env (TPair a t)
EAccum :: x TNil -> SNat i -> Expr x env (AcIdx t i) -> Expr x env (AcVal t i) -> Expr x env (TAccum t) -> Expr x env TNil
-- EAccum1 :: Expr x env TIx -> Expr x env t -> Expr x env (TAccum (S Z) t) -> Expr x env TNil
-- monoidal operations (to be desugared to regular operations after simplification)
EZero :: x (D2 t) -> STy t -> Expr x env (D2 t)
EPlus :: x (D2 t) -> STy t -> Expr x env (D2 t) -> Expr x env (D2 t) -> Expr x env (D2 t)
EOneHot :: x (D2 t) -> STy t -> SNat i -> Expr x env (AcIdx (D2 t) i) -> Expr x env (AcVal (D2 t) i) -> Expr x env (D2 t)
-- partiality
EError :: x a -> STy a -> String -> Expr x env a
deriving instance (forall ty. Show (x ty)) => Show (Expr x env t)
type Ex = Expr (Const ())
ext :: Const () a
ext = Const ()
eTup :: SList (Ex env) list -> Ex env (Tup list)
eTup = mkTup (ENil ext) (EPair ext)
type SOp :: Ty -> Ty -> Type
data SOp a t where
OAdd :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
OMul :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
ONeg :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
OLt :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
OLe :: ScalIsNumeric a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
OEq :: SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal TBool)
ONot :: SOp (TScal TBool) (TScal TBool)
OAnd :: SOp (TPair (TScal TBool) (TScal TBool)) (TScal TBool)
OOr :: SOp (TPair (TScal TBool) (TScal TBool)) (TScal TBool)
OIf :: SOp (TScal TBool) (TEither TNil TNil) -- True is Left, False is Right
ORound64 :: SOp (TScal TF64) (TScal TI64)
OToFl64 :: SOp (TScal TI64) (TScal TF64)
ORecip :: ScalIsFloating a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
OExp :: ScalIsFloating a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
OLog :: ScalIsFloating a ~ True => SScalTy a -> SOp (TScal a) (TScal a)
OIDiv :: ScalIsIntegral a ~ True => SScalTy a -> SOp (TPair (TScal a) (TScal a)) (TScal a)
deriving instance Show (SOp a t)
opt1 :: SOp a t -> STy a
opt1 = \case
OAdd t -> STPair (STScal t) (STScal t)
OMul t -> STPair (STScal t) (STScal t)
ONeg t -> STScal t
OLt t -> STPair (STScal t) (STScal t)
OLe t -> STPair (STScal t) (STScal t)
OEq t -> STPair (STScal t) (STScal t)
ONot -> STScal STBool
OAnd -> STPair (STScal STBool) (STScal STBool)
OOr -> STPair (STScal STBool) (STScal STBool)
OIf -> STScal STBool
ORound64 -> STScal STF64
OToFl64 -> STScal STI64
ORecip t -> STScal t
OExp t -> STScal t
OLog t -> STScal t
OIDiv t -> STPair (STScal t) (STScal t)
opt2 :: SOp a t -> STy t
opt2 = \case
OAdd t -> STScal t
OMul t -> STScal t
ONeg t -> STScal t
OLt _ -> STScal STBool
OLe _ -> STScal STBool
OEq _ -> STScal STBool
ONot -> STScal STBool
OAnd -> STScal STBool
OOr -> STScal STBool
OIf -> STEither STNil STNil
ORound64 -> STScal STI64
OToFl64 -> STScal STF64
ORecip t -> STScal t
OExp t -> STScal t
OLog t -> STScal t
OIDiv t -> STScal t
typeOf :: Expr x env t -> STy t
typeOf = \case
EVar _ t _ -> t
ELet _ _ e -> typeOf e
EPair _ a b -> STPair (typeOf a) (typeOf b)
EFst _ e | STPair t _ <- typeOf e -> t
ESnd _ e | STPair _ t <- typeOf e -> t
ENil _ -> STNil
EInl _ t2 e -> STEither (typeOf e) t2
EInr _ t1 e -> STEither t1 (typeOf e)
ECase _ _ a _ -> typeOf a
ENothing _ t -> STMaybe t
EJust _ e -> STMaybe (typeOf e)
EMaybe _ e _ _ -> typeOf e
EConstArr _ n t _ -> STArr n (STScal t)
EBuild _ n _ e -> STArr n (typeOf e)
EFold1Inner _ _ _ e | STArr (SS n) t <- typeOf e -> STArr n t
ESum1Inner _ e | STArr (SS n) t <- typeOf e -> STArr n t
EUnit _ e -> STArr SZ (typeOf e)
EReplicate1Inner _ _ e | STArr n t <- typeOf e -> STArr (SS n) t
EMaximum1Inner _ e | STArr (SS n) t <- typeOf e -> STArr n t
EMinimum1Inner _ e | STArr (SS n) t <- typeOf e -> STArr n t
EConst _ t _ -> STScal t
EIdx0 _ e | STArr _ t <- typeOf e -> t
EIdx1 _ e _ | STArr (SS n) t <- typeOf e -> STArr n t
EIdx _ e _ | STArr _ t <- typeOf e -> t
EShape _ e | STArr n _ <- typeOf e -> tTup (sreplicate n tIx)
EOp _ op _ -> opt2 op
ECustom _ _ _ _ e _ _ _ _ -> typeOf e
EWith _ e1 e2 -> STPair (typeOf e2) (typeOf e1)
EAccum _ _ _ _ _ -> STNil
EZero _ t -> d2 t
EPlus _ t _ _ -> d2 t
EOneHot _ t _ _ _ -> d2 t
EError _ t _ -> t
extOf :: Expr x env t -> x t
extOf = \case
EVar x _ _ -> x
ELet x _ _ -> x
EPair x _ _ -> x
EFst x _ -> x
ESnd x _ -> x
ENil x -> x
EInl x _ _ -> x
EInr x _ _ -> x
ECase x _ _ _ -> x
ENothing x _ -> x
EJust x _ -> x
EMaybe x _ _ _ -> x
EConstArr x _ _ _ -> x
EBuild x _ _ _ -> x
EFold1Inner x _ _ _ -> x
ESum1Inner x _ -> x
EUnit x _ -> x
EReplicate1Inner x _ _ -> x
EMaximum1Inner x _ -> x
EMinimum1Inner x _ -> x
EConst x _ _ -> x
EIdx0 x _ -> x
EIdx1 x _ _ -> x
EIdx x _ _ -> x
EShape x _ -> x
EOp x _ _ -> x
ECustom x _ _ _ _ _ _ _ _ -> x
EWith x _ _ -> x
EAccum x _ _ _ _ -> x
EZero x _ -> x
EPlus x _ _ _ -> x
EOneHot x _ _ _ _ -> x
EError x _ _ -> x
unSTy :: STy t -> Ty
unSTy = \case
STNil -> TNil
STPair a b -> TPair (unSTy a) (unSTy b)
STEither a b -> TEither (unSTy a) (unSTy b)
STMaybe t -> TMaybe (unSTy t)
STArr n t -> TArr (unSNat n) (unSTy t)
STScal t -> TScal (unSScalTy t)
STAccum t -> TAccum (unSTy t)
unSEnv :: SList STy env -> [Ty]
unSEnv SNil = []
unSEnv (SCons t l) = unSTy t : unSEnv l
unSScalTy :: SScalTy t -> ScalTy
unSScalTy = \case
STI32 -> TI32
STI64 -> TI64
STF32 -> TF32
STF64 -> TF64
STBool -> TBool
subst1 :: Expr x env a -> Expr x (a : env) t -> Expr x env t
subst1 repl = subst $ \x t -> \case IZ -> repl
IS i -> EVar x t i
subst :: (forall a. x a -> STy a -> Idx env a -> Expr x env' a)
-> Expr x env t -> Expr x env' t
subst f = subst' (\x t w i -> weakenExpr w (f x t i)) WId
subst' :: (forall a env2. x a -> STy a -> env' :> env2 -> Idx env a -> Expr x env2 a)
-> env' :> envOut
-> Expr x env t
-> Expr x envOut t
subst' f w = \case
EVar x t i -> f x t w i
ELet x rhs body -> ELet x (subst' f w rhs) (subst' (sinkF f) (WCopy w) body)
EPair x a b -> EPair x (subst' f w a) (subst' f w b)
EFst x e -> EFst x (subst' f w e)
ESnd x e -> ESnd x (subst' f w e)
ENil x -> ENil x
EInl x t e -> EInl x t (subst' f w e)
EInr x t e -> EInr x t (subst' f w e)
ECase x e a b -> ECase x (subst' f w e) (subst' (sinkF f) (WCopy w) a) (subst' (sinkF f) (WCopy w) b)
ENothing x t -> ENothing x t
EJust x e -> EJust x (subst' f w e)
EMaybe x a b e -> EMaybe x (subst' f w a) (subst' (sinkF f) (WCopy w) b) (subst' f w e)
EConstArr x n t a -> EConstArr x n t a
EBuild x n a b -> EBuild x n (subst' f w a) (subst' (sinkF f) (WCopy w) b)
EFold1Inner x a b c -> EFold1Inner x (subst' (sinkF (sinkF f)) (WCopy (WCopy w)) a) (subst' f w b) (subst' f w c)
ESum1Inner x e -> ESum1Inner x (subst' f w e)
EUnit x e -> EUnit x (subst' f w e)
EReplicate1Inner x a b -> EReplicate1Inner x (subst' f w a) (subst' f w b)
EMaximum1Inner x e -> EMaximum1Inner x (subst' f w e)
EMinimum1Inner x e -> EMinimum1Inner x (subst' f w e)
EConst x t v -> EConst x t v
EIdx0 x e -> EIdx0 x (subst' f w e)
EIdx1 x a b -> EIdx1 x (subst' f w a) (subst' f w b)
EIdx x e es -> EIdx x (subst' f w e) (subst' f w es)
EShape x e -> EShape x (subst' f w e)
EOp x op e -> EOp x op (subst' f w e)
ECustom x s t p a b c e1 e2 -> ECustom x s t p a b c (subst' f w e1) (subst' f w e2)
EWith x e1 e2 -> EWith x (subst' f w e1) (subst' (sinkF f) (WCopy w) e2)
EAccum x i e1 e2 e3 -> EAccum x i (subst' f w e1) (subst' f w e2) (subst' f w e3)
EZero x t -> EZero x t
EPlus x t a b -> EPlus x t (subst' f w a) (subst' f w b)
EOneHot x t i a b -> EOneHot x t i (subst' f w a) (subst' f w b)
EError x t s -> EError x t s
where
sinkF :: (forall a. x a -> STy a -> (env' :> env2) -> Idx env a -> Expr x env2 a)
-> x t -> STy t -> ((b : env') :> env2) -> Idx (b : env) t -> Expr x env2 t
sinkF f' x' t w' = \case
IZ -> EVar x' t (w' @> IZ)
IS i -> f' x' t (WPop w') i
weakenExpr :: env :> env' -> Expr x env t -> Expr x env' t
weakenExpr = subst' (\x t w' i -> EVar x t (w' @> i))
slistIdx :: SList f list -> Idx list t -> f t
slistIdx (SCons x _) IZ = x
slistIdx (SCons _ list) (IS i) = slistIdx list i
slistIdx SNil i = case i of {}
idx2int :: Idx env t -> Int
idx2int IZ = 0
idx2int (IS n) = 1 + idx2int n
class KnownScalTy t where knownScalTy :: SScalTy t
instance KnownScalTy TI32 where knownScalTy = STI32
instance KnownScalTy TI64 where knownScalTy = STI64
instance KnownScalTy TF32 where knownScalTy = STF32
instance KnownScalTy TF64 where knownScalTy = STF64
instance KnownScalTy TBool where knownScalTy = STBool
class KnownTy t where knownTy :: STy t
instance KnownTy TNil where knownTy = STNil
instance (KnownTy s, KnownTy t) => KnownTy (TPair s t) where knownTy = STPair knownTy knownTy
instance (KnownTy s, KnownTy t) => KnownTy (TEither s t) where knownTy = STEither knownTy knownTy
instance KnownTy t => KnownTy (TMaybe t) where knownTy = STMaybe knownTy
instance (KnownNat n, KnownTy t) => KnownTy (TArr n t) where knownTy = STArr knownNat knownTy
instance KnownScalTy t => KnownTy (TScal t) where knownTy = STScal knownScalTy
instance KnownTy t => KnownTy (TAccum t) where knownTy = STAccum knownTy
class KnownEnv env where knownEnv :: SList STy env
instance KnownEnv '[] where knownEnv = SNil
instance (KnownTy t, KnownEnv env) => KnownEnv (t : env) where knownEnv = SCons knownTy knownEnv
styKnown :: STy t -> Dict (KnownTy t)
styKnown STNil = Dict
styKnown (STPair a b) | Dict <- styKnown a, Dict <- styKnown b = Dict
styKnown (STEither a b) | Dict <- styKnown a, Dict <- styKnown b = Dict
styKnown (STMaybe t) | Dict <- styKnown t = Dict
styKnown (STArr n t) | Dict <- snatKnown n, Dict <- styKnown t = Dict
styKnown (STScal t) | Dict <- sscaltyKnown t = Dict
styKnown (STAccum t) | Dict <- styKnown t = Dict
sscaltyKnown :: SScalTy t -> Dict (KnownScalTy t)
sscaltyKnown STI32 = Dict
sscaltyKnown STI64 = Dict
sscaltyKnown STF32 = Dict
sscaltyKnown STF64 = Dict
sscaltyKnown STBool = Dict
envKnown :: SList STy env -> Dict (KnownEnv env)
envKnown SNil = Dict
envKnown (t `SCons` env) | Dict <- styKnown t, Dict <- envKnown env = Dict
ebuildUp1 :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env TIx -> Ex (TIx : env) (TArr n t) -> Ex env (TArr (S n) t)
ebuildUp1 n sh size f =
EBuild ext (SS n) (EPair ext sh size) $
let arg = EVar ext (tTup (sreplicate (SS n) tIx)) IZ
in EIdx ext (ELet ext (ESnd ext arg) (weakenExpr (WCopy WSink) f))
(EFst ext arg)
eidxEq :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env (Tup (Replicate n TIx)) -> Ex env (TScal TBool)
eidxEq SZ _ _ = EConst ext STBool True
eidxEq (SS n) a b
| let ty = tTup (sreplicate (SS n) tIx)
= ELet ext a $
ELet ext (weakenExpr WSink b) $
EOp ext OAnd $ EPair ext
(EOp ext (OEq STI64) (EPair ext (ESnd ext (EVar ext ty (IS IZ)))
(ESnd ext (EVar ext ty IZ))))
(eidxEq n (EFst ext (EVar ext ty (IS IZ)))
(EFst ext (EVar ext ty IZ)))
emap :: Ex (a : env) b -> Ex env (TArr n a) -> Ex env (TArr n b)
emap f arr =
let STArr n t = typeOf arr
in ELet ext arr $
EBuild ext n (EShape ext (EVar ext (STArr n t) IZ)) $
ELet ext (EIdx ext (EVar ext (STArr n t) (IS IZ))
(EVar ext (tTup (sreplicate n tIx)) IZ)) $
weakenExpr (WCopy (WSink .> WSink)) f
ezipWith :: Ex (b : a : env) c -> Ex env (TArr n a) -> Ex env (TArr n b) -> Ex env (TArr n c)
ezipWith f arr1 arr2 =
let STArr n t1 = typeOf arr1
STArr _ t2 = typeOf arr2
in ELet ext arr1 $
ELet ext (weakenExpr WSink arr2) $
EBuild ext n (EShape ext (EVar ext (STArr n t1) (IS IZ))) $
ELet ext (EIdx ext (EVar ext (STArr n t1) (IS (IS IZ)))
(EVar ext (tTup (sreplicate n tIx)) IZ)) $
ELet ext (EIdx ext (EVar ext (STArr n t2) (IS (IS IZ)))
(EVar ext (tTup (sreplicate n tIx)) (IS IZ))) $
weakenExpr (WCopy (WCopy (WSink .> WSink .> WSink))) f
ezip :: Ex env (TArr n a) -> Ex env (TArr n b) -> Ex env (TArr n (TPair a b))
ezip arr1 arr2 =
let STArr _ t1 = typeOf arr1
STArr _ t2 = typeOf arr2
in ezipWith (EPair ext (EVar ext t1 (IS IZ)) (EVar ext t2 IZ)) arr1 arr2
eif :: Ex env (TScal TBool) -> Ex env a -> Ex env a -> Ex env a
eif a b c = ECase ext (EOp ext OIf a) (weakenExpr WSink b) (weakenExpr WSink c)
-- | Returns whether the shape is all-zero, but returns False for the zero-dimensional shape (because it is _not_ empty).
eshapeEmpty :: SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env (TScal TBool)
eshapeEmpty SZ _ = EConst ext STBool False
eshapeEmpty (SS SZ) e = EOp ext (OEq STI64) (EPair ext (ESnd ext e) (EConst ext STI64 0))
eshapeEmpty (SS n) e =
ELet ext e $
EOp ext OAnd (EPair ext
(EOp ext (OEq STI64) (EPair ext (ESnd ext (EVar ext (tTup (sreplicate (SS n) tIx)) IZ))
(EConst ext STI64 0)))
(eshapeEmpty n (EFst ext (EVar ext (tTup (sreplicate (SS n) tIx)) IZ))))
arrIdxToAcIdx :: proxy t -> SNat n -> Ex env (Tup (Replicate n TIx)) -> Ex env (AcIdx (TArr n t) n)
arrIdxToAcIdx = \p (n :: SNat n) e -> case lemPlusZero @n of Refl -> go p n SZ e (ENil ext)
where
-- symbolic version of 'invert' in Interpreter
go :: forall n m t env proxy. proxy t -> SNat n -> SNat m
-> Ex env (Tup (Replicate n TIx)) -> Ex env (AcIdx (TArr m t) m) -> Ex env (AcIdx (TArr (n + m) t) (n + m))
go _ SZ _ _ acidx = acidx
go p (SS n) m idx acidx
| Refl <- lemPlusSuccRight @n @m
= ELet ext idx $
go p n (SS m)
(EFst ext (EVar ext (typeOf idx) IZ))
(EPair ext (ESnd ext (EVar ext (typeOf idx) IZ))
(weakenExpr WSink acidx))
lemAcValArrN :: proxy t -> SNat n -> AcValArr n t n :~: TArr Z t
lemAcValArrN _ SZ = Refl
lemAcValArrN p (SS n) | Refl <- lemAcValArrN p n = Refl
|